
Time and Space Complexity

In this note we explore a theme of time and space complexity. Those are cardinal
themes in Theoretical CS. Time -> execution step bounds on algorithms Space
-> the cells visited by a Turing Machine when executed.

Introduction to Time Complexity
This note will build upon know techniques of algorithms analysis explained in
Notazione Asintotica. We will need big-𝑂 notation and 𝑜 notation. L’idea è che
il problema di decisione è decidibile se limito la lunghezza del teorema. Simile al
numero di Chaitin, che non è computabile, ma è approssimabile quanto si vuole.
In un certo senso è computabile. The general idea is to ask how the function 𝜑
that maps the longest 𝑛 proof to the number of steps of computation behaves.
Robustness of the notion of time complexity�

The notion of “computational steps” used to measure the time complexity varies
along - Computational models - definition of computational steps - The code of
the input and output (not always binary, for example big numbers are not fixed
size).

Influence of the Computational Model

In Complexity Theory the choice of the formal model influences the com-
plexity class of the model! This is different from the argument from computa-
tional theory of the Church Turing Thesis, where it asserts that a function is
computable in every computational model. See 7.7 in (Sipser 2012).

Multi-tape vs single-tape TM It can be proved that every 𝑡(𝑛) time multi-
tape TM can be simulated by a 𝑡2(𝑛) single tape TM. See Theorem 7.8 of (Sipser
2012).

The Time Complexity Class
Definition of the Time Complexity Class�

Languages that are decidable in 𝑂(𝑡(𝑛)) time are part of this class,
denoted as 𝑇 𝐼𝑀𝐸(𝑡(𝑛)). With 𝑡 ∶ ℕ → ℝ+.

1

https://en.wikipedia.org/wiki/Chaitin%27s_constant
https://books.google.it/books/about/Introduction_to_the_Theory_of_Computatio.html?id=P3f6CAAAQBAJ
https://books.google.it/books/about/Introduction_to_the_Theory_of_Computatio.html?id=P3f6CAAAQBAJ
https://books.google.it/books/about/Introduction_to_the_Theory_of_Computatio.html?id=P3f6CAAAQBAJ

Another way to understand this is that if a algorithms terminates in at most
𝑡(𝑛) steps then it belongs to this class.

Polynomial Complexity Class�

The polynomial class 𝑃 is defined as:

𝑃 = ⋃
𝑖≥1

𝑇 𝐼𝑀𝐸(𝑛𝑖)

This is defined as the class of the reasonable efficiency programs. NOTE: this
is invariant with respect to the chosen coding system (if an algorithm is still in
P, then it will remain in P even if you change code scheme).

1. P is invariant for all models of computation that are polynomially equiv-
alent to the deterministic single-tape Turing machine, and

2. P roughly corresponds to the class of problems that are realistically solv-
able on a computer.

Analogously we define
𝐸𝑋𝑃 = ⋃

𝑖≥1
𝑇 𝐼𝑀𝐸(2𝑛𝑖)

See later.

PATH is in P� We can prove that the language {⟨𝐺, 𝑠, 𝑡⟩ ∣ 𝐺 is a graph that has a route from 𝑠 to 𝑡}
is in 𝑃 class. (Just use Grafi#BFS or Grafi#DFS).

NOTE: we have worked assuming that the algorithm worked on the nodes, but
usually TM work with bits, the thing is that there is a polynomial algo that
converts that nodes into binary format, so it is not much of a big deal.

Overview of problems in 𝑃

Exponential Complexity Class�

The exponential class 𝐸𝑋𝑃 is defined as:

𝐸𝑋𝑃 = ⋃
𝑖≥1

𝑇 𝐼𝑀𝐸(2𝑛𝑖)

This class is common of the algorithms that use backtracking, for example CSP
problems. Or just brute-force search all the branches.

Non-deterministic Complexity Class

Let 𝑁 be a non-deterministic decider (which means that the TM will halt on
every computation branch) then we have that a problem is in this complexity
class, called 𝑁𝑇 𝐼𝑀𝐸 if the running time cost 𝑓 ∶ ℕ → ℕ is bounded by that
(longest computational branch). The difference with #Polynomial Complexity

2

Figure 1: Time Complexity-20240321132710013

Figure 2: Time Complexity-20240314134202678

3

Class is that here we consider the length of a single branch, but we explore
everything at the same time!

Quindi

𝑁𝑃 = ⋃
𝑖≥1

𝑁𝑇 𝐼𝑀𝐸(𝑛𝑘)

Simulation by Deterministic TM We can prove that every TM in NP
can be simulated by a deterministic machine in 2𝑂𝑡(𝑛) time, where 𝑡(𝑛) is the
complexity class of the TM. The intuition is easy, just try every possible com-
putational branch, and see for the result. We then observe that 𝑁𝑃 ⊆ 𝐸𝑋𝑃
but this is not so useful. #### Clique problem See Common problems in
Theoretical CS#The Clique problem for description of the problem.

NP algorithm Just 1. Select a subset of nodes from 𝐺. Do it non determinis-
tically. 2. Verify if this subset is a complete graph. If yes add it to the solution
set.

We can prove that this is correct, and it works, but it is a non deterministic
algorithm, so it isn’t easily simulated by deterministic algorithms, even though
we proved in Estensioni di Turing e altre macchine that from the computability
point of view it is the same.

Verifiable Given input the graph, and a subset, we need to 1. For each node
in the subset, check if it is linked to each other. 2. Return the previous truth
result. So easy.

