
Vincenzo Rubano

Usability and User
Experience Design

Università di Bologna,
A.Y. 2023-2024.

Accessibility crash
course!

Outline

• Brief intro to disabilities and assistive technologies
• Why accessibility?
• International standards and guidelines
• Accessibility testing

Accessibility

What is web accessibility?

Web accessibility is the inclusive practice of ensuring
there are no barriers that prevent interaction with, or
access to, websites and applications by people with
physical disabilities, situational disabilities, and socio-
economic restrictions on bandwidth and speed. When
sites are correctly designed, developed and edited,
generally all users have equal access to information
and functionality.

Disability types

Visual: visual impairments including blindness, various common types of
low vision, poor eyesight, and color blindness.
Motor/mobility: such as difficulty or inability to use the hands, including
tremors, muscle slowness, loss of fine muscle control, etc.
Auditory: deafness or hearing impairments, including individuals who
are hard of hearing.
Seizures: photo epileptic seizures caused by visual strobe or flashing
effects.
Cognitive and intellectual: Developmental disabilities, learning
difficulties (dyslexia, dyscalculia, etc.), and cognitive disabilities (PTSD,
Alzheimer's) of various origins, affecting memory, attention,
developmental "maturity", problem-solving and logic skills, and so on.

Accessibility is much more!

But accessibility does not benefit only people listed in the
previous slide, it extends to anyone who is experiencing any
permanent, temporary or situational disability.

Temporary disability: a broken wrist makes mouse navigation
not an option.

By situational disability we mean someone who may be
experiencing a boundary based on the current experience (e.g.
partial sight due to sun lighting, being one handed due to
carrying a baby).

Why should you care?

• social and ethics
• legal reasons
• business

Social implications

Accessibility is a Civil Right, recognized by the United
Nations Convention on the Rights of Persons with
Disabilities (CRPD).

Any website, application or system that is not accessible
can be considered a discrimination, as it prevents groups
of people from using it.

Inaccessible systems impacts negatively on dignity,
autonomy, full and effective participation, equal
opportunity, and much more of large groups.

Legal reasons

Accessibility laws and polices are in place to enforce the creation
of accessible content all over the world (Australia, US, Canada,
European Union, Italy, and more).

Companies with inaccessible websites and/or applications can be
(and are) sued for that (US, EU coming soon, eventually).

In Italy, websites and mobile applications developed on behalf of
public administrations, or companies that provide services on
their behalf, have to be accessible. Bodies in the public field
(including schools, museums, universities, etc) cannot purchase
inaccessible ICT solutions.

Business

It has been estimated that The total after-tax disposable income for
working-age people with disabilities in the US is about $490 billion,
which is similar to that of other significant market segments, such as
African Americans ($501 billion) and Hispanics ($582 billion). Simply put,
inaccessible systems are missing on a significant market segment.

People with disabilities are not a solitary market; as they are surrounded
by family members and friends who also recognize the value in products
and services that accommodate all people in society.

Getting sued for accessibility reasons costs money, and you’ll have to
pay for accessibility remediation in any case.

Assistive
Technologies

I/O assumptions

When we design computer systems we often make
several assumptions:

� interface will be driven by mouse clicks;
� keyboard will be used for text input (only);
� output will be sent via the screen.

Is this really the case?

Multimodal I/O

Of course not. Users might be interacting with a system in
completely unexpected ways, leveraging extremely different
input and output devices and systems.

A system should be designed and implemented to behave
correctly in such scenarios, offering to anyone the same user
experience. Or, in other words, to let everyone access it!

Assistive technologies are such an example of multimodal
I/O.

Assistive technologies

Assistive technologies (AT) [1] are assistive, adaptive, and rehabilitative
devices for people with disabilities or the elderly population.
People who have disabilities often cannot perform activities of daily living
(ADL) such as toileting, mobility (ambulation), eating, bathing, dressing,
grooming, and personal device care as you usually do.

