CORSO DI OTTIMIZZAZIONE

Prova scritta del 25 Maggio 2015

Tempo a disposizione: ore 2:30.

Si ricorda che:

- Per quanto possibile, occorre scrivere in bella calligrafia (il testo illeggibile non verrà preso in considerazione).
- Su tutti i fogli che vi abbiamo consegnato occorre riportare cognome, nome e numero di matricola.
- Occorre riportare in modo chiaro tutti i passi che portano alla determinazione del risultato.
- Il numero dell'esercizio che si sta svolgendo va sempre riportato in modo chiaro.
- Non è consentita la consultazione di appunti, libri, etc.
- Non è consentito l'uso di calcolatrici, telefoni cellulari, etc.
- Non è concesso chiedere alcunché ai docenti e agli altri studenti.
- $\bullet\,$ Occorre consegnare anche la brutta copia ai docenti.

Esercizio 1. (Punti 8)

Un corso di programmazione prevede che gli studenti effettuino un progetto, suddivisi in gruppi di esattamente 5 studenti. Gli studenti sono complessivamente n (che supponiamo per semplicità essere un multiplo di 5) e la media aritmentica dei voti di ciascun studente $i \in m_i$. Ogni studente i può indicare uno studente $s_i \in \{1, \ldots, n\}$ con il quale preferisce non lavorare. Se i si trova nello stesso gruppo di s_i diremo che si sta verificando un'incompatibilità. Si determini, in PLI, come costruire i gruppi in modo tale che la media delle medie aritmetiche degli studenti di ogni gruppo sia inclusa tra 24 e 28, e che il numero di incompatibilità sia minimo.

Esercizio 2. (Punti 3, la risposta occupi al massimo 20 righe)

Si parli brevemente dei due algoritmi per il problema del flusso di costo minimo che abbiamo visto, e della relativa complessità.

Esercizio 3. (Punti 8)

Una compagnia petrolifera dispone di n giacimenti petroliferi e m raffinerie. Da ogni giacimento petrolifero i vengono estratte p_i tonnellate di greggio al giorno, mentre ogni raffineria j può raffinare r_j tonnellate di greggio al giorno. Ogni giacimento i è connesso all raffineria j tramite un oleodotto dedicato di capacità giornaliera a_{ij} (in tonnellate) e il cui costo operativo giornaliero è c_{ij} . Si costruisca un programma lineare che determini come instradare la produzione giornaliera degli n giacimenti in modo da minimizzare il costo operativo complessivo.

Esercizio 4. (Punti 3, la risposta occupi al massimo 25 righe)

Si enuncino i corollari del teorema debole di dualità di cui abbiamo parlato a lezione.

Esercizio 5. (Punti 8)

Si risolva, tramite l'algoritmo del simplesso primale, il seguente problema di programmazione lineare:

$$\max x_2$$

$$x_1 + x_2 \le 1$$

$$x_2 - x_1 \le 1$$

$$x_1 - x_2 \le 1$$

$$x_2 + x_1 \ge -1$$

Si parta dalla base ammissibile corrispondente agli ultimi due vincoli.