
Asymmetric Cryptography
Public key encryption:

definitions and security

Symmetric Cipher

E Network
or Storage

Plain
Text

Cipher
Text

Cipher
Text

D

Bob

Secret Key

Alice

Secret Key

Plain
Text

Problems with Symmetric Ciphers
• In order for Alice & Bob to be able to communicate securely

using a symmetric cipher, such as AES, they must have a
shared key in the first place.
– What if they have never met before?

• Alice needs to keep 100 different keys if she wishes to
communicate with 100 different people

Motivation of Asymmetric
Cryptography

• Is it possible for Alice & Bob, who have no shared secret
key, to communicate securely?

• This led to Asymmetric Cryptography

Alice

Alice’s
Private Key

Bob

Alice’s
Public Key

Bob’s
Private Key

Bob’s
Public Key

Asymmetric Cryptography

Alice

Alice’s
Private Key

Bob

Alice’s
Public Key

LauraAlice’s
Public Key
Alice’s
Public Key

Asymmetric Cryptography

Alice’s
Public Key

Hello, my
name is
Alice

@%y/h
#p!8£ u#T

Plaintext Ciphertext

Encryption

Alice’s
Private Key

Decryption
Hello, my
name is
Alice

Plaintext

Public and private keys

Alice’s
Public Key

Hello, my
name is
Alice

H$j8 g@f
A#7l&r

Plaintext Ciphertext

Encryption

Alice’s
Private Key

Decryption
Hello, my
name is
Alice

Plaintext

Public and private keys

Alice

Alice’s
Private Key

Alice’s
Public Key

Very hard!

Public and private keys

Asymmetric Cryptography

– Public key
– Private key

– E(private-keyAlice, m) = c
– D(public-keyAlice, c) = m

– E(public-keyAlice, m) = c
– D(private-keyAlice, c) = m

Main ideas
• Bob:

– publishes, say in Yellow/White pages, his public key, and

– keeps to himself the matching private key.

Main ideas (Confidentiality)
• Alice:

– Looks up the phone book, and finds out Bob’s public key

– Encrypts a message using Bob’s public key and the encryption
algorithm.

– Sends the ciphertext to Bob.

Main ideas (Confidentiality)
• Bob:

– Receives the ciphertext from Alice.

– Decrypts the ciphertext using his private key, together with
the decryption algorithm

Asymmetric Encryption

15

E Network

Plaintext Ciphertext Ciphertext

D

Plaintext

Alice Bob

Bob’s PUBLIC KEY

Public Repository

Bob’s PRIVATE
KEY

Bob’s PUBLIC KEY

• Confidentiality scenario
• Other scenarios are possible,

with keys used differently…
• e.g., Digital signatures

Warning!
Bob’s public key

needs to be
authentic

Main differences with Symmetric
Crypto

• The public key is different from the private key.
• Infeasible for an attacker to find out the private key from

the public key.
• No need for Alice and Bob to distribute a shared secret key

beforehand!
• Only one pair of public and private keys is required for each

user!

Let’s start seriously
- Define what is public key encryption

- What it means for public key encryption to be secure

Public key encryption

E D

Alice Bob

pk sk

m c c m

Bob: generates (pk, sk) and gives pk to Alice

Applications
Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)
• Bob sends email to Alice encrypted using pkalice

• Note: Bob needs pkalice (public key management)

Generate (pk, sk)

Alice

choose random x
(e.g. 48 bytes)

Bobpk

E(pk, x)
x

Public key encryption
Def: a public-key encryption system is a triple of algs. (G, E, D)

• G(): randomized alg. outputs a key pair (pk, sk)

• E(pk, m): randomized alg. that takes m M and outputs c C

• D(sk,c): det. alg. that takes c C and outputs m M or

Consistency: (pk, sk) output by G :

m M: D(sk, E(pk, m)) = m

Security: eavesdropping
For b=0,1 define experiments EXP(0) and EXP(1) as:

Def: E =(G,E,D) is sem. secure (a.k.a IND-CPA) if for all efficient A:

AdvSS [A,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] | < negligible

Chal.b Adv. A

(pk,sk)←G()
m0 , m1 M : |m0| = |m1|

c ← E(pk, mb) b’ {0,1}
EXP(b)

pk

Relation to symmetric cipher security
Recall: for symmetric ciphers we had two security notions:
• One-time security and many-time security (CPA)
• We showed that one-time security many-time security

For public key encryption:
• One-time security many-time security (CPA)

(follows from the fact that attacker can encrypt by himself)

• Public key encryption must be randomized

Security against active attacks

attacker

skserver

pkserver

to: caroline@gmail body

Attacker is given decryption of msgs
that start with “to: attacker”

What if attacker can tamper with ciphertext?

to: attacker@gmail body

attacker:

mail server
(e.g. Gmail)

Caroline

(pub-key) Chosen Ciphertext Security: definition
E = (G,E,D) public-key enc. over (M,C)
For b=0,1 define EXP(b):

b

Adv. AChal.