Assistive technologies can ameliorate the effects of disabilities that limit the
ability to perform ADLs and promote greater independence by enabling
people to perform tasks they were formerly unable to accomplish, or had
great difficulty accomplishing, by providing enhancements to, or changing
methods of interacting with, the technology needed to accomplish such tasks.

[Source: Assistive technology | Wikipedia]

https://en.wikipedia.org/wiki/Assistive_technology

Assistive technologies: some examples

• white canes and/or guide dogs, that allow blind
people to move independently in their surroundings
avoiding obstacles;

• wheelchairs, to provide independent mobility for
those who cannot walk,;

• assistive eating devices, that can enable people who
cannot feed themselves to do so;

• hearing AIDs, devices designed to make sounds
audible to a person with hearing loss;

Assistive technologies for the visually
impaired

Let’s examine some assistive technologies that can be used by
blind and visually impaired people to interact with computer
systems, illustrating how they can be seen as different I/O means
from a usability and user experience point of view. How do they
change the perception of a system?

Main visual impairment ATs:
• refreshable Braille display;
• screen reader;
• screen magnifier;

Refreshable Braille display

A refreshable braille display or braille terminal is an electro-
mechanical device for displaying Braille characters, usually by
means of round-tipped pins raised through holes in a flat surface.
Each area for displaying a character is called a “cell”: typical
Braille displays contain 40 or 80 cells. Each cell can use up to 8
points for representing a character.

Let’s see it in action!

https://en.wikipedia.org/wiki/Braille

Screen reader

A screen reader is a software application that attempts
to convey what people with normal eyesight see on a
display to their users via non-visual means, like text-to-
speech, sound icons or a Braille terminal.

Let’s see it in action!

Main screen readers

Name Operating system License

Jaws Windows Commercial

NVDA Windows GPL v 2

Orca Linux, ambiente grafico GPL

TalkBack Android Built-in

VoiceOver iOS Built-in

VoiceOver Mac OS Built-in

Chrome Vox Google Chrome, Chrome OS N/A

https://www.freedomscientific.com/Products/software/JAWS/
https://www.nvaccess.org
https://wiki.gnome.org/action/show/Projects/Orca?action=show&redirect=Orca
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback&hl=en-us
https://www.apple.com/accessibility/iphone/vision/
https://www.apple.com/accessibility/mac/vision/

Screen magnifier

A screen magnifier interfaces with a computer's graphical output to
present enlarged screen content. By enlarging part (or all) of a
screen, people with visual impairments (with some functional
vision) can better see words and images.

The simplest form of magnification presents an enlarged portion of
the original screen content, the focus, so that it covers some or all
of the full screen. This enlarged portion should include the content
of interest to the user and the pointer or cursor, also suitably
enlarged. As the user moves the pointer or cursor the screen
magnifier should update the enlarged content. If this tracking is
jerky or flickers it is likely to disturb the user.

Common features in screen magnifiers
Ranges of 1- to 16-times magnification are commonly used. The greater the
magnification the smaller the portion of the original screen content that can be
viewed, so users will tend to use the lowest magnification they can manage.
Additional features are commonly provided for people with particular sight
difficulties:
• Color inversion, typically turning text from black-on-white to white-on-black.

This can reduce screen glare.
• Smoothing. Text can become blocky and harder to recognize when enlarged,

thus screen magnifiers use interpolation to smooth the text to compensate.
• Cursor customization, highlighting mouse and text cursor positions to make

them more visible.
• Different magnification modes. Screen magnifiers can alter how they present

the enlarged portion: covering the full screen, providing a lens that is moved
around the un-magnified screen, or using a fixed magnified portion.

• Crosshairs (with customizable size, color and opacity), to make the use of a
pointing device easier when the mouse pointer is hard to see even if using
magnification.

