
CYBERSECURITY
LAB #2

Giacomo Gori – Tutor
didattico

g.gori@unibo.it

Exercise

Complete the exercises, taking notes of all the steps
that you take

Write a small report and upload it on Virtuale

Remember: write name, surname and the number
of the lab session on the report!

Prerequisites

Virtualbox and the configured
Kali VM.
Instructions are on Virtuale!

Password

What is a HASH?

It works as a fingerprint:

• It's a cryptographic function that create a unique code from items
(text, file, …) of different lengths

fe6e32b7af5.....

Characteristics of hash functions

• Quick to calculate

• Small size of the output

• A small change in the input generate a big change in the output

• Weak and strong resistance to collisions
• i.e. it's impossible to find two input that have the same hash as output

• Irreversibility

fe6e32b7af5.....

Irreversibility?

fe6e32b7af5.....

Resistance to collisions?

Is it even possible?

Goals of hash functions

• Be sure that a file is not (un)wittingly
modified during transmission or when stored

Integrity

• Instead of saving password in plaintext, save only the hash!

• This way, if a dataleak happens, attackers will not know the
original passwords of users..

Confidentiality

"Oh no, they hacked my Instragram account!"

But wait, did they really
hacked a more than $100

billion company just to
steal your account?

It's more likely
that they did a
password reuse
attack

Users often set the same password for
multiple services (e.g. Instagram, bank
account, ..)

If the password used for a service gets
leaked, it can be used to access other
accounts of the same users

There’s a whole business model behind
this

• Attackers do not use user data
themselves, but they mostly sell
them on the dark web

Hash functions available

MD5
128 bit

SHA-1
160 bit

SHA-2
family

(224,256,384,512
bit)

And much more..
Less famous or insecure

GNU coreutils

• They are tools available in most Linux distributions

• Basic usage
• Generate hash: {md5, sha1, sha224, sha256, ...}sum (filename)

• Check hash, example with md5: echo "(hash) (filename)" | md5sum –c
• There are 2 spaces between hash and filename!!

Breaking
hash
algorithms

The goal: find the plaintext from the
hash, even if it should be irreversible.

Infact, we can break only insecure
hash algorithms...

Anyway, we will focus not on the
inner workings of each algorithm,
instead we will try to find the
plaintext using different techniques

Attacking hash algorithms

3 types of
attacks:

Precomputed
attack

Brute-forcing
attack

Dictionary
attack

The goal: obtaining the
plaintext, trying with
different combinations

Precomputed attacks

• Space/time tradeoff
• Save time precomputing hashed of the most common (or likely) passwords,

but take up space by storing them

• Smarter method: rainbowtables
• More sophisticated but require less storage

Rainbowtables

Install rainbowcrack
• sudo apt install rainbowcrack

Generate and sort a MD5 rainbowtable
• sudo rtgen md5 loweralpha 1 7 0 1000

100000 0
• sudo rtsort /usr/share/rainbowcrack

Crack a given hash
• rcrack /usr/share/rainbowcrack -h (hash)

HASH n1:

6e6bc4e49dd477ebc
98ef4046c067b5f

HASH n2:

e879410167dfb867
0e483f7f7a1843cf

Defending
against
precomputed
attacks

Salting

Adding some random piece of data
(salt) to the passwords

Storing that piece in plaintext,
together with the password

Precomputation becomes useless

Salting example

ID PASSWORD (HASH) SALT

1 6e6bc4e49dd477ebc98ef4046c067b5f 7b6b1c1077c3fbe74b19

2 7a36be31fbe72d24c2d4bdb44c8055a6 41942cad1e6c17e7e2e3

3 0225205578734fc6ea670eae72e92160 32f38b5e593075f974d7

4 a00a34a06520ccf4d7e0e3d6442cb85f e6dde301236a3891ca88

5 3ba94ed6ae8ac1891ef96c136853a5cc 2ff137a14978890fe1e9

6 e20d4b60cd5a8ebe1ca51b52eb0a1377 f9ee4a12e3ea69aa7be0

It’s not the end
of the story…

If hackers have the hash of a
password from a dataleak, typically
they also have the salt, because it’s
stored in plain and in the same
dabatase!

So, Dictionary and Brute-forcing
attacks can still be performed.

Brute-force

• Just try every possible combination until you find the right one
• Could be an «infinite» process

• With long password could take forever!
• Masks could be useful

Dictionary attacks

• Try all the words in a predefined list
• Smarter lists are the best option!

• That’s why the strongest passwords are the ones more “randomly” made

• In a real world scenario, weeks or even months may be needed!
• Hash cracking can be optimized by running many instances in parallel, so

using more cores (e.g. GPU, FPGA, …)

Dictionary attacks

• As said, smarter wordlist are the best option
• People choose common words as password

• Wordlists are made available online
• Some of them created using actual credentials from public leaked databases

• You can also generate your own lists

• In kali you have a built-in wordlist
• Extract it: sudo gunzip /usr/share/wordlists/rockyou.txt.gz

Most
common
passwords

1.password

2.123456

3.123456789

4.guest

5.qwerty

6.12345678

7.111111

8.12345

9.col123456

10.123123

11.1234567

12.1234

13.1234567890

14.000000

15.555555

16.666666

17.123321

18.654321

19.7777777

20.123

And in Italy?