(pk,sk)←G()

b’ {0,1}

challenge: m0 , m1 M : |m0| = |m1|

c ← E(pk, mb)

pk

CCA phase 1: ci C

mi ← D(k, ci)

CCA phase 2: ci C : ci ≠ c

mi ← D(k, ci)

Chosen ciphertext security: definition
Def: E is CCA secure (a.k.a IND-CCA) if for all efficient A:

AdvCCA [A,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] | is negligible.

Example: Suppose (to: alice, body) (to: david, body)

Adv. Ab Chal.

(pk,sk)←G()

b

chal.: (to:alice, 0) , (to:alice, 1)

c ← E(pk, mb)

pk

CCA phase 2: c’ = ≠c

m’ ← D(sk, c’)

(to: david, b)

(to: david, b)

c

Active attacks: symmetric vs. pub-key
Recall: secure symmetric cipher provides authenticated encryption

[chosen plaintext security & ciphertext integrity]

• Roughly speaking: attacker cannot create new ciphertexts
• Implies security against chosen ciphertext attacks

In public-key settings:
• Attacker can create new ciphertexts using pk !!
• So instead: we directly require chosen ciphertext security

Trapdoor Permutations

Trapdoor functions (TDF)
Def: a trapdoor func. X Y is a triple of efficient algs. (G, F, F-1)

• G(): randomized alg. outputs a key pair (pk, sk)

• F(pk,): det. alg. that defines a function X Y

• F-1(sk,): defines a function Y X that inverts F(pk,)

More precisely: (pk, sk) output by G

x X: F-1(sk, F(pk, x)) = x

Secure Trapdoor Functions (TDFs)
(G, F, F-1) is secure if F(pk,) is a “one-way” function:

can be evaluated, but cannot be inverted without sk

Def: (G, F, F-1) is a secure TDF if for all efficient A:

AdvOW [A,F] = Pr[x = x’] < negligible

Adv. AChal.

(pk,sk)←G()

x X x’pk, y ← F(pk, x)R

Hash Functions
• Hash functions:

– Input: arbitrary length
– Output: fixed length (generally much shorter than the

input)

Hash Function

Document with arbitrary length

Hash value for the document
(fixed length, e.g. 256 bits)

One-Way Hash Algorithm
• A one-way hash algorithm hashes an input document into a

condensed short output (say of 256 bits)
– Denoting a one-way hash algorithm by H(.), we have:

• Input: m - a binary string of any length
• Output: H(m) - a binary string of L bits, called the “hash of m

under H”.
• The output length parameter L is fixed for a given one-way

hash function H,
• Examples:

– The one-way hash function “MD5” has L = 128 bits
– The one-way hash function “SHA-1” has L = 160 bits

Properties of One-Way Hash Algorithm
A good one-way hash algorithm H needs to have the following properties:
1. Easy to Evaluate:

The hashing algorithm should be fast
2. Hard to Reverse:

There is no feasible algorithm to “reverse” a hash value,
That is, given any hash value h, it is computationally infeasible to find any
document m such that H(m) = h.

3. Hard to find Collisions:
There is no feasible algorithm to find two or more input documents which
are hashed into the same condensed output,
That is, it is computationally infeasible to find any two documents m1, m2
such that H(m1)= H(m2).

4. A small change to a message should change the hash value so extensively
that the new hash value appears uncorrelated with the old hash value

Public-key encryption from TDFs
• (G, F, F-1): secure TDF X Y

• (Es, Ds) : symmetric auth. encryption defined over (K,M,C)

• H: X K a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

E(pk, m) :
x X, y F(pk, x)
k H(x), c Es(k, m)
output (y, c)

D(sk, (y,c)) :
x F-1(sk, y),
k H(x), m Ds(k, c)
output m

• (G, F, F-1): secure TDF X Y

• (Es, Ds) : symmetric auth. encryption defined over (K,M,C)

• H: X K a hash function

R

In pictures:

Security Theorem:

If (G, F, F-1) is a secure TDF, (Es, Ds) provides auth. enc.

and H: X K is a “random oracle”

then (G,E,D) is CCAro secure.

