
ALMA MATER STUDIORUM – UNIVERSITA’ DI BOLOGNA

 Cybersecurity:
Access Control

Jocelyne Elias, Ozalp Babaoglu

© Babaoglu 2001-2022 Cybersecurity

Authorization and access control

■ From authentication to authorization
■ Once subjects have been authenticated, the next problem to

confront is authorization or access control
■ Access control is a central element of computer security whose

objectives are:
■ prevent unauthorized users from gaining access to resources,
■ prevent legitimate users from accessing resources in an unauthorized

manner,
■ enable legitimate users to access resources in an authorized manner

■ Set of policies and mechanisms that serve to decide if a particular
subject is allowed to perform certain operations on certain
objects

2

© Babaoglu 2001-2022 Cybersecurity

Access control

■ Access control is achieved through a set of policies and a set of
mechanisms to enforce the policies

■ Access control policy dictates what types of access are permitted,
under what circumstances, and by whom

■ Basic elements of access control are:
■ subject: an entity capable of accessing objects
■ object: a resource to which access needs to be controlled
■ access right: describes the way in which a subject may

access an object

3

© Babaoglu 2001-2022 Cybersecurity

Access control policy types

■ Discretionary access control (DAC): access based on the identity of
subjects and on access rules stating what subjects are (or are not)
allowed to do on which objects. Discretionary because subjects decide
to grant (or deny) access to other subjects

■ Mandatory access control (MAC): access based on comparing
security labels (which indicate how sensitive or critical objects are) with
security clearances of subjects. Mandatory because security labels and
clearances are set by the system and cannot be modified by subjects

■ Role-based access control (RBAC): access based on the roles that
subjects have within the system and on rules stating what accesses are
allowed for subjects in given roles

4

© Babaoglu 2001-2022 Cybersecurity

Fundamental principles for security policies

■ “Open design”
■ “Economy of mechanism”
■ “Fail-safe defaults”

● By default, subjects have no access privileges over any object
■ “Complete mediation” (reference monitor)

● Objects cannot be accessed directly; all accesses must be
controlled

■ “Least privilege”
● Subjects have the minimum access privileges that are necessary to

carry out the operations that are required for that phase of execution

5

© Babaoglu 2001-2022 Cybersecurity

Fundamental principles for security policies

■ Least Privilege: every subject should operate using the
minimum set of privileges (access rights) that are necessary to
perform its task
■ Limits damage that can result from an accident or error
■ Limits number of privileged programs
■ Helps in debugging
■ Increases assurance
■ Allows isolation of critical subsystems

■ Least Privilege enforced through a reference monitor that
implements complete mediation — every access to every
object is checked

6

© Babaoglu 2001-2022 Cybersecurity

Notation

■ Let S denote the set of subjects
■ Let O denote the set of objects

● Note that objects can be active and acts as subjects

■ Let 𝛼 denote the set of access rights that subjects
have on objects

7

© Babaoglu 2001-2022 Cybersecurity

Access control – Protection domains

■ A protection domain is a set of objects and the set of
access rights for each one

■ Formally, it is a set of tuples
<object, set_of_access_rights>
■ Subjects are associated with a given protection domain in

which they operate
■ The association between subjects and protection

domains can be static or dynamic

8

© Babaoglu 2001-2022 Cybersecurity

Access control – Protection domains

■ “Kernel mode” vs “User mode” in operating systems can
be seen as two protection domains that control access to
main memory
● Normally processes operate in user mode
● When they execute a system call, they switch to kernel mode

and gain privileges that are required to carry out the system call
■ This is an example of a dynamic association between

subject and protection domain

9

© Babaoglu 2001-2022 Cybersecurity

Access Control Matrix model for DAC

■ A model for Discretionary Access Control (DAC)
■ Access Control Matrix

● is a matrix M with domains as rows and objects as columns
● each entry M(i, j) contains the set of access rights 𝛼 that

domain Di permits over object Oj
■ When a new object is created

● add a new column to the matrix
● the contents of the column decided by the creator of the object

10

© Babaoglu 2001-2022 Cybersecurity

Access Control Matrix – Example

11

Assume each subject operates in their own protection domain

© Babaoglu 2001-2022 Cybersecurity

Access Control Matrix – Example

■ User A in domain D2 editing File2, user B in D3 editing File3

■ Users A and B turn on “spelling corrector” function based on File4
which is a dictionary

■ The dictionary is proprietary and should not be copied

12

read

read

File1 File2 File3 File4

D1

D2

D3

domain
object

read

read read

read
write

writeA

B

But now A and B can make copies of the dictionary

© Babaoglu 2001-2022 Cybersecurity

Access Control Matrix – Example

■ Introduce a new domain D4 such that the dictionary can only
be read in that domain and add new access right “switch”

13

D4 read

switch

switch

D4File1 File2 File3 File4

D1

D2

D3

domain
object

read

read read

read
write

writeA

B

© Babaoglu 2001-2022 Cybersecurity

Access Control Matrix – Example

■ But now users A and B cannot access the files they are
editing (File2 and File3)

■ “Switch” not only changes domains but also copies the
access rights from the source domain to the destination
domain