Assistive technologies for motor
impairments

Motor impairment assistive technologies:
� mouth stick;
� head wand;
� single switch access;
� sip and puff switch;
� oversized trackball mouse;
� adaptive keyboard;
� eye tracking systems;
� voice recognition systems;

Mouth stick
A mouth stick is just what its name implies: a stick
that is placed in the mouth.
Due to its simplicity and low cost, the mouth stick is
one of the most popular assistive technologies.
In many cases there is a rubber tip at the end of the
mouth stick to give the tip better traction, and a
plastic or rubber feature at the other end that the
person inserts into the mouth.
Someone with no use of the hands could use a
mouth stick to type and perhaps to manipulate a
trackball mouse, depending on the amount of control
that the person has with the mouth stick, and on the
amount of patience that the person has if these
movements are difficult.

[Source: Motor disabilities assistive technologies |
WebAIM]

https://webaim.org/articles/motor/assistive
https://webaim.org/articles/motor/assistive

Head wand

Very similar in function to mouth
sticks, except the stick is strapped to
the head.
A person moves the head to make
the head wand type characters,
navigate through web documents,
etc.
Fatigue can be an issue when a lot of
keystrokes are required in order to
accomplish a task.

[Source: Motor disabilities assistive
technologies | WebAIM]

https://webaim.org/articles/motor/assistive
https://webaim.org/articles/motor/assistive

Single switch access
People who have very limited mobility use this
type of device.
If a person can move only the head, for example,
a switch could be placed to the side of the head
that would allow the person to click it with head
movements.
This clicking action is usually interpreted by
special software on the computer, allowing the
user to navigate through the operating system,
web pages and other environments.
Some software facilitate the typing of words by
using an auto-complete feature that tries to
guess what the person is typing, and allowing the
person to choose between the words that it
guesses.

Source: [5]

Sip and puff switches

Similar in functionality to the single
switch, sip and puff switches are able to
interpret the user's breath actions as
on/off signals, and can be used for a
variety of purposes, from controlling a
wheelchair to navigating a computer.
The hardware can be combined with
software that extends the functionality
of this simple device for more
sophisticated applications.

[Source: Motor disabilities assistive
technologies | WebAIM]

https://webaim.org/articles/motor/assistive
https://webaim.org/articles/motor/assistive

Oversized trackball mouse

A trackball mouse is not necessarily an assistive technology, as
some people without disabilities simply prefer it to the standard
mouse. But it is often easier for a person with a motor disability
to operate than a standard mouse. Someone may, for example,
use a trackball mouse in conjunction with a head wand or mouth
stick, as it is much easier to manipulate a trackball with these
devices compared with a standard mouse.

Someone with tremors in the hands may also find this kind of
mouse more useful because once the person moves the mouse
cursor to the right location, there is less danger of accidentally
moving the cursor while trying to click on the mouse button. A
person with tremors in the hands could also manipulate the
trackball mouse with a foot, if there is enough motor control in
the feet.

[Source: Motor disabilities assistive technologies | WebAIM]

https://webaim.org/articles/motor/assistive

Adaptive keyboard

In cases where a person does not have reliable muscle
control in the hands for precision movements, an
adaptive keyboard can be useful.
Some adaptive keyboards have raised areas in between
the keys, rather than lowered areas, to allow the
person to first place the hand down on the keyboard,
then slide the finger into the correct key.
Keyboard overlays are also available as an adaptation
to standard keyboards, which achieve the same results.
In some cases, adaptive keyboards come with
specialized software with word-completion technology,
allowing the person to type with fewer keystrokes,
since typing can be rather laborious and slow
otherwise.

Source: [5]

Eye tracking systems
Eye tracking devices can be a powerful alternative for
individuals with no control, or only limited control,
over their hand movements.
The device follows the movement of the eyes and
allows the person to navigate through the web with
only eye movements.
Special software allows the person to type, and may
include word-completion technology to speed up the
process.
These systems can be expensive—usually in the
thousands of US dollars—so they are less common
than the less sophisticated devices, such as mouth
sticks and head wands.

[Source: Motor disabilities assistive technologies |
WebAIM]

https://webaim.org/articles/motor/assistive
https://webaim.org/articles/motor/assistive

Voice recognition systems

These systems allow a person to control the computer by
speaking. This assumes that the person has a voice that is easy to
understand. Some people with motor disabilities—those with
cerebral palsy in particular—may have a difficult time speaking in
a way that the software can understand them, since the muscles
that control the voice are slow to respond, and speech is often
slurred, despite the fact that these people do not have any
slowness in their mental capacity.

