
Cook-Levin and Savitch

Cook Levin theorem is important because says that in 1971 if 𝑆𝐴𝑇 ∈ 𝑃
then 𝑁𝑃 = 𝑃 . We will start with this idea to define the concept of NP-
completeness. Let’s start with the basics.

Poly-reduction

Def: poly-reduction� We say that two languages 𝐿 and 𝐿′ defines over
alphabet Σ. We say that 𝐿´ is poly (mapping)-reducible in 𝐿, 𝐿′ ≤𝑝 𝐿 when a
𝑇 𝑀 that computes polynomial time a function 𝑓 ∶ Σ∗ → Σ∗ such that

𝑥 ∈ 𝐿′ ⟺ 𝑓(𝑥) ∈ 𝐿

This is very similar to the Halting Theorem and Reducibility#Mapping re-
ducibility. The difference is that it needs to be polynomially-bounded, so to
say, it is efficient function.

Th: 𝐿′ ≤𝑝 𝐿 ∧ 𝐿 ∈ 𝑃 ⟹ 𝐿′ ∈ 𝑃 � This theorem says that if we can reduce
with a polynomially bounded function to a class of language in 𝑃 then we have
automatically another language in 𝑃 .

Proof: If 𝐿 ∈ 𝑃 there exists a 𝑔 that decides it in poly-time. If 𝐿′ ≤𝑝 𝐿 then
exists 𝑇 𝑀 that polynomially computes a language into 𝐿, calculating 𝑓 . Then
we build this machine:

Given 𝑥 ∈ 𝐿′ in input, we say 𝑔(𝑓(𝑥)) decides that language. And we know
that composition of polynomial functions is polynomial. So that function is
polynomial and we proved it.

Th: 𝐿 ∈ 𝑃 ⟹ 𝐿− ≤𝑝 𝐿� Given a 𝜔 let’s run the decider to know whether if
𝜔 ∈ 𝐿. If we know this then we know if 𝜔 ∈ 𝐿′ or not just by inverting the last
result. Now let’s build the converter, which works in constant time. Take two
words 𝜔1, 𝜔2 such that 𝜔1 ∈ 𝐿 ∧ 𝜔2 ∉ 𝐿 then if 𝜔 ∈ 𝐿′ ⟹ 𝑓(𝜔) = 𝜔1 and if
𝜔 ∉ 𝐿′ ⟹ 𝑓(𝜔) = 𝜔2 this ends the proof. 𝑓 works in polynomial time thanks
to the fact that 𝐿 ∈ 𝑃 .

1

Cook-Levin Theorem
Def: NP-completeness�

We say that a 𝐿 is NP-complete if it is in 𝑁𝑃 and every other 𝐿′ is reducible
in 𝑁𝑃 using #Poly-reduction.

Def: NP-hard�

𝐿 is NP-hard if every 𝐿′ in 𝑁𝑃 in reducible to it using #Poly-reduction. We
don’t need that it is in 𝑁𝑃 .

TMSAT�

This is a universal verifier.

𝑇 𝑀𝑆𝐴𝑇 = {⟨𝑥, 𝑤, 𝑠, 𝑡⟩ ∣ 𝑥 = 𝑐𝑜𝑑𝑒(𝑀) and 𝑀 accepts ⟨𝑤, 𝑐⟩}

With other constraints of the length of the input and the time of the computa-
tion.

As this is a verifier we can prove that this language is 𝑁𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 but it is
useless, because it says nothing on the class of problems.

Problem statement�

We want to prove that 𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 This is what Cook-Levin states.

this would imply that every other problem in 𝑁𝑃 can be reduced into SAT, for
example clique which is in NP, so we prove that 𝑃 = 𝑁𝑃

Proof of Cook-Levin

SAT is in NP� This is quite easy, just non-deterministically take an assign-
ment. If any of these assignments accept, then accept. We can say that SAT is
easily verifiable.

SAT is NP-hard�- This is the difficult part. The idea is to create a represen-
tation of the computation of the Turing Machine of whatever algorithm. So we
create a tableau that represents the computation, and we want to translate this
tableau as a satisfiability problem. We know that this tableau is finite because
the problem is in 𝑁𝑃 .

We say that a formula is

𝐹𝑤 ∶= 𝐹𝑐𝑒𝑙𝑙 ∧ 𝐹𝑠𝑡𝑎𝑟𝑡 ∧ 𝐹𝑚𝑜𝑣𝑒 ∧ 𝐹𝑎𝑐𝑐𝑒𝑝𝑡

And we want to say that this is satisfiable ⟺ exists a tableau as defined above
such that accepts ⟺ a computation on 𝑤 of the machine 𝑀 accepts it.

2

Figure 1: Cook-Levin Theorem-20240410125141970

Let’s define
{𝑥𝑖,𝑗,𝑠 ∣ (𝑖, 𝑗) ∈ 𝑛𝑘 × 𝑛𝑘, 𝑠 ∈ 𝑄 ∪ Σ ∪ {#}}

For example the variable 𝑥1,2,𝑞0
should be true.

𝐹𝑠𝑡𝑎𝑟𝑡 = 𝑥1,1,#∧𝑥1,2,𝑞0
∧𝑥1,3,𝑤1

∧𝑥1,4,𝑤2
∧…∧𝑥1,𝑛+2,𝑤𝑛

∧𝑥1,𝑛+3,␣∧…∧𝑥1,𝑛𝑘−1,␣𝑥1,𝑛𝑘,#

It means that the initial configuration is that of the Turing machine.