Other NP-complete problems If you have some time, you should give a
proof for each problem (poly-reduction from sat) - Vertex Cover - Hamiltonian
paths - Undirected Hamiltonian paths - Subset-sum

Verifiability

Def: verifiability Definition: 𝐴 is verifiable if exists a TM 𝑀 such that:

𝑤 ∈ 𝐴 ⟺ ∃𝑐 ∶ 𝑀 accepts ⟨𝑤, 𝑐⟩

If 𝑀 is polynomial then we say that this is polynomially verifiable. We
can prove that this notion is equivalent for 𝑁𝑃 complexity classes. We also
require that 𝑐 is of polynomial length. #### Th: Verifiability = NP� From a
philosophical point of view, if a problem is in NP, we can just guess a solution,
or just do brute force. There is no classical algorithmical solution that solves it,
or a constructive proof for it.

←: let’s suppose we have a 𝑀 that decides non deterministically that language.
On input ⟨𝑤, 𝑐⟩ we run 𝑀(𝑤) and if it accepts, return true if the branch is good.
(𝑐 guides us about what non-deterministic branch to choose).

4

→ : let’s assume we have a polynomial verifier, we need to build a TM that
decides it non deterministically in polynomial time. choose non deterministically
a certificate 𝑐 the encodes the path of the non-deterministic computation. If
this accepts then accept!

Philosophical thoughts on P vs NP Intuitively we can have this intuition:
The class of problems in 𝑃 is the class of problems were you need to come up
with a solution by yourself. The class of problems in 𝑁𝑃 is the class of problems
were you just need to verify if a given solution is valid. From a personal human
point of view this clearly seem to indicate that the two classes are different. But
we have no proof.

If P were equal to NP, then the world would be a profoundly different
place than we usually assume it to be. There would be no special
value in “creative leaps”, no fundamental gap between solving a
problem and recognizing the solution once it’s found. Everyone who
could appreciate a symphony would be Mozart; Everyone who could
follow a step-by-step argument would be Gauss.

– Prof. Scott Aaronson, 2006

Space complexity terminology
Def: space complexity

Given a ℳ Turing Machine that halts on every input, then his space complexity
is a function 𝑡 ∶ ℕ → ℕ such that 𝑡(𝑛) is the maximum number of cells visited
by ℳ on inputs of length 𝑛. We can say something very similar for the non-
deterministic TM, se way that its space complexity is the maximum number
of tape cells visited on a single computational branch.

Def: Space complexity Class

We define the space complexity class 𝑆𝑃𝐴𝐶𝐸(𝑡(𝑛)) as all languages decid-
able by a TM in 𝑂(𝑡(𝑛)) space. Analogously the 𝑁𝑆𝑃𝐴𝐶𝐸(𝑡(𝑛)) complexity
class is defined. We use a non-deterministic TM here.

We willl ater find that

𝑃 ⊆ 𝑁𝑃 ⊆ 𝑃𝑆𝑃𝐴𝐶𝐸 = 𝑁𝑃𝑆𝑃𝐴𝐶𝐸 ⊆ 𝐸𝑋𝑃𝑇 𝐼𝑀𝐸

The last subset is given by an observation that a TM that uses 𝑓(𝑛) space
(PSPACE) cannot have more than 𝑓(𝑛)2𝑂(𝑓(𝑛)) computational steps before loop-
ing.

Time Complexity-20240518095235181

Figure 3: Time Complexity-20240518095235181

5

Def: PSPACE and NPSPACE

We define in a matter similar to what is done in Time and Space Complexity:

𝑃𝑆𝑃𝐴𝐶𝐸 = ⋃
𝑘

𝑆𝑃𝐴𝐶𝐸(𝑛𝑘)

And
𝑁𝑃 𝑆𝑃𝐴𝐶𝐸 = ⋃

𝑘
𝑁𝑆𝑃𝐴𝐶𝐸(𝑛𝑘)

Def: PSPACE-completeness We say that 𝐿 is PSPACE-complete if it is
∈ 𝑃𝑆𝑃𝐴𝐶𝐸 and every other 𝐿′ ∈ 𝑃𝑆𝑃𝐴𝐶𝐸 is poly-reducible to it.

Th: 𝑁𝑃 ∈ 𝑃𝑆𝑃𝐴𝐶𝐸
In order to prove this we prove that 𝑆𝐴𝑇 ∈ 𝑃𝑆𝑃𝐴𝐶𝐸 because as it is 𝑁𝑃 −
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 every NP problem can be reduced to 𝑆𝐴𝑇 and so it is in 𝑃𝑆𝑃𝐴𝐶𝐸.
For more about SAT see Common problems in Theoretical CS#The SAT prob-
lem.

Proof of SAT in PSPACE We note that the simple algorithm that just
enumerates all possible assignments is in 𝑃𝑆𝑃𝐴𝐶𝐸. Consider this algorithm:
For all assignments for the input boolean formula do: 1. Assign it and verify in
poly-time if it is ok. 2. If ok return true else continue until every assignment is
used. We note that just 𝑂(𝑚) space is used, where 𝑚 is the number of terms.
All the computation could be done in polynomial space, so the problem is in
PSPACE. □.

References
[1] Sipser “Introduction to the Theory of Computation” Cengage Learning 2012

6

https://books.google.it/books/about/Introduction_to_the_Theory_of_Computatio.html?id=P3f6CAAAQBAJ

	Introduction to Time Complexity
	Influence of the Computational Model

	The Time Complexity Class
	Definition of the Time Complexity Class🟩
	Polynomial Complexity Class🟩
	Exponential Complexity Class🟩
	Non-deterministic Complexity Class
	Verifiability

	Space complexity terminology
	Def: space complexity
	Def: Space complexity Class
	Def: PSPACE and NPSPACE

	Th: NP \in PSPACE
	References

