#### CYBERSECURITY LAB #3

Giacomo Gori – Tutor didattico g.gori@<u>unibo.it</u>

#### Exercise

Complete the 3 exercises, taking notes of all the steps that you take



Write a small report and upload it on Virtuale



**Remember**: write name, surname and the number of the lab session on the report!

#### Prerequisites

Virtualbox and the configured Kali VM. Instructions are on Virtuale! Also, we will see Wireshark







### Wireshark

It is a free and open-source **packet analyzer**.

Similar to tcpdump, but it has a **graphical interface** to show sniffed packets.

Has a lot of **filtering capability** to find the packets that you want.

### Wireshark

- It can perform real-time analysis or on previously recorded traffic file (e.g. PCAP files)
- It show a packet list with a summary of each of them
  - If you click on one, it will show all the detail of every TCP/IP layer with their respective protocol
  - Wireshark could be wrong with the dissection rules (e.g. based on port)
- Filtering capability
  - You can select a property of a specific packet and set it as a filtering rule
- You can follow streams

#### What can we see from a packet analyzer?

| No | Time         | Source             | Destination       | Protocol | Length Info                                                     |
|----|--------------|--------------------|-------------------|----------|-----------------------------------------------------------------|
|    | 1 0.000000   | 192.168.2.1        | 239.255.255.250   | SSDP     | 216 M-SEARCH * HTTP/1.1                                         |
|    | 2 1.000498   | 192.168.2.1        | 239.255.255.250   | SSDP     | 216 M-SEARCH * HTTP/1.1                                         |
|    | 3 2.001016   | 192.168.2.1        | 239.255.255.250   | SSDP     | 216 M-SEARCH * HTTP/1.1                                         |
|    | 4 3.002419   | 192.168.2.1        | 239.255.255.250   | SSDP     | 216 M-SEARCH * HTTP/1.1                                         |
|    | 5 14.589681  | 192.168.2.1        | 192.168.2.255     | BROWSER  | 243 Local Master Announcement LAPTOP-HCSFMST7, Workstation, Ser |
|    | 6 21.094272  | fe80::8dd3:64c9:4e | ff02::1:3         | LLMNR    | 84 Standard query 0x724e A wpad                                 |
|    | 7 21.094285  | 192.168.2.1        | 224.0.0.252       | LLMNR    | 64 Standard query 0x724e A wpad                                 |
|    | 8 21.506682  | fe80::8dd3:64c9:4e | ff02::1:3         | LLMNR    | 84 Standard query 0x724e A wpad                                 |
|    | 9 21.506697  | 192.168.2.1        | 224.0.0.252       | LLMNR    | 64 Standard query 0x724e A wpad                                 |
|    | 10 35.861119 | 00:0c:29:b9:02:a9  | ff:ff:ff:ff:ff:ff | ARP      | 60 Who has 10.0.0.5? Tell 10.0.0.6                              |
|    | 11 37.894161 | 10.0.0.9           | 10.0.0.5          | UDP      | 66 5000 → 8990 Len=24                                           |
|    | 12 37.909319 | 10.0.0.6           | 10.0.0.4          | ТСР      | 74 48520 → 8000 [SYN, ECE, CWR] Seq=0 Win=29200 Len=0 MSS=1460  |
|    | 13 37.909341 | 10.0.0.4           | 10.0.0.6          | ТСР      | 54 8000 → 48520 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0              |
|    | 14 37.926274 | 00:0c:29:b9:02:a9  | ff:ff:ff:ff:ff:ff | ARP      | 60 Who has 10.0.0.5? Tell 10.0.0.6                              |
|    | 15 39.962355 | 10.0.0.9           | 10.0.0.5          | UDP      | 66 5000 → 8990 Len=24                                           |
|    | 16 39.967619 | 10.0.0.6           | 10.0.0.4          | ТСР      | 74 48522 → 8000 [SYN, ECE, CWR] Seq=0 Win=29200 Len=0 MSS=1460  |
|    | 17 39.967637 | 10.0.0.4           | 10.0.0.6          | ТСР      | 54 8000 → 48522 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0              |
|    | 18 39.985954 | 00:0c:29:b9:02:a9  | ff:ff:ff:ff:ff    | ARP      | 60 Who has 10.0.0.5? Tell 10.0.0.6                              |
|    | 19 42.016389 | 10.0.0.9           | 10.0.0.5          | UDP      | 66 5000 → 8990 Len=24                                           |
|    | 20 42.022649 | 10.0.0.6           | 10.0.0.4          | ТСР      | 74 48524 → 8000 [SYN, ECE, CWR] Seq=0 Win=29200 Len=0 MSS=1460  |
|    | 21 42.022666 | 10.0.0.4           | 10.0.0.6          | ТСР      | 54 8000 → 48524 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0              |
|    | 22 42.039326 | 00:0c:29:b9:02:a9  | ff:ff:ff:ff:ff    | ARP      | 60 Who has 10.0.0.5? Tell 10.0.0.6                              |
|    | 23 42.920199 | 00:0c:29:91:d8:c7  | 00:0c:29:b9:02:a9 | ARP      | 42 Who has 10.0.0.6? Tell 10.0.0.4                              |

