* ®
*
*
* o
* o0
* ¢
*
* *
* 0
* * o
*

Giacomo Gori — Tutor

didattico /
g.gori@unibo.it />>

CYBERSECURITY
LAB #5

Exercise

o
/ Patch the program to see the flag

Write a small report containing the steps and the
flag

O Remember: write name, surname and the number
aB of the lab session on the report!

How are C programs
compiled?

Source code
(.c,.h, .cpp)

‘ PREPROCESSING ’STEP 1: Preprocessor (cpp)

Include Header, Expand Macro l

Steps of
p ‘ COMPILATION ’STEP 2: compiler (gcc,g++)
th e C Assembly Code (.s) l

’ ASSEMBLE ’STEP 3: Assembler (as)

COMPIliNG | e s co, oo |

‘ LINKING ’STEP 4: Linker (1d)

Executable Machine Code l
(.exe, .elf)

Destination

LOW L

EV

C

C—

Let's dive down the
various compile
steps to better
understand what
this is all about

- Compilation: assembly

An intermediate step from the high level code (es: C)
and the low level machine code.

Different Assembly code

B . Same C code \ J

4 C

@

Assembly code

Translation of high level code into «simple» instruction
on registers
 The ISA (Instruction Set Architecture) defines which instruction you can

do
> e Different CPU, different ISA :(r)
e Es:RISCvs CISC, x86-32 and x86-64 o e
MOV EXC:
(& \ %

- §

Why Assembly?

* High level languages are complex and would require extreme
complex and expensive CPU architectures

* Instead: same high level code for different machines, then
compilers create the specific assembly

r)

¢ Portability :) ADD EAX,

XOR EAX,

MOV EXC,

’

LOOP Ciclo ;

(&

- §

Assemble + linker: machine code

ELF header

In Linux, after the linking,
machine code is serialized in a
structured file which is formatted
in the Executable and Linkable
Format (ELF).
 Mainly divided in two parts: *
* Header data
 File data “ ?

Program header table

text

.rodata

Section header table

EI—F Header readelf -h ./(nome file)

—$ readelf a.out
ELF Header:
Magic: 7T 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
0S/ABI: UNIX - System V
ABI Version: 0
Type: DYN (Position-Independent Executable file)
Machine: Advanced Micro Devices X86-64
Version: Ox1
Entry point address: 0x1050
Start of program headers: 64 (bytes into file)
Start of section headers: 13968 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 13
Size of section headers: 64 (bytes)
Number of section headers: 33
Section header string table index: 30

Can we go “the other way”,
so to DEcompile?

Going back:

C decompiling

Taking a elf/exe file and
bringing back the source code
involves two main steps:

e 1° step: disassembly (easy)
 2° step: decompile (hard)

It’s a free and open
source reverse
engineering tool by
T NSA.

Ghidra =}’

We will use it to
disassembly and
decompile binaries,
obtaining C code.

Installing Ghidra

Install jdk:

sudo apt update
sudo apt install default-jre
sudo apt install default-jdk

S
Download the latest release from
https://github.com/NationalSecurityAgency/ghidra/releases

Run Ghidra:
./ghidraRun

https://github.com/NationalSecurityAgency/ghidra/releases

Using Ghidra

Let’s open Ghidra and try to decompile a simple binary.

To do that:

e create a new project

* import the binary file

 double click on it to view the disassembled code.
* open the functions to see them «decompiled».

Let’s see the differences between the original code and the decompiled

one. :
<stdio.h>

int main(int argc, char * argv[]){

d;

'%d" ,a) ;

'\n%s", argv[0]);
'%d', argc);

0;

int a =
printf(’
printf(’
printf(’

undefined8 main(uint param 1,undefined8 *param 2)

{
printf("“%d",5);
printf("\n%s",*param 2);

printf("%d"”, (ulong)param 1);
0;

DS UP

RINTING

Download the
executable
file from
Virtuale and
try to patch it
to make it
print the
flag....
quicker!