[Source: Motor disabilities assistive technologies | WebAIM]

Let’s see them in action!

https://webaim.org/articles/motor/assistive

How do these systems work?

Most of the assistive technologies we examined work through or
emulating the keyboard. This implies that it is critical for a system
to be accessible to the keyboard and navigable with as few
keystrokes as possible. But that’s only a (good and essential)
starting point to support all users with disabilities!

Welcome to the
accessibility world

Towards official guidelines

In order to guarantee that a system can be used by everyone,
independently from the assistive technology he/she needs, more
complex guidelines need to be introduced.

Given the variety of technologies we can use nowadays to
implement new systems, such guidelines should be abstract
enough to be valid for each of them, but still be concrete so as to
make it possible implementing such recommendations.

WCAG 2.2

Web Content Accessibility Guidelinhes (WCAG) 2.2 is a W3C
recommendation that contains a set of guidelines to be satisfied by
each system to be considered accessible. Such guidelines are
organized around 4 fundamental principles. For each guideline,
success criteria (testable statements) are provided, specifying what
to test and the expected results yet in a technology independent
way.
Conformance to WCAG 2.1 can be in three different levels (A, AA,
AAA) depending on what success criteria the system satisfies.
Note that additional support documents (Techniques for WCAG 2.1)
are provided to offer practical examples on how to meet success
criteria in specific, technology dependent ways.

https://www.w3.org/TR/WCAG22/

WCAG 2.2 principles

The guidelines and Success Criteria are organized around the
following four principles, which lay the foundation necessary for
anyone to access and use Web content. Anyone who wants to use
the Web must have content that is:
• Perceivable. Information and user interface components must

be presentable to users in ways they can perceive. This means
that users must be able to perceive the information being
presented (it can't be invisible to all of their senses)

• Operable. User interface components and navigation must be
operable. This means that users must be able to operate the
interface (the interface cannot require interaction that a user
cannot perform).

WCAG 2.2 principles II

Anyone who wants to use the Web must have content that is:
• Understandable. Information and the operation of user interface

must be understandable. This means that users must be able to
understand the information as well as the operation of the user
interface (the content or operation cannot be beyond their
understanding).

• Robust. Content must be robust enough that it can be interpreted
reliably by a wide variety of user agents, including assistive
technologies. This means that users must be able to access the
content as technologies advance (as technologies and user agents
evolve, the content should remain accessible).

[Source: Introduction to understanding WCAG 2.1]

https://www.w3.org/WAI/WCAG21/Understanding/intro

Web accessibility by examples I

Coding a site with semantically meaningful HTML, textual equivalents
provided for images and links named meaningfully, helps blind users
using screen readers and Braille displays.

Large and/or enlargeable text and images make easier for users with
poor sight to read and understand the content.

Having colored and underlined or otherwise differentiated links
ensures that color blind users will be able to notice them.

Large clickable links and areas help users who cannot control a mouse
with precision (or use the website with a touch screen device).

Web accessibility by examples II

Not coding in a way that hinders navigation by means of the keyboard
alone, or a single switch access device alone, helps users who cannot use a
mouse or even a standard keyboard.

Providing closed captioned videos, a transcript and/or a sign language
version of them, deaf and hard-of-hearing users can understand it.

When flashing effects are avoided or made optional, users prone to seizures
caused by these effects are not put at risk.

Writing content in plain language and illustrating it with instructional
diagrams and animations, can make users with dyslexia and learning
difficulties understand it better.

A multi step process

By definition, it is clear that, for a system to be
accessible, multiple phases of its life cycle are involved:
• design, as important decisions have to be made

even before writing the first line of code; it’s much
simpler to make an easy-to-use interface accessible
rather than a complex one;

• development, as implementing the design (i.e.
coding) can introduce accessibility issues

• editing, as content within the system should be
accessible, or your efforts (design and
implementation) are vanished.

