* o0

DOC

OC

.
.
» .
oy O
. 300
» * o 00

O

Giacomo Gori — Tutor /\\/

didattico :

g.gori@unibo.it //

*
*
*
* @
* o
*
*
*
* o
LR
* o
*
*

CYBERSECURITY
LAB #4

Exercise

/’ Decrypt the files uploaded on virtuale, hints
included

Write a small report containing the steps and the
decrypted flags and upload it on Virtuale

Remember: write name, surname and the number
of the lab session on the report!

Symmetric-key algorithm
 Key length: 128, 192 or

A E S 256 bits

(Advanced Block cipher

: * Block size: 128 bits
Encryption

ightweight
Standard) _ow RAM consumptions

High speed

Block cipher modes

Confidentiality-only modes
 ECB (Electronic Code Block)
e CBC (Cipher Block Chaining)
 CFB (Cipher Feedback)
 OFB (Output Feedback)
 CTR (Counter)

OpenSSL

* We will use OpenSSL to play around with crypto algorithms
* OpenSSL is an open-source library that implements Basic
cryptographic primitives
* Hashing algorithms

e SSL and TLS protocols
e Various utilities (prime number generator, PRNG, ...)

* [t comes with a handy command line interface (CLI)

* We can do everything from our terminal
OpenSSL

Cryptography and SSL/TLS Toolkit

Basic usage for AES

Encryption of a simple text file using AES-256 in ECB
mode:

openssl aes-256-ecb -e -in (plaintxt) -out (ciphertxt)

Decryption:

openssl aes-256-ecb -d -in (ciphertxt) -out (plaintxt)

Reasoning about the key..
The key in AES must be 128, 192, 256 bits in length...

So, can’t we use a human-friendly password to protect
our data?

Key concept: Our human-friendly but weak password is

used to generate a stronger (enhanced) key with higher
entropy

This functions are called Password Based Key Derivation
Functions (PBKDFs)

In OpenSSL use

e -p,to print the actual enhanced key, salt and IV (if used)
 -nosalt, to disable the usage of salting to increase the key randomness

Weak key
i — Pseudo-random Enhanced key

Random salt function

N° of iterations

By default, OpenSSL applies a trivial PBKDF
e |If salting is not enabled

 key =sha256(passphrase)
e If salting is enabled

* key =sha256(passphrase [| salt)

A better option is to use more iterations or PBKDF2
 Use the flag —iter (number of iterations), or —pbkdf2

Reasoning about the file size..

Size of the plaintext and ciphertext may be different

Ciphertext > plaintext

This happens for two reasons

The salt is stored in the header of the ciphertext (unless —nosalt
is used)

The plaintext is padded before being encrypted (ECB and CBC
modes only)

* Ciphertext size is always multiple of the cipher block size (128-bit =
16 bytes)

Visualizing an encrypted file using a normal text editor (or
printing on the console) can’t work:

 The plaintext usually contains ASCII printable characters..
* But the ciphertext contains non-printable characters

When dealing with such kind of data, we need to view our files
using hexdumps

* This way, we can visualize binary data encoded in hexadecimal

format, e.g.:
* 0x0a="“\n”"
* 0x00=NULL
« O0x41="A"

Use xxd to visualize the hexdump of a given input file

ECB mode

ECB mode lacks diffusion:
Identical plaintext blocks produce identical ciphertext blocks

Plaintext Plaintext Plaintext
CLTTTITTITITITT CITTTTITITTITITT CITTTITTIITITITITT]
Key block apher Key block apher Key block cnpher
encryption encryption encryption
CITTTITTITITITT CITTTTTITTITITT CTTTTITTITTITITTI]
Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

Ciphertext Ciphertext Ciphertext
CITTTTTTTITTITT] CITTTTTTTITITITT] CITTTTTTTITITTT]

block cipher block cipher block cipher
Key decryption Key decryption Key decryption
CITTTTITTTITITITT] CITTTTTITTITITT] CITTTTTTTIITTT]
Plaintext Plaintext Plaintext

Electronic Codebook (ECB) mode decryption

We can verify this behaviour encrypting a simple bitmap image

The Tux experiment

* Let’s encrypt the Linux (tux) logo in ECB mode and see what

happens
* For the sake of simplicity, the input file will be a simple

bitmap
e .ppm format

PPM (Portable PixMap) seems a bit exoteric, but in reality it’s
the simplest image format.

0O000000:

POOOOO0T:
OO00001e:
0000002d:
POOOO0O3c:
PO00004b:

0000005a:
00000069:
0O000078:
00000087

- - - - - - -

50360a
fFfffef
IR
P
TR
R
P
R
IRl
IR TSI

323635
1 L
IRETTTT
1
IR G
IR R
P
BRREET
frfffef
IR IR

2833931
IR NI
[
R L
L 1T
frfffef
i
fFfffef
A
U

340a32
TRIRIRIRIRD
TR
R
T IRIRIRTR
frfffef
P
fIffff
RISl
TR

You can see it using: xxd —g 3 —c 15 tux.ppm

35350a
I TR
T IRET
R
I IRIET
NIRRT
i
FFFfff
Rl
frfffef

P6.265 314.255.

N~
g

You may want to install GIMP to view the image
* sudo apt update && sudo apt install gimp

Split header and body in two different files
 head-n 3 Tux.ppm > Tux.header

* tail -n +4 Tux.ppm > Tux.body

Encrypt the body
 openssl aes-256-ecb -e -in Tux.body -out Tux.body.ecb

Reassembling everything together
e cat Tux.header Tux.body.ecb > Tux.ecb.ppm

Now look at the image.... Is it familiar?

ECB encrypted

Original

Try to repeat the experiment with CBC mode!
But you must provide an IV with the —iv option

 CBC hide away patterns in the plaintext thanks to the XOR-
ing of the first plaintext block with an IV, before encrypting

It
 Moreover, it involves block chaining as every subsequent plaintext
block is XOR-ed with the ciphertext of the previous block
Plaintext Plaintext Plaintext
EENEEENEENEEE CITTTTTITTToT) OTTITITTTITIT]
Initialization Vector (IV)
LI (T i I ity — » >
block cipher block cipher block cipher
nay encryption ey encryption Key encryption
1 |
| ; l
(OITTTTTTTTTT] (IITTTTITTTITT) TITTTTTTTTT]
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

Try CBC mode yourself!

\

x

CBC encrypted

ECB encrypted

iginal

Or

\

Exercise: decrypt the files

Steps:

1
2
3.
A

. Download the files on Virtuale

. Understand the modes (CBC,ECB,...)

~ind the passwords and use them to decrypt
. Write steps and the FLAG in the report

Y0, V% Y% 0.0, 0,
JO/\ Y OJ JO, OOA Y, |

Q
O