CENSURATA

With no exceptions…

Cracking password

• First step: we need to understand from a hash which algorithm was
used
• The hashid command can help, but not always

• Second step: try to find the right combination
• We will see the hashcat command

• Usage: hashcat (-m mode) (-a attack) (hash) [OPTIONS]

Hashcat

• Usage: hashcat (-m mode) (-a attack) (hash) [OPTIONS]
• Mode: choosing the algorithm (es: 0 for MD5, 100 for SHA1, ..)

• Attack: dictionary, brute force, using masks (es: 0 dictionary, 3
bruteforce, ..)

• Hash: a string or a file containing one or more hashes

• In OPTIONS: can be introduced the wordlist

• Cracked hashes are saved in the "potfile" in ~/.hashcat/hashcat.potfile

• Use --show to compare the input hashlist with the potfile, showing the
cracked ones (--left, for the opposite)

Hashcat
• The man command will show you the various configuration. Some of them:

Example

• Create the MD5 hash of the word «hola»
• echo –n “hola” | md5sum

• Risultato: 4d186321c1a7f0f354b297e8914ab240

• In this case, the hashid answer is ambigous: MD2/4/5?

• Crack it with hashcat
• So, MD5 means m = 0, dictionary attack is a = 0, let’s use the wordlist rockyou.txt

• The command is:

hashcat –a 0 –m 0 ”4d186321c1a7f0f354b297e8914ab240”
/usr/share/wordlists/rockyou.txt

Example with salt

• Let’s reuse the previous word («hola»), but let’s add the salt
• Salt: 1234

• Hash with salt: ccee5504c9d889922b101124e9e43b71

• Crack it with hashcat
• The sintax is hash:salt

• The command is:

hashcat –a 0 –m 10 ”ccee5504c9d889922b101124e9e43b71:1234”
/usr/share/wordlists/rockyou.txt

HASH:

bc107137cda7aa074
de2664a88247f2dfa5
4546923049ec92986
9edd6bc648a0

SALT:

dd1b1n5

Masks in hashcat

• You can also be smarter with brute force attacks
• For example, a lot of password are name and birth year, mine would

be Giacomo98 :)

• What if I say to hashcat to try only password with a predefined
structure?

• Masks are the solution (-m parameter)
• You can say to hashcat to try only words with a particular pattern

Rules in hashcat

• But rules are even more powerful
• Change the wordlist trying to follow some pattern

• You can create your own rules
• E.g. $x to append ‘x’ at the end of every word

• Hashcat has some built in rules in /usr/share/hashcat/rules/
• Use rules with the –r parameter

Example with rules

• Let’s use a new word: «Hola123!»
• Hash: 401518eee35b49f00bc0a3ab74c4915e

• This word is not included in rockyou.txt, so hashcat wouldn’t be able to crack it
without rules (i.e. changing the «hola» word)

• Crack it with hashcat and rules
• Let’s use an example rule from the hashcat folder

• The command is:

hashcat -a 0 -m 0 -r /usr/share/hashcat/rules/T0XlCv2.rule
"401518eee35b49f00bc0a3ab74c4915e" /usr/share/wordlists/rockyou.txt

HASH:

0e8ae09ae169926a
26b031c18c01bafa

HINT: It contains a
phrase without spaces
and some numbers at
the end

HASH:
c73fceaab80035a7
5ba3fd415ecb2735

HINT: It contains, in
order: a common word,
some numbers and a
special character

Exercise

Crack the 5 hashes with rainbowtables or hashcat, taking
notes of all the steps that you take

Write the report, showing the commands and why you
choosed them, together with the cracked passwords

Remember: write name, surname and the number of
the lab session on the report!

	Slide 1: CYBERSECURITY LAB #2
	Slide 2: Exercise
	Slide 3: Prerequisites
	Slide 4: Password
	Slide 5: What is a HASH?
	Slide 6: Characteristics of hash functions
	Slide 7
	Slide 8
	Slide 9: Is it even possible?
	Slide 10: Goals of hash functions
	Slide 11: "Oh no, they hacked my Instragram account!"
	Slide 12: It's more likely that they did a password reuse attack
	Slide 13: Hash functions available
	Slide 14: GNU coreutils
	Slide 15: Breaking hash algorithms
	Slide 16: Attacking hash algorithms
	Slide 17: Precomputed attacks
	Slide 18: Rainbowtables
	Slide 19: Try to crack them
	Slide 20: Defending against precomputed attacks
	Slide 21: Salting
	Slide 22: Salting example
	Slide 23: It’s not the end of the story…
	Slide 24: Brute-force
	Slide 25: Dictionary attacks
	Slide 26: Dictionary attacks
	Slide 27: Most common passwords
	Slide 28: And in Italy?
	Slide 29: With no exceptions…
	Slide 30: Cracking password
	Slide 31: Hashcat
	Slide 32: Hashcat
	Slide 33: Example
	Slide 34: Example with salt
	Slide 35: Try to crack it
	Slide 36: Masks in hashcat
	Slide 37: Rules in hashcat
	Slide 38: Example with rules
	Slide 39: Try to crack it
	Slide 40: Try to crack it
	Slide 41: Exercise