F(pk, x) Es(H(x), m)

header body

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

Problems:
• Deterministic: cannot be semantically secure !!
• Many attacks exist (next segment)

E(pk, m) :
output c F(pk, m)

D(sk, c) :
output F-1(sk, c)

The RSA trapdoor permutation
● One of the first practical responses to the challenge posed by Diffie-

Hellman was developed by Ron Rivest, Adi Shamir, and Len Adleman of
MIT in 1977

● Resulting algorithm is known as RSA
● Based on properties of prime numbers and results from number theory

Review: trapdoor permutations
Three algorithms: (G, F, F-1)

• G: outputs pk, sk. pk defines a function F(pk,): X → X

• F(pk, x): evaluates the function at x

• F-1(sk, y): inverts the function at y using sk

Secure trapdoor permutation:

The function F(pk,) is one-way without the trapdoor sk

Review: arithmetic mod composites
Let N = p q where p,q are prime where p,q≈ N1/2

ZN = {0,1,2,…,N-1} ; (ZN)* = {invertible elements in ZN}

Facts: x ZN is invertible gcd(x,N) = 1

– Number of elements in (ZN)* is ϕ(N) = (p-1)(q-1) = N-p-q+1

Euler’s thm: x (ZN)* : xϕ(N) = 1

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:

– SSL/TLS: certificates and key-exchange

– Secure e-mail and file systems

… many others

The RSA trapdoor permutation
G(): choose random primes p,q ≈1024 bits. Set N=pq.

choose integers e , d s.t. e d = 1 (mod ϕ(N))
output pk = (N, e) , sk = (N, d)

F-1(sk, y) = yd ; yd = RSA(x)d = xed = xkϕ(N)+1 = (xϕ(N))k x = x

F(pk, x): ; RSA(x) = xe (in ZN)

RSA - small example
• Bob (keys generation):

– chooses 2 primes: p=5, q=11
– multiplies p and q: n = p×q = 55
– chooses a number e=3 s.t. gcd(e, 40) = 1; (40 = 55-5-11+1)
– compute d=27 that satisfy (3 × d) mod 40 = 1

– Bob’s public key: (3, 55)
– Bob’s private key: 27

RSA - small example
• Alice (encryption):

– has a message m=13 to be sent to Bob
– finds out Bob’s public encryption key (3, 55)
– calculates c as follows:

c = me mod n
= 133 mod 55
= 2197 mod 55
= 52

– sends the ciphertext c=52 to Bob

RSA - small example
• Bob (decryption):

– receives the ciphertext c=52 from Alice

– uses his matching private decryption key 27 to calculate m:
m = 5227 mod 55

= 13 (Alice’s message)

The RSA assumption
RSA assumption: RSA is a one-way permutation

For all efficient algs. A:

Pr[A(N,e,y) = y1/e] < negligible

where p,q ← n-bit primes, N←pq, y←ZN
*R R

Review: RSA pub-key encryption (ISO std)

(Es, Ds): symmetric enc. scheme providing auth. encryption.
H: ZN → K where K is key space of (Es,Ds)

• G(): generate RSA params: pk = (N,e), sk = (N,d)

• E(pk, m): (1) choose random x in ZN

(2) y ← RSA(x) = xe , k ← H(x)

(3) output (y , Es(k,m))

• D(sk, (y, c)): output Ds(H(RSA-1 (y)) , c) -> m

Plain/Textbook RSA is insecure
Textbook RSA encryption:

– public key: (N,e) Encrypt: c me (in ZN)

– secret key: (N,d) Decrypt: cd m

Insecure cryptosystem !!

– Is not semantically secure and many attacks exist

The RSA trapdoor permutation is not an encryption scheme !

A simple attack on textbook RSA

Suppose k is 64 bits: k {0,…,264}. Eve sees: c= ke in ZN

If k = k1 k2 where k1, k2 < 234 (prob. ≈20%) then c/k1
e = k2

e in ZN

Meet-in-the-middle attack:
Step 1: build table: c/1e, c/2e, c/3e, …, c/234e . time: 234

Step 2: for k2 = 0,…, 234 test if k2
e is in table. time: 234

Output matching (k1, k2). Total attack time: ≈240 << 264

Web
Browser

Web
Server

CLIENT HELLO

SERVER HELLO (e,N) d
c=RSA(k)= ke

random
session-key k

Is RSA a one-way function?

Is it really hard to invert RSA without knowing the trapdoor?

Is RSA a one-way permutation?
To invert the RSA one-way func. (without d) attacker must compute:

x from c = xe (mod N).

How hard is computing e’th roots modulo N (c1/e / e√c modulo N) ??

Best known algorithm:
– Step 1: factor N (hard)
– Step 2: compute e’th roots modulo p and q (easy)

Shortcuts?
Must one factor N in order to compute e’th roots?

To prove no shortcut exists show a reduction:

– Efficient algorithm for e’th roots mod N

efficient algorithm for factoring N.

– Oldest problem in public key cryptography.

Some evidence no reduction exists: (BV’98)

– “Algebraic” reduction factoring is easy.

