Asymmetric Cryptography Public key encryption: definitions and security

Symmetric Cipher

Problems with Symmetric Ciphers

- In order for Alice & Bob to be able to communicate securely using a symmetric cipher, such as AES, they must have a shared key in the first place.
 - What if they have never met before?
- Alice needs to keep 100 different keys if she wishes to communicate with 100 different people

Motivation of Asymmetric Cryptography

- Is it possible for Alice & Bob, who have no shared secret key, to communicate securely?
- This led to Asymmetric Cryptography

Asymmetric Cryptography

Asymmetric Cryptography

Public and private keys

Public and private keys

Public and private keys

Asymmetric Cryptography

- Public key
- Private key
- E(private-key_{Alice}, m) = c
- D(public-key_{Alice}, c) = m
- E(public-key_{Alice}, m) = c
- D(private-key_{Alice}, c) = m

Main ideas

- Bob:
 - publishes, say in Yellow/White pages, his public key, and
 - keeps to himself the matching private key.

Main ideas (Confidentiality)

- Alice:
 - Looks up the phone book, and finds out Bob's public key
 - Encrypts a message using Bob's public key and the encryption algorithm.
 - Sends the ciphertext to Bob.

Main ideas (Confidentiality)

- Bob:
 - Receives the ciphertext from Alice.
 - Decrypts the ciphertext using his private key, together with the decryption algorithm

Asymmetric Encryption

Main differences with Symmetric Crypto

- The *public key* is different from the *private key*.
- Infeasible for an attacker to find out the private key from the public key.
- No need for Alice and Bob to distribute a shared secret key beforehand!
- Only one pair of public and private keys is required for each user!

Let's start seriously

- Define what is public key encryption

- What it means for public key encryption to be secure

Public key encryption

Bob: generates (p_k, s_k) and gives p_k to Alice

Applications

Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)

- Bob sends email to Alice encrypted using pk_{alice}
- Note: Bob needs pk_{alice} (public key management)

Public key encryption

<u>**Def</u>**: a public-key encryption system is a triple of algs. (G, E, D)</u>

- **G**(): randomized alg. outputs a key pair (pk, sk)
- E(pk, m): randomized alg. that takes $m \in M$ and outputs $c \in C$
- D(sk,c): det. alg. that takes $c \in C$ and outputs $m \in M$ or \bot

Consistency: \forall (pk, sk) output by G :

 $\forall m \in M$: D(sk, E(pk, m)) = m

Security: eavesdropping

For b=0,1 define experiments EXP(0) and EXP(1) as:

Def: $\mathbb{E} = (G, E, D)$ is sem. secure (a.k.a IND-CPA) if for all efficient A: Adv_{ss} [A, \mathbb{E}] = |Pr[EXP(0)=1] - Pr[EXP(1)=1]| < negligible

Relation to symmetric cipher security

Recall: for symmetric ciphers we had two security notions:

- One-time security and many-time security (CPA)
- We showed that one-time security \neq many-time security

For public key encryption:

• One-time security \Rightarrow many-time security (CPA)

(follows from the fact that attacker can encrypt by himself)

• Public key encryption **must** be randomized

Security against active attacks

What if attacker can tamper with ciphertext?

Attacker is given decryption of msgs that start with "to: attacker"

(pub-key) Chosen Ciphertext Security: definition $\mathbb{E} = (G, E, D)$ public-key enc. over (M,C)

For b=0,1 define EXP(b):

Chosen ciphertext security: definition

<u>Def</u>: \mathbb{E} is CCA secure (a.k.a IND-CCA) if for all efficient A:

 $Adv_{CCA}[A,\mathbb{E}] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$ is negligible.

Active attacks: symmetric vs. pub-key

Recall: secure symmetric cipher provides authenticated encryption

[chosen plaintext security & ciphertext integrity]

- Roughly speaking: attacker cannot create new ciphertexts
- Implies security against chosen ciphertext attacks

In public-key settings:

- Attacker **can** create new ciphertexts using pk !!
- So instead: we directly require chosen ciphertext security

Trapdoor Permutations

Trapdoor functions (TDF)

- <u>**Def</u>**: a trapdoor func. $X \rightarrow Y$ is a triple of efficient algs. (G, F, F⁻¹)</u>
- G(): randomized alg. outputs a key pair (pk, sk)
- $F(pk, \cdot)$: det. alg. that defines a function $X \longrightarrow Y$
- $F^{-1}(sk,\cdot)$: defines a function $Y \rightarrow X$ that inverts $F(pk,\cdot)$