Design

Every design decision has the potential to include or
exclude customers. Inclusive design emphasizes the
contribution that understanding user diversity makes to
informing these decisions, and thus to including as
many people as possible. User diversity covers variation
in capabilities, needs and aspirations.

Source:What is Inclusive Design

http://www.inclusivedesigntoolkit.com/whatis/whatis.html

Development

Code chicks in. The implementation phase can
introduce barriers as well. The design must be
implemented leveraging existing technologies known to
be accessible, or adopting all mechanisms required to
make them so.

Support documents explaining how to comply with
WCAG 2.1 in specific scenarios are available,
e.g.Techniques for WCAG 2.1

https://www.w3.org/WAI/WCAG21/Techniques/

Content

You could have the most accessible system, but your
efforts vanish when content is not authored (edited) to
be accessible. Examples include:
• attaching inaccessible documents (scanned PDF files

without OCR),
• screenshots without descriptions that can make you

understand their content,
• writing texts that cannot be understood by everyone (e.g.

using information that can be related only to one sense),
• not providing enough context for content to be understood

in case of a disability.

WCAG 2.2 conformance levels

Levels of compliance to WCAG 2.2:
A

• lowest level of conformance;
• removes major barriers for blindness, deafness and motor disabilities.

AA
• next level of conformance (includes A);
• removes major barriers for low vision users;
• offers a little help for cognitive disabilities.

AAA
• highest level of conformance (includes A and AA);
• not recommended to be required as a general policy for entire sites

because it is not possible to satisfy all Level AAA requirements for some
content.

How do we test for conformance?

Testing for conformance to accessibility guidelines can be
automated to some extent, but still requires manual user
testing to be fully assessed.

Let’s consider a simple success criterion: all non-
decorative images should have a descriptive alternative
text. Checking that an image has an alternative text
associated to it is trivial, but ensuring that it is descriptive
for that image is not (yet). Also distinguishing what images
are decorative and what not can be complicated, even for
humans.

Myths and facts I

Myth: an accessible interface is ugly and boring.
Fact: you can implement sophisticated and beautifully crafted
interfaces, yet accessible! An accessible design is more
useable, but that’s something for another topic!

Myth: accessibility is expensive!
Fact: yes, but only if you consider it as an afterthought.
Remediating inaccessible designs require much more efforts,
time and knowledge (thus money) than creating an accessible
equivalent of it, and the end result might be (generally
speaking is) not as good as it could.

Myths and facts II

Myth: accessibility benefits too few people.
Fact: it is estimated that around 10% of the population worldwide
has a disability that affects internet usage. Are about 700 million
people too few? And you need to add to the number people
affected by temporary and situational disabilities! And like it or
not, with age our hearing, sight and dexterity diminish, changing
our ability to use the Internet.

Myth: accessible interfaces are static.
Fact: highly dynamic and sofisticated websites (even desktop like
applications) can be made accessible, just special attention is
required. Welcome to WAI-ARIA!

WAI-ARIA

Accessible Rich Internet Applications (WAI-ARIA) 1.1 is a W3C
recommendation that provides an ontology of roles, states, and
properties that define accessible user interface elements and can
be used to improve the accessibility and interoperability of web
content and applications. Designed to allow an author to
properly convey user interface behaviors and structural
information to assistive technologies in document-level markup.

It is a critical tool for making accessible desktop-like web
applications, as there are (many) advanced widgets (menu-bars,
tabs and tab panels, toolbars, etc) that are not part of HTML
(yet).

https://www.w3.org/TR/wai-aria-1.1/

Role, properties and states

You can use WAI-ARIA by leveraging specific attributes to be applied on
any HTML element:
• the role attribute, that specifies the role (semantics for) the element

(button, checkbox, tree, tablist, tab, etc);
• properties (aria-label, aria-labelledby, aria-valuenow, etc), attributes

that are essential to the nature of a given object, or that represent a
data value associated with it. A change of a property may significantly
impact the meaning or presentation of an object;

• states (aria-checked, aria-selected, etc), dynamic properties expressing
characteristics of an object that may change in response to user
action or automated processes. States do not affect the essential
nature of the object, but represent data associated with the object or
user interaction possibilities.

