
CYBERSECURITY
LAB #4

Giacomo Gori – Tutor
didattico
g.gori@unibo.it

Exercise

Decrypt the files uploaded on virtuale, hints
included

Write a small report containing the steps and the
decrypted flags and upload it on Virtuale

Remember: write name, surname and the number
of the lab session on the report!

Applied cryptography

AES
(Advanced
Encryption
Standard)

Symmetric-key algorithm
• Key length: 128, 192 or

256 bits

Block cipher
• Block size: 128 bits

Lightweight
• Low RAM consumptions
• High speed

Confidentiality-only modes
• ECB (Electronic Code Block)
• CBC (Cipher Block Chaining)
• CFB (Cipher Feedback)
• OFB (Output Feedback)
• CTR (Counter)

Block cipher modes

OpenSSL
•We will use OpenSSL to play around with crypto algorithms
• OpenSSL is an open-source library that implements Basic

cryptographic primitives
• Hashing algorithms
• SSL and TLS protocols
• Various utilities (prime number generator, PRNG, ...)

• It comes with a handy command line interface (CLI)
• We can do everything from our terminal

Encryption of a simple text file using AES-256 in ECB
mode:
• openssl aes-256-ecb -e -in (plaintxt) -out (ciphertxt)

Decryption:
• openssl aes-256-ecb -d -in (ciphertxt) -out (plaintxt)

Basic usage for AES

The key in AES must be 128, 192, 256 bits in length…

So, can’t we use a human-friendly password to protect
our data?

Key concept: Our human-friendly but weak password is
used to generate a stronger (enhanced) key with higher
entropy

Reasoning about the key..

This functions are called Password Based Key Derivation
Functions (PBKDFs)

In OpenSSL use
• -p, to print the actual enhanced key, salt and IV (if used)
• -nosalt, to disable the usage of salting to increase the key randomness

By default, OpenSSL applies a trivial PBKDF
• If salting is not enabled

• key = sha256(passphrase)
• If salting is enabled

• key = sha256(passphrase || salt)

A better option is to use more iterations or PBKDF2
• Use the flag –iter (number of iterations), or –pbkdf2

Size of the plaintext and ciphertext may be different
• Ciphertext > plaintext

This happens for two reasons
• The salt is stored in the header of the ciphertext (unless –nosalt

is used)
• The plaintext is padded before being encrypted (ECB and CBC

modes only)
• Ciphertext size is always multiple of the cipher block size (128-bit =

16 bytes)

Reasoning about the file size..

Visualizing an encrypted file using a normal text editor (or
printing on the console) can’t work:
• The plaintext usually contains ASCII printable characters..
• But the ciphertext contains non-printable characters

When dealing with such kind of data, we need to view our files
using hexdumps
• This way, we can visualize binary data encoded in hexadecimal

format, e.g.:
• 0x0a = “\n”
• 0x00 = NULL
• 0x41 = “A”

Use xxd to visualize the hexdump of a given input file

Weaknesses of ECB mode

ECB mode lacks diffusion:
Identical plaintext blocks produce identical ciphertext blocks

ECB mode

We can verify this behaviour encrypting a simple bitmap image

• Let’s encrypt the Linux (tux) logo in ECB mode and see what
happens

• For the sake of simplicity, the input file will be a simple
bitmap
• .ppm format

The Tux experiment

PPM (Portable PixMap) seems a bit exoteric, but in reality it’s
the simplest image format.

• You can see it using: xxd –g 3 –c 15 tux.ppm

• You may want to install GIMP to view the image
• sudo apt update && sudo apt install gimp

• Split header and body in two different files
• head -n 3 Tux.ppm > Tux.header
• tail -n +4 Tux.ppm > Tux.body

• Encrypt the body
• openssl aes-256-ecb -e -in Tux.body -out Tux.body.ecb

• Reassembling everything together
• cat Tux.header Tux.body.ecb > Tux.ecb.ppm

• Now look at the image…. Is it familiar?

• Try to repeat the experiment with CBC mode!
• But you must provide an IV with the –iv option

Original ECB encrypted

• CBC hide away patterns in the plaintext thanks to the XOR-
ing of the first plaintext block with an IV, before encrypting
it
• Moreover, it involves block chaining as every subsequent plaintext

block is XOR-ed with the ciphertext of the previous block

Original ECB encrypted CBC encrypted

Try CBC mode yourself!

Steps:

1. Download the files on Virtuale
2. Understand the modes (CBC,ECB,…)
3. Find the passwords and use them to decrypt
4. Write steps and the FLAG in the report

Exercise: decrypt the files