More precisely: \forall (pk, sk) output by G

 $\forall x \in X$: $F^{-1}(sk, F(pk, x)) = x$

Secure Trapdoor Functions (TDFs)

(G, F, F⁻¹) is secure if $F(pk, \cdot)$ is a "one-way" function:

can be evaluated, but cannot be inverted without sk

<u>Def</u>: (G, F, F^{-1}) is a secure TDF if for all efficient A:

 $Adv_{OW}[A,F] = Pr[x = x'] < negligible$

Hash Functions

• Hash functions:

- Input: arbitrary length
- Output: fixed length (generally much shorter than the input)

One-Way Hash Algorithm

- A one-way hash algorithm hashes an input document into a condensed short output (say of 256 bits)
 - Denoting a one-way hash algorithm by **H(.)**, we have:
 - Input: **m** a binary string of any length
 - Output: H(m) a binary string of L bits, called the "hash of m under H".
 - The output length parameter **L** is fixed for a given one-way hash function **H**,
 - Examples:
 - The one-way hash function "MD5" has L = 128 bits
 - The one-way hash function "SHA-1" has L = 160 bits

Properties of One-Way Hash Algorithm

A good one-way hash algorithm **H** needs to have the following properties:

1. Easy to Evaluate:

The hashing algorithm should be fast

2. Hard to Reverse:

There is no feasible algorithm to "reverse" a hash value,

That is, given any hash value \mathbf{h} , it is computationally infeasible to find any document \mathbf{m} such that $\mathbf{H}(\mathbf{m}) = \mathbf{h}$.

3. Hard to find Collisions:

There is no feasible algorithm to find **two** or **more** input documents which are hashed into the **same** condensed output,

That is, it is computationally infeasible to find any two documents **m1**, **m2** such that **H(m1)= H(m2)**.

4. A small change to a message should change the hash value so extensively that the new hash value appears uncorrelated with the old hash value

Public-key encryption from TDFs

- (G, F, F⁻¹): secure TDF $X \rightarrow Y$
- (E_s, D_s) : symmetric auth. encryption defined over (K,M,C)
- $H: X \longrightarrow K$ a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

- (G, F, F⁻¹): secure TDF $X \rightarrow Y$
- (E_s, D_s) : symmetric auth. encryption defined over (K,M,C)
- $H: X \longrightarrow K$ a hash function

E(pk, m): $x \leftarrow R X, y \leftarrow F(pk, x)$ $k \leftarrow H(x), c \leftarrow E_s(k, m)$ output (y, c)

$$\begin{array}{l} \underline{D(\ sk,\ (y,c)\)}:\\ x \leftarrow F^{-1}(sk,\ y),\\ k \leftarrow H(x),\ m \leftarrow D_s(k,\ c)\\ output \ m \end{array}$$

Security Theorem:

If (G, F, F^{-1}) is a secure TDF, (E_s, D_s) provides auth. enc. and $H: X \rightarrow K$ is a "random oracle" then (G, E, D) is CCA^{ro} secure.

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying **F** directly to plaintext:

E(pk, m):D(sk, c):output $c \leftarrow F(pk, m)$ Output $F^{-1}(sk, c)$

Problems:

- Deterministic: cannot be semantically secure !!
- Many attacks exist (next segment)

The **RSA** trapdoor permutation

- One of the first practical responses to the challenge posed by Diffie-Hellman was developed by *Ron Rivest, Adi Shamir, and Len Adleman* of MIT in 1977
- Resulting algorithm is known as **RSA**
- Based on properties of *prime numbers* and results from *number theory*
Review: trapdoor permutations

Three algorithms: (G, F, F⁻¹)

- G: outputs pk, sk. pk defines a function $F(pk, \cdot): X \rightarrow X$
- F(pk, x): evaluates the function at x
- F⁻¹(sk, y): inverts the function at y using sk

Secure trapdoor permutation:

The function $F(pk, \cdot)$ is one-way without the trapdoor sk

Review: arithmetic mod composites

Let $N = p \cdot q$ where p,q are prime where $p,q \approx N^{1/2}$

 $Z_{N} = \{0, 1, 2, ..., N-1\}$; $(Z_{N})^{*} = \{\text{invertible elements in } Z_{N}\}$

<u>Facts</u>: $x \in Z_N$ is invertible \Leftrightarrow gcd(x,N) = 1

- Number of elements in $(Z_N)^*$ is $\phi(N) = (p-1)(q-1) = N-p-q+1$

<u>Euler's thm</u>:

$$\forall x \in (Z_N)^* : x^{\phi(N)} = 1$$

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:

- SSL/TLS: certificates and key-exchange
- Secure e-mail and file systems

... many others

The RSA trapdoor permutation

G(): choose random primes $\mathbf{p}, \mathbf{q} \approx 1024$ bits. Set $\mathbf{N}=\mathbf{pq}$. choose integers \mathbf{e}, \mathbf{d} s.t. $\mathbf{e} \cdot \mathbf{d} = \mathbf{1} \pmod{\mathbf{\phi(N)}}$ output $\mathbf{pk} = (\mathbf{N}, \mathbf{e})$, $\mathbf{sk} = (\mathbf{N}, \mathbf{d})$

$$\mathbf{F}(\mathbf{pk,x}): \mathbb{Z}_N^* \to \mathbb{Z}_N^* \qquad ; \qquad \mathbf{RSA(x) = x^e} \qquad (\text{in } \mathbf{Z}_N)$$

 $F^{-1}(sk, y) = y^{d}$; $y^{d} = RSA(x)^{d} = x^{ed} = x^{k\phi(N)+1} = (x^{\phi(N)})^{k} \cdot x = x$

RSA - small example

- Bob (keys generation):
 - chooses 2 primes: p=5, q=11
 - multiplies p and q: $n = p \times q = 55$
 - chooses a number e=3 s.t. gcd(e, 40) = 1; (40 = 55-5-11+1)
 - compute d=27 that satisfy (3 × d) mod 40 = 1
 - Bob's public key: (3, 55)
 - Bob's private key: 27

RSA - small example

- Alice (encryption):
 - has a message m=13 to be sent to Bob
 - finds out Bob's public encryption key (3, 55)
 - calculates c as follows:
 - c = m^e mod n = 13³ mod 55 = 2197 mod 55 = 52
 - sends the ciphertext c=52 to Bob

RSA - small example

- Bob (decryption):
 - receives the ciphertext c=52 from Alice
 - uses his matching private decryption key 27 to calculate m:
 m = 52²⁷ mod 55
 = 13 (Alice's message)

The RSA assumption

RSA assumption: RSA is a one-way permutation

For all efficient algs. A: $Pr\left[A(N,e,y) = y^{1/e}\right] < negligible$ where $p,q \notin n$ -bit primes, $N \leftarrow pq$, $y \notin Z_N^*$

Review: RSA pub-key encryption (ISO std)

(E_s , D_s): symmetric enc. scheme providing auth. encryption. H: $Z_N \rightarrow K$ where K is key space of (E_s , D_s)

- **G**(): generate RSA params: pk = (N,e), sk = (N,d)
- E(pk, m): (1) choose random x in Z_N (2) $y \leftarrow RSA(x) = x^e$, $k \leftarrow H(x)$ (3) output (y, E_s(k,m))
- **D**(sk, (y, c)): output D_s(H(RSA⁻¹(y)), c) -> m

Plain/Textbook RSA is insecure

Textbook RSA encryption:

- public key: (N,e) Encrypt: $\mathbf{c} \leftarrow \mathbf{m}^{e}$ (in Z_{N})
- secret key: (N,d) Decrypt: $c^d \rightarrow m$

Insecure cryptosystem !!

- Is not semantically secure and many attacks exist
- \Rightarrow The RSA trapdoor permutation is not an encryption scheme !

A simple attack on textbook RSA

Suppose k is 64 bits: $k \in \{0,...,2^{64}\}$. Eve sees: $c = k^e$ in Z_N

If $\mathbf{k} = \mathbf{k_1} \cdot \mathbf{k_2}$ where $\mathbf{k_1}, \mathbf{k_2} < 2^{34}$ (prob. $\approx 20\%$) then $\mathbf{c/k_1^e} = \mathbf{k_2^e}$ in $\mathbf{Z_N}$

Meet-in-the-middle attack: Step 1: build table: $c/1^e$, $c/2^e$, $c/3^e$, ..., $c/2^{34e}$. time: 2^{34} Step 2: for $k_2 = 0,..., 2^{34}$ test if k_2^e is in table. time: 2^{34} Output matching (k_1, k_2) . Total attack time: $\approx 2^{40} << 2^{64}$

Is RSA a one-way function?

Is it really hard to invert RSA without knowing the trapdoor?

Is RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute: x from c = x^e (mod N).

How hard is computing e'th roots modulo N ($c^{1/e} / e^{Vc}$ modulo N)??

Best known algorithm:

- Step 1: factor N (hard)
- Step 2: compute e'th roots modulo p and q (easy)

Shortcuts?

Must one factor N in order to compute e'th roots?

To prove no shortcut exists show a reduction:

Efficient algorithm for e'th roots mod N

 \Rightarrow efficient algorithm for factoring N.