#### Why should we use a packet analyzer?

- Monitor(*sniffing*) the traffic could be essential for the discovery of attacks
- But also to perform attacks.....



#### Where should we use a packet analyzer?



• I can see also **application data layers**!

### But.. From which interface?

Your computer could have more than one, in general we can choose **wired or wireless interfaces**.

In the case of wired, you can see only the traffic directed/coming exactly to/from you (Ethernet case).

But, in the case of wireless, I can "sniff" everything...



### Public wireless networks

In public Wi-Fi network there is **no encryption**, so:

Others can **sniff** your packets!

Or maybe worse, others can perform a **Man in the Middle Attack** (*MitM*).

## "Protected" wireless networks

**Encryption** makes your packets confidential

...Right?

#### It depends on algorithms

In Wi-Fi we can choose different algorithms:

• WEP

CITI

• Stream cipher RC4 algorithm, CRC32 checksum, INSECURE

a starter-ser

ort for varat

- WPA
  - TKIP
- WPA2
  - Not RC4 anymore..
- WPA3

#### And passwords!!

- As always, weak password can be cracked
  - Remember brute-force/dictonary attacks?







#### Attacking WEP

WEP was designed many years ago, now is **obsolete**.

If you know the shared key, you can decrypt every packets of the others.

It used Initializing Vector (IV), sent in plaintext in the packets, with few bits (24), so... Collecting some of them lead you to **crack** (*mathematically derive*) the shared key!





#### Attacking WPA

By **sniffing** the 4-way handshake we can perform an **offline** attack

Attackers can get all the informations to perform **dictonary and brute force attack**.

So, in this case, the probability of success it's more password-related...

#### How to sniff packets "in the air"

- With physical cable, not considering the (old) *hub topologies*, we cannot see packets unless we are physically connected to the specific cables!
- With wireless instead, everything is in the *air*. So **we can simply listen to receive all the packets**.

That's what is called Monitor Mode



# Monitor Mode

It permits to capture and see all the packets coming from a specific wireless channel.

First step: find the channel of the interested AP Second step: monitor the channel

### Monitor mode in linux



- To enable monitor mode on your pc, it depends on the wireless card. You can follow the aircrack-ng guide: <u>https://www.aircrack-</u> <u>ng.org/doku.php?id=cracking\_wpa</u>
- With **airmon-ng**, once you **capture a WPA handshake**, you can stop the analysis and go to the next step with the PCAP file obtained.
  - For the exercise, I will give you an example PCAP file.

### Capturing the handshake



• With monitor mode we can capture the packets sent for the handshake

• Then, we save the .pcap file that contains the packets and we can try an **offline attack** of dictionary/brute-force. You can also use Wireshark to investigate the packets.

### Attacking

- We will use **aircrack-ng suite**, able to attack WEP and WPA/WPA2
- Usage: aircrack-ng (-w wordlist) (-b BSSID) (pcap file) [OPTIONS]
  - Wordlist: pass the wordlist to use for cracking the password
  - **BSSID:** MAC address of the interested AP
  - PCAP file: the file containing the sniffed handshake
  - In OPTIONS: settings for optimized WEP or WPA/2 attacks..

### Crack the wifi passwd

Use your knowledge to find the passwords (if it's possible) of the wireless access point from the traffic in the "wifi" PCAP files in virtuale.

Find the commands to control the plane.

### Land the Dreamliner

Complete the challenge: http://dreamliner.challs.c yberchallenge.it/

You have **3 hints** in the help file on virtuale.

#### the set of the second of the s

an dov mo

> Detect the intruder

It has been detected that an intruder has **downloaded a file**, find out more.

Analyze the traffic and find the *flag*, that has this form at CCIT{*flag*}, from the PCAP file (s3cret.pcapng) in virtuale.

Hints are in the help file on virtuale