Then

𝐹𝑐𝑒𝑙𝑙 = ⋀
1≤𝑖,𝑗≤𝑛𝑘

⎡⎢
⎣

(⋁
𝑠∈𝐶

𝑥𝑖,𝑗,𝑠) ∧ (⋀
𝑠,𝑡∈𝐶,𝑠≠𝑡

(̄𝑥𝑖,𝑗,𝑠 ∨ ̄𝑥𝑖,𝑗,𝑡))⎤⎥
⎦

In natural language: Exists at least a 𝑠 that is true, and other are false, for every
cell in the tableau. That means that for every single cell, we have something
like 𝑥1,2,𝑎 which is true.

𝐹𝑎𝑐𝑐𝑒𝑝𝑡 = ⋁
1≤𝑖,𝑗≤𝑛𝑘

𝑥𝑖,𝑗,𝑇

Then we need to define the 𝐹𝑚𝑜𝑣𝑒 function, which is the last formula we would
need to define! As we only need to know how the state moves, we just need
windows of 3.

3

Examples:

Figure 2: Cook-Levin Theorem-20240410131145903

So for example:

𝐹𝑚𝑜𝑣𝑒 = ⋀
1<𝑖≤𝑛𝑘,1<𝑗≤𝑛𝑘

(⋁
𝑎1,…,𝑎6

𝑥𝑖,𝑗−1,𝑎1
∧ 𝑥𝑖,𝑗,𝑎2

∧ 𝑥𝑖,𝑗+1,𝑎3
∧ 𝑥𝑖+1,𝑗−1,𝑎4

∧ 𝑥𝑖+1,𝑗,𝑎5
∧ 𝑥𝑖+1,𝑗+1,𝑎6

)

Where 𝑎1, … , 𝑎6 are symbols of admissible windows. The initial and says that
that should hold for every cell. (this is also the reason why we pad with # at
the beginning, because the (𝑖, 𝑗) windows is the 2 × 3 block such that the center
is in the upper center of the rectangle.

This with the idea that Tableau is buildable in poly-bounded time, should finish
the proof.

We see with this construction that 𝐹𝑐𝑒𝑙𝑙 ≈ 𝑂(𝑛2𝑘), 𝐹𝑠𝑡𝑎𝑟𝑡 ≈ 𝑂(𝑛𝑘) , and the
others 𝑛2𝑘 as they cycle for every cell in the tableau. So this construction is
valid and takes poly time.

Savitch Theorem
Savitch’s statement�

Given any function 𝑓 ∶ ℕ → ℝ+ where 𝑓(𝑛) ≥ 𝑛 (prolly later you can get a
tighter bound, like 𝑓(𝑛) ≥ log 𝑛). Then we have that

𝑁𝑆𝑃𝐴𝐶𝐸(𝑓(𝑁)) ⊆ 𝑆𝑃𝐴𝐶𝐸(𝑓2(𝑛))

Which is a surprising statement about non-deterministic space complexity, be-
cause it implies that

𝑁𝑆𝑃𝐴𝐶𝐸 = 𝑃𝑆𝑃𝐴𝐶𝐸

4

Sketch of the proof idea�

The proof idea uses a similar idea explored in Common problems in Theoret-
ical CS#True quantified Boolean formula, saying that TQBF was PSPACE-
complete.

So given two configurations of the NTM, 𝑐1, 𝑐2 we want to say that it’s possible to
reach from 𝑐1 to 𝑐2 in at most 𝑡 computational steps in the new deterministic TM
that we are going to build. We already know by hypothesis that the given NTM
is in 𝑁𝑆𝑃𝐴𝐶𝐸(𝑡(𝑛)) now we will prove that the built TM is in 𝑆𝑃𝐴𝐶𝐸(𝑡(𝑛2)),
so by this reduction we know that we have that inclusion.

For the inductive case, We want to build a function REACH that is true if and
only if the TM starting from state 𝑐 can reach 𝑐′ in at most 𝑡 computational
steps. Then we can define a TM in this way. Run REACH𝑐𝑖𝑛𝑖𝑡, 𝑐𝑎𝑐𝑐, 2𝑑𝑡(𝑛) if this
accepts, accepts. We have chosen that exponential value because at maximum
you can modify those number of states with 𝑛 of input length.

Proof of Savitch’s theorem�-

We prove it by induction: If 𝑡 = 1 verify if 𝑐1 = 𝑐2 or if 𝑐2 is a reachable
configuration with 1 computational step. You can do this by enumerating all
possible transition functions starting with that state for example. If ok accept,
else reject. The logic for enumerating possible transitions is presented in the
proof of #Cook-Levin Theorem.

Else we run for each 𝑐𝑚 configuration of the TM, that is bounded and uses
𝑡(𝑛) space. 1. REACH(c, c_m, t/2) 2. REACH(c_m, c', t/2) 3. If both ends
accept, then accept.

Let’s analyze this algorithm. 𝑑𝑡(𝑛) is the depth of the recursion tree. The
algorithm is probably exponential in time, but we are only concerned by the
width space. Every recursive step uses only takes 𝑂(𝑛) space, and in total we
have 𝑂(𝑛) in depth, so we can solve this in 𝑂(𝑛2) space.

5

	Poly-reduction
	Cook-Levin Theorem
	Def: NP-completeness🟩
	Def: NP-hard🟩
	TMSAT🟨
	Problem statement🟩
	Proof of Cook-Levin

	Savitch Theorem
	Savitch’s statement🟩
	Sketch of the proof idea🟩
	Proof of Savitch’s theorem🟩-