Rules of ARIA

1. If you can use a native HTML element] or attribute with the semantics and
behavior you require already built in, use that. Exceptions:
• if the feature is available in HTML but it is not implemented or its

implementation does not provide accessibility support;
• If the visual design constraints rule out the use of a particular native

element, because the element cannot be styled as required.
2. Do not change native semantics, unless you really have to. Note that if a non-

interactive element (e.g. span) is used as an interactive one (e.g. button), the
developer must implement the appropriated behavior using JavaScript.

3. faAll interactive ARIA controls must be usable with the keyboard. Support
should be implemented by the developer.

4. Do not use role="presentation" or aria-hidden="true" on a focusable element ,
or focus might end up in the middle of nowhere.

5. All interactive elements must have an accessible name.

https://www.w3.org/TR/accname-1.1/

ATAG 2.0

Authoring tools accessibility guidelines (ATAG) 2.0 is a W3C
recommendation specifically crafted for ensuring
accessibility of authorhing tools such as:
• web page authoring tools (i.e. WYSIWYg HTML editors);
• software for generating websites (i.e. CMS systems);
• software that converts contents to web technologies;
• multimedia authoring tools;
• websites whose users can add content (i.e. social

networks).

ATAG 2.0 II

ATAG 2.0 is divided in two main parts:
• part a, that is about making authoring tools accessible so

that people with disabilities can use them;
• part b, that is about helping authors produce accessible

content, i.e. content conforming to WCAG 2.1.

Like in WCAG 2.1, in ATAG we find guidelines organized
around key principles, whose satisfaction can be assessed by
success criteria compliance on same 3 levels (A, AA, AAA).

ATAG 2.0 principles

Part A principles:
A1. The authoring tool user interface follows applicable accessibility
guidelines.
A2. Editing-views are perceivable.
A3. Editing-views are operable
A4. Editing-views are understandable

Part B principles:
B1. Fully automatic processes produce accessible content.
B2. Authors are supported in producing accessible content
B3. Authors are supported in improving the accessibility of existing content
B4. Authoring tools promote and integrate their accessibility features.

(very) helpful resources

Shamelessly self-advertising A11a… A structured,
cathegorized collection of accessibility resources
available on the Internet. You can find it at
https://a11a.disi.uhnibo.it

https://webaim.org/articles/
https://webaim.org/articles/

Questions?

???

Tips and tricks

Here are some tips and tricks that can be useful to
implement your project, and create accessible web
applications in general.

Tip I: mistrust the authority

If you are using a framework of UI components
(bootstrap, angular-material, element-ui, etc), do not
assume that those components will be accessible.
Always verify their accessibility, and eventually work
around their issues; contributing fixes to project is
recommended, but it’s up to you! Choose a different
framework if necessary.

Tip II: test with a screen reader

There’s a strong evidence that browsing a web
application and interacting with it by means of
accessibility, offers the most thorough accessibility
review. It does not cover any aspect, but it’s a good
starting point!

Tip III: pick an easy to use screen reader for testing

If you decide to test your web application with a screen
reader, make sure to know how to use it (main features,
keyboard shortcuts, etc). Seems obvious but,
absolutely be sure to know how to disable it: screen
readers often change the way a computer is controlled,
thus can be considered invasive; make sure you know
how to control them. Chrome Vox is a great option on
that point, as it offers a great introductory interactive
tutorial and is a browser extension.

Tip III: automated testing

Always review issues reported by automated tools, as in
some cases they might not be actual errors. Distinguish
between issues reported as errors, and issues that are
reported as potential errors (they could or couldn’t be,
but the automated tools could not infer an answer).
When uncertain focus on errors!

Accessible design cheatsheet

How should you design an interface to maximise the
chances of it being accessible? Let’s see.