Oldest problem in public key cryptography.

Some evidence no reduction exists: (BV'98)

- "Algebraic" reduction \Rightarrow factoring is easy.

How **not** to improve RSA's performance

To speed up RSA decryption use small private key **d** ($d \approx 2^{128}$)

 $c^d = m \pmod{N}$

Wiener'87:if $d < N^{0.25}$ then RSA is insecure.BD'98:if $d < N^{0.292}$ then RSA is insecure(open: $d < N^{0.5}$)

<u>Insecure:</u> priv. key d can be found from (N,e)

Wiener's attack (at home)

$$(N,e) \Rightarrow d \text{ and } d < N^{0.25}/3$$
Recall: $e \cdot d = 1 \pmod{\varphi(N)} \Rightarrow \exists k \in \mathbb{Z}$: $e \cdot d = k \cdot \varphi(N) + 1$

$$\left| \frac{e}{\psi(N)} - \frac{k}{d} \right| = \frac{1}{d \cdot \varphi(N)} \le \frac{1}{\sqrt{N}}$$

$$\varphi(N) = N \cdot p \cdot q + 1 \Rightarrow |N - \varphi(N)| \le p + q \le 3\sqrt{N}$$

$$d \le N^{0.25}/3 \Rightarrow \frac{1}{2d^2} - \frac{1}{\sqrt{N}} \ge \frac{3}{\sqrt{N}} \qquad \left| \frac{e}{N} - \frac{k}{d} \right| \le \left| \frac{e}{N} - \frac{e}{\varphi(N)} \right| + \left| \frac{e}{\varphi(N)} - \frac{k}{d} \right| \le \frac{1}{2d^2}$$

Continued fraction expansion of e/N gives k/d.

 $e \cdot d = 1 \pmod{k} \implies gcd(d,k)=1 \implies can find d from k/d$

RSA in Practice

RSA With Low public exponent

To speed up RSA encryption use a small e: c = m^e (mod N)

- Minimum value: **e=3** (gcd(e, $\varphi(N)$) = 1) (Q: why not 2?)
- Recommended value: **e=65537=2¹⁶+1**

Encryption: 17 multiplications

<u>Asymmetry of RSA:</u> fast enc. / slow dec.

- ElGamal: approx. same time for both.

Key lengths

Security of public key system should be comparable to security of symmetric cipher:

	RSA
<u>Cipher key-size</u>	<u>Modulus size</u>
80 bits	1024 bits
128 bits	3072 bits
256 bits (AES)	15360 bits

Implementation attacks

Timing attack: [Kocher et al. 1997] , [BB'04]

The time it takes to compute c^d (mod N) can expose d

Power attack: [Kocher et al. 1999) The power consumption of a smartcard while it is computing c^d (mod N) can expose d.

Faults attack: [BDL'97]

A computer error during c^d (mod N) can expose d.

A common defense: check output. 10% slowdown.

An Example Fault Attack on RSA (CRT)

A common implementation of RSA decryption: $x = c^d$ in Z_N

decrypt mod p:
$$x_p = c^d$$
 in Z_p
decrypt mod q: $x_q = c^d$ in Z_q
combine to get $x = c^d$ in Z_N

Suppose error occurs when computing x_q , but no error in x_p . Then: output is x' where $x' = c^d$ in Z_p but $x' \neq c^d$ in Z_q

$$\Rightarrow (x')^e = c \text{ in } Z_p \quad \text{but } (x')^e \neq c \text{ in } Z_q \quad \Rightarrow \quad \text{gcd}((x')^e - c, N) = \square$$

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

OpenSSL RSA key generation (abstract):

```
prng.seed(seed)
p = prng.generate_random_prime()
prng.add_randomness(bits)
q = prng.generate_random_prime()
N = p*q
```

Suppose poor entropy at startup:

- Same p will be generated by multiple devices, but different q
- N_1 , N_2 : RSA keys from different devices \Rightarrow gcd(N_1 , N_2) = p

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

Experiment: factors 0.4% of public HTTPS keys !!

Lesson:

Make sure random number generator is properly seeded when generating keys

Digital Signatures

Digital Signature

Digital Signature (based on RSA)

RSA Signature - small example

- Bob (keys generation):
 - chooses 2 primes: p=5, q=11
 - multiplies p and q: $n = p \times q = 55$
 - chooses a number e=3 s.t. gcd(e, 40) = 1
 - compute d=27 that satisfy (3 × d) mod 40 = 1
 - Bob's public key: (3, 55)
 - Bob's private key: 27

RSA Signature - small example

- Bob:
 - has a document m=19 to sign:
 - uses his private key d=27 to calculate the digital signature of m=19:

– appends 24 to 19.