■ Since there may be multiple users that switch to the same
domain, they are kept logically distinct by creating multiple
instances of the domain

■ This mechanism effectively implements the “principle of least
privilege”

14

© Babaoglu 2001-2022 Cybersecurity

Access Control Matrix – Example

15

File1 File2 File3 File4

D1

D2

D3

D4

domain
object

read

read read

read

read

write

write

D4

switch

switch

D4 read

A

B

readread
writeA

read
writeB

© Babaoglu 2001-2022 Cybersecurity

Implementation

■ As a global table:
● store the matrix as a 2-dimensional array (table) with entries that are

	 <set_of_access_rights>
■ Advantages:

● simple to implement
■ Drawbacks:

● table can be huge
● difficult to maintain in a dynamic system where domains and objects

are added/deleted and access rights change over time

16

© Babaoglu 2001-2022 Cybersecurity

Access Control Lists

■ Access Control List (ACL)
● the table is stored “per column”
● with each object, associate a list of tuples that specify access rights

for each domain
<domain, set_of_access_rights>

■ Optimizations for reducing the length of the list
● include only domains that have access rights different from a default

(e.g., no access)
● group domains into a (small) number of sets and define access rights

only for them
■ ACL act like the “guest list” for a party that is checked by a

guard at the door to decide who gets to enter
17

© Babaoglu 2001-2022 Cybersecurity

Access Control List

18

© Babaoglu 2001-2022 Cybersecurity

Access Control Lists

■ Unix example:
babaoglu% ls -l /etc/passwd

-rw-r--r-- 1 root wheel 7579 Jan 1 2020 /etc/passwd

■ Unix has only 3 domains: owner, group, others

19

© Babaoglu 2001-2022 Cybersecurity

Capability

■ Capability
● the table is stored “per row”
● every domain is associated a list of access “rights”
<object, access_rights_for_object>

● such a tuple is called a capability
■ Who maintains capabilities?

● processes that “present” them to exercise the access rights over the
object

● capabilities act like keys to open locks protecting objects or invitations
that convince “bouncers” guarding a party

20

© Babaoglu 2001-2022 Cybersecurity

Capability

21

© Babaoglu 2001-2022 Cybersecurity

Capability

For the capability mechanism to function, we must guarantee
that:
■ processes not be able to forge fake capabilities
■ the object (reference monitor) is able to recognize if a

capability is fake or authentic
■ processes may be permitted or not to copy or transfer their

capabilities

22

© Babaoglu 2001-2022 Cybersecurity

Capability implementation

■ Capabilities can be implemented using public-key
cryptography

■ Processes are given capabilities in the form of triples:
<object, access_rights_for_object, unique_code>

after being signed with the private key of the object
■ Processes can store and observe capabilities but cannot

modify them since they cannot sign the modified version
because they do not have the object’s private key (similar to
certificates)

23

© Babaoglu 2001-2022 Cybersecurity

Capability

■ When a process needs to access a resource, it presents to
the object the capability it holds for that object

■ When an object is presented a capability,
● it verifies the signature,
● checks its name,
● checks the control code,
● checks that the current access is permitted by the access rights

listed in the capability
■ N.B. the capability can be copied and transferred to another

process but cannot be modified

24

© Babaoglu 2001-2022 Cybersecurity

Revocation of access rights

■ Revocation can be:
● immediate or delayed
● selective or general
● partial or total (all access rights or some)
● temporary or permanent

■ Revocation in ACL-based systems
● Easy — it suffices to update the access rights found in the list

associated with the object
■ Revocation in capability-based systems

● Difficult — since access rights are not held at the object but are
distributed to processes through capabilities, modifying them requires
that we first locate them — may be difficult or impossible

25

© Babaoglu 2001-2022 Cybersecurity

Revocation of access rights

■ Time-limited capabilities:
● capabilities have an “expiration date” after which they need to be

renewed
● by not renewing capabilities, we can achieve (delayed) revocation

■ Indirect capabilities
● capabilities do not point directly to objects but to entries in

intermediate tables that point to objects
● by modify the entries in the intermediate table, we can simulate

(immediate) revocation

26

© Babaoglu 2001-2022 Cybersecurity

Access control example: UNIX file system

■ Every object (resource) in UNIX is a file with a tree-structured
naming scheme (e.g., /usr/bin/spell)

27

© Babaoglu 2001-2022 Cybersecurity

Access control example: UNIX file system

■ Every file has:
■ owner — the user that created the file
■ group — a collection of users

■ Every file has 9 bits of access rights corresponding to:
■ read, write, execute for owner
■ read, write, execute for group
■ read, write, execute for other

■ Examples:
■ rw-r--r-- (644)
■ rwxr-xr-x (755)

28

© Babaoglu 2001-2022 Cybersecurity

Access control example: UNIX file system

■ Users and groups are identified using integers found in the
password file
● user-id
● group-id

29

mezzina:x:501:1000:Leonardo Mezzina:/home/mezzina:
trotter:x:502:1000:Guido Trotter:/home/trotter:

© Babaoglu 2001-2022 Cybersecurity

File ownership

■ Each process created by the user (to execute commands)
inherits her user-id and group-id as the process real-user-id
and real-group-id

■ When a process creates a new file, its owner and group are
set to the real-user-id and real-group-id of the process
creating it

■ Subsequently, the file’s owner can be modified through the
command
chown newusername file(s)
■ Typically disabled (limited to root) in systems that maintain file

quotas
30

© Babaoglu 2001-2022 Cybersecurity

Real vs Effective User ID

Each process has several IDs associated with it:
■ real-user-id, real-group-id

● identify the real user and group that launched the process
● these values are read from the passwd file
● do not change during the execution of the process

■ effective-user-id, effective-group-id
● set dynamically during the execution of the process through the
setuid mechanism

● are used to determine the access rights of the process when
interacting with the file system

31

© Babaoglu 2001-2022 Cybersecurity

Hybrid access control

■ Often, systems are not pure ACL-based or pure Capability-
based

■ Hybrid access control combines ACL and Capability
mechanisms to obtain the advantages of both:
■ Access control based on identity — ACL
■ Ease of revocation — ACL
■ Efficiency of access — Capability

32

© Babaoglu 2001-2022 Cybersecurity

Hybrid access control example: UNIX

■ Open system call
■ int open(const char *pathname, int flags);

■ where flags is one of
■ O_RDONLY
■ O_WRONLY
■ O_RDWR

■ The open() call checks that the named file exists, that the
access requested (flags) is allowed for effective-user-id
and effective-group-id of the executing process and returns
a (small) integer called a file descriptor

■ For execute, there is a separate system call
■ execv("/bin/cat", args);

33

© Babaoglu 2001-2022 Cybersecurity

Hybrid access control example: UNIX

■ The file descriptor returned by the open() system call is an
index into a File Descriptor Table maintained in kernel space

34

© Babaoglu 2001-2022 Cybersecurity

Hybrid access control example: UNIX

■ The File Descriptor Table is nothing more than a list of
capabilities corresponding to the files that can be accessed by
the process

■ A process can use a capability by pointing to it in the File
Descriptor Table but cannot modify it

■ After a file has been opened, it can be accessed as many times
as necessary through the system calls read() and write()
without any further checks

■ In this manner, the cost of verifying access (which is high since it
requires reading data structures on disk) is paid only once and this
cost is amortized over many (thousands, millions) of read/write
calls that are fast (do not perform any access control checks)

35

© Babaoglu 2001-2022 Cybersecurity

Hybrid access control example: UNIX

int main()
{

int fd;
static char message[] = "Hello, world";

fd = open(“foo.bar", O_WRONLY);
if (fd == -1)
{

perror(“foo.bar");
exit (1);

}
else
write(fd, message, sizeof(message));

}

36

© Babaoglu 2001-2022 Cybersecurity

Saved-user-ID

■ In addition to real-user-id, real-group-id, effective-user-id
and effective-group-id, each process has a saved-user-id
and saved-group-id that contain copies of the effective user
id and effective group id that existed at the time a setuid
program is executed

■ saved-user-id and saved-group-id allow the process to
return to its effective user/group id once the execution of the
setuid program terminates

37

© Babaoglu 2001-2022 Cybersecurity

Set-user-id, Set-group-id

■ Normally:
● effective-user-id and real-user-id are the same
■ effective-group-id and real-group-id are the same

■ At the time an executable file with the set-user-id bit of its
permissions set is executed, the following occurs:
■ saved-user-id set to effective-user-id
■ effective-user-id set to user id of the file’s owner

■ At the time an executable file with the set-group-id bit of its
permissions set is executed, the following occurs:
■ saved-group-id set to effective-group-id
■ effective-group-id set to group id of the file’s owner

38

© Babaoglu 2001-2022 Cybersecurity

Set-user-id, Set-group-id

■ These mechanisms allow any user to run the executable with
the permissions of the executable’s owner or group

■ New permissions remain in effect only during the course of the
execution

■ When the execution terminates, permissions return to their
previous state

■ Allows a process to change its protection domain dynamically
during its execution

■ Can be used to implement “principle of least privilege"

39

© Babaoglu 2001-2022 Cybersecurity

Set-user-id example

■ How to implement a command that allows users to change
their passwords?

■ A user should be able to change her own password, but
should not be able to see (or modify) the passwords of others

■ But in Unix, permissions are at the granularity of an entire file
■ It is not possible to define permissions at the granularity of

individual records (lines within the /etc/passwd file)
■ To allow any user to modify her password, the permissions of

the /etc/passwd file must be set to “read/write by all”
■ But now anyone can see (and modify) the password of

anyone else
40

© Babaoglu 2001-2022 Cybersecurity

Set-user-id example

■ Use of the setuid mechanism to solve the password
problem:
● Root writes a command /bin/passwd that is owned by root

with permissions r-s--x--x (the setuid bit is on)
● The file /etc/passwd is owned by root with permissions
rw------- (read/write root only)

● When /bin/passwd is executed by a process, its effective-
user-id changes to root

● Therefore, the process can write the file /etc/passwd but
only after having made all necessary checks implemented by
the command /bin/passwd

41