Distinguish design patterns and widgets

Identify design patterns required to visualize the data,
and widgets to represent, input or otherwise interact
with it. Try to compose your interface with as few
widgets as possible, be consistent.

Let “Element” be each necessary widget or pattern.

Native elements

Is Element available as a native interface element on the platform
your interface will be executed on?
Great, use it… Do not try to emulate it, unless you have a very
very very good reason to do so (probably you don’t). Let e be such
interface element.

Does e require specific information to be accessible? You should
be able to answer this question with a good understanding of
WCAG 2.1 principles and guidelines, but you could also find out by
looking at “Techniques for WCAG”. Rule of thumb: if it is an
interactive element (e.g. form widget), it does. Provide such
information so that it is meaningful.

Is e an image?

If e is a static image (i.e. interacting with it does not initiate
any action that alters the application state), ask yourself: “is
e a decorative image?”

If so, convey such information to assistive technologies, its
description is not important.

Otherwise, make sure a meaningful description is associated
to it. Test: prevent your user agent from displaying images.
Can you make sense of what’s shown in those pictures by
relying on their description?

Focus handling

The more dynamic and sophisticated your application is, the more focus handling
importance increases! Whenever interface state changes occur ask yourself:
1. Where is the focus?
2. Where should it be?

Incorrect or missing focus handling causes assistive technology users to be
disoriented (a modal dialog is missed, but focus is not placed on the element that
triggered its opening), and UI state changes to be unnoticed (e.g. a modal dialog
appears, but focus is not moved to its first focusable child).

Moving focus to an element has the potential for its preceding siblings to end up
being unnoticed by assistive technology users, so choose wisely when to do that.
Rule of thumb: no autofocus on appearance of a page/view/screen, unless required
by its design pattern.

About external frameworks

Realistically, chances are that Element is a component
provided by an external framework, or an HTML
element enhanced by that. You still need to ensure it is
accessible, and fix or workaround its accessibility issues
in your code. Pick up a framework known for being a
good starting point in this regard. In any case, expect to
do some work on this front. Remember, you’re always
responsible for whatever you deliver.

About styling

Feel free to style your elements as you desire, but keep
in mind accessibility principles. Pay special attention to
color contrast, font sizes and make your layout as
responsive as possible to respond to font size changes,
zooming, etc. Choose fonts that make content more
readable (also keeping in mind the context). Keep in
mind readability rules, they’re important for
accessibility too!

Automated testing

Automated accessibility testing tools can help you
identify accessibility issues, use them! Be careful to
choose reliable ones.

Make sure to run such tools for each variation in your
interface (e.g. when a form trigger errors or doesn’t, a
modal is presented or not, a menu is expanded or
collapsed, etc).

Manual testing I

Manual accessibility testing is essential.

Can your application be fully operated by using only the keyboard?
Check for that!
Try using a screen reader to interact with your application: does the
navigation flow make sense? Is your interface operable, understandable
and perceivable? Are state changes to it, both manually or automatically
initiated, too?

Screen readers are available for most platforms, make sure you fully
understand their features and how to use them before testing your
interface: this ensures you won’t consider as accessibility issues
problems that depends on the fact you don’t know how to use the
assistive technology properly.

Manual testing II

Pay attention to identify information conveyed only by
colors, even if hopefully at this point you shouldn’t have
any. If found, iterate this process on that particular case
to find an accessible representation.

Try enlarging font sizes (2x up to 4x at least). Does your
interface scale nicely to accomodate for this change?

Top priorities

• Keyboard support
• Form labels
• Focus handling
• Text alternatives
• Color contrast and font sizes

Don’t forget about content

As we said, design and development are just two of the
major three components involved in making a system
accessible.
People with disabilities can use technology, but with
adaptations (assistive technologies).
Do not require actions that a disabled person cannot
perform (i.e. reach up for something located in a high
position for a person with a wheelchair, distinguish in
between colors for blind people, etc).

Keep in mind WCAG 2.1 principles

Questions?

???