Now (m, s) = (19, 24) indicates that the doc is 19, and Bob's signature on the doc is 24.

RSA Signature - small example

- Cathy, a verifier:
 - receives a pair (m,s)=(19, 24)
 - looks up the phone book and finds out Bob's public key (e, n)=(3, 55)
 - calculates t = s^e n

- = 19
- checks whether t=m
- confirms that (19,24) is a genuinely signed document of Bob if t=m.

How about Long Documents ?

- In the previous example, a document has to be an integer in [0,...,n)
- To sign a very long document, we need a so called one-way hash algorithm
- Instead of signing directly on a doc,
 - we hash the doc first,
 - and sign the hashed data which is normally short.

Hash Functions

Hash functions:

- Input: arbitrary length
- **Output:** fixed length (generally much shortern than the input)

Rather than signing the original document, we sign its hash value

Digital Signature (for long docs)

Why Digital Signature ?

- Unforgeable
 - takes 1 billion years to forge !
- Un-deniable by the signatory
- Universally verifiable
- Differs from doc to doc

Digital Signature - summary

- Three (3) steps are involved in digital signature
 - Setting up public and private keys
 - Signing a document
 - Verifying a signature

Setting up Public & Private Keys

- Bob does the following
 - prepares a pair of public and private keys
 - Publishes his public key in the public key file (such as an on-line phone book)
 - Keeps the private key to himself
- Note:
 - Setting up needs only to be done once !

Signing a Document

- Once setting up is completed, Bob can sign a document (such as a contract, a cheque, a certificate, ...) using the private key
- The pair of document & signature is a proof that Bob has signed the document.
Verifying a Signature

- Any party, say Cathy, can verify the pair of document and signature, by using Bob's public key in the public key file.
- Important !
 - Cathy does NOT have to have public or private key !

(Other) Asymmetric Cryptosystems

Encryption schemes built from the Diffie-Hellman protocol

- Key Generation (for Bob)
 - chooses a prime p and a number g primitive root modulo p
 - i.e., for every integer a coprime to p, there is an integer k such that g^k = a mod p
 - Two integers are coprime if their gcd is 1
 - chooses a random exponent a in [0, p-2]
 - computes A = g^a mod p
 - public key (published in the phone book): (p,g,A)
 - private key: a

- Encryption: Alice has a message m (0<=m<n) to be sent to Bob:
 - finds out Bob's public key (p,g,A).
 - chooses a random exponent b in [0,p-2]
 - computes B = g^b mod p
 - computes $c = A^b m \mod p$.
 - The complete ciphertex is (B,c)
 - sends the ciphertext (B,c) to Bob.

• Decryption: Bob

- receives the ciphertext (B,c) from Alice.
- uses his matching private decryption key a to calculate m as follows.
 - Compute **x** = **p-1-a**
 - Compute m = B^x c mod p

- Randomized cryptosystem
- Based on the Diffie–Hellman key exchange
- Efficiency
 - The ciphertext is twice as long as the plaintext. This is called message expansion and is a disadvantage of this cryptosystem.
- Security
 - Its security depends upon the difficulty of a certain problem related to computing discrete logarithms.

Key Generation (for Bob)

generates 2 large random and distinct primes p, q s.t.

 $p \pmod{4} = q \pmod{4} = 3$

(other options are possible, this makes decryption more efficient)

- multiplies p and q: n = p × q
- public key (published in the phone book): n
- private key: (p, q)

- Encryption: Alice has a message m (0<=m<n) to be sent to Bob:
 - finds out Bob's public key n.
 - calculates the ciphertext $c = m^2 \mod n$.
 - sends the ciphertext c to Bob.

• Decryption: Bob

- receives the ciphertext c from Alice.
- uses his matching private decryption key (p,q) to calculate m as follows.
 - Compute $m_p = c^{(p+1)/4} \mod p$
 - Compute m_q = c^{(q+1)/4} mod q
 - Find y_p and y_q such that $y_p p + y_q q = 1$ (Euclidean algorithm)
 - Compute $r = (y_p p m_q + y_q q m_p) \mod n$
 - Compute $s = (y_p p m_q y_q q m_p) \mod n$
 - One of **r**, -**r**, **s**, -**s** must be the original message **m**

• Efficiency

Encryption more efficient than RSA encryption

- Security
 - The Rabin cryptosystem has the advantage that the problem on which it relies has been proved to be as hard as integer factorization
 - Recovering the plaintext *m* from the ciphertext *c* and the public key *n* is computationally equivalent to factoring
 - Not currently known to be true for the RSA problem.