How not to improve RSA’s performance

To speed up RSA decryption use small private key d (d ≈ 2128)

cd = m (mod N)

Wiener’87: if d < N0.25 then RSA is insecure.

BD’98: if d < N0.292 then RSA is insecure (open: d < N0.5)

Insecure: priv. key d can be found from (N,e)

Wiener’s attack (at home)

RSA in Practice

RSA With Low public exponent
To speed up RSA encryption use a small e: c = me (mod N)

• Minimum value: e=3 (gcd(e, ϕ(N)) = 1) (Q: why not 2?)

• Recommended value: e=65537=216+1

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.
– ElGamal: approx. same time for both.

Key lengths

Security of public key system should be comparable to security of
symmetric cipher:

RSA
Cipher key-size Modulus size

80 bits 1024 bits

128 bits 3072 bits

256 bits (AES) 15360 bits

Implementation attacks
Timing attack: [Kocher et al. 1997] , [BB’04]

The time it takes to compute cd (mod N) can expose d

Power attack: [Kocher et al. 1999)
The power consumption of a smartcard while
it is computing cd (mod N) can expose d.

Faults attack: [BDL’97]
A computer error during cd (mod N) can expose d.

A common defense:: check output. 10% slowdown.

An Example Fault Attack on RSA (CRT)

A common implementation of RSA decryption: x = cd in ZN

decrypt mod p: xp = cd in Zp

decrypt mod q: xq = cd in Zq

Suppose error occurs when computing xq , but no error in xp .Then:
output is x’ where x’ = cd in Zp but x’ ≠ cd in Zq

(x’)e = c in Zp but (x’)e ≠ c in Zq gcd((x’)e - c , N) = p

combine to get x = cd in ZN

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

OpenSSL RSA key generation (abstract):

Suppose poor entropy at startup:
• Same p will be generated by multiple devices, but different q
• N1 , N2 : RSA keys from different devices gcd(N1,N2) = p

prng.seed(seed)

p = prng.generate_random_prime()

prng.add_randomness(bits)

q = prng.generate_random_prime()

N = p*q

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

Experiment: factors 0.4% of public HTTPS keys !!

Lesson:

– Make sure random number generator is properly
seeded when generating keys

Digital Signatures

Digital Signature
Public Key Directory (Yellow/White Pages)

Bob’s public key:

E

Network

Plain Text

Plain Text

Bob

Bob’s Private Key

+

Cathy

Signature

Accept if equal

D

Signature

?

Bob’s Public Key

Warning!
Bob’s public key

needs to be
authentic

Digital Signature (based on RSA)
Public Key Directory (Yellow/White Pages)

Bob: (e, n)
(public key)

Network

Plain Text m
Plain Text m

Bob

Bob’s Private Key d

+

Cathy

Signature s

Accept if equal

Signature s

?

Bob’s Public Key (e, n)

s = md mod n t =se mod n
s = RSA-1 (m) t = RSA(s)

RSA Signature - small example
• Bob (keys generation):

– chooses 2 primes: p=5, q=11
– multiplies p and q: n = p×q = 55
– chooses a number e=3 s.t. gcd(e, 40) = 1
– compute d=27 that satisfy (3 × d) mod 40 = 1

– Bob’s public key: (3, 55)
– Bob’s private key: 27

RSA Signature - small example
• Bob:

– has a document m=19 to sign:
– uses his private key d=27 to calculate the digital signature

of m=19:
s = md mod n

= 1927 mod 55
= 24

– appends 24 to 19.
Now (m, s) = (19, 24) indicates that the doc is 19, and
Bob’s signature on the doc is 24.

RSA Signature - small example
• Cathy, a verifier:

– receives a pair (m,s)=(19, 24)
– looks up the phone book and finds out Bob’s public key (e,

n)=(3, 55)
– calculates t = se mod n

= 243 mod 55
= 19

– checks whether t=m
– confirms that (19,24) is a genuinely signed document of

Bob if t=m.

How about Long Documents ?
• In the previous example, a document has to be an integer in

[0,...,n)
• To sign a very long document, we need a so called one-way

hash algorithm
• Instead of signing directly on a doc,

– we hash the doc first,
– and sign the hashed data which is normally short.

Hash Functions
• Hash functions:

– Input: arbitrary length
– Output: fixed length (generally much shortern than the

input)

Hash Function

Document with arbitrary length

Hash value for the document
(fixed length, e.g. 256 bit)

Rather than signing the
original document, we
sign its hash value

Digital Signature (for long docs)
Public Key Directory (Yellow/White Pages)

Bob’s
Public key:

E

Network

Plain Text

D

Plain Text

H

256 bits

Bob

Bob’s Private Key

+

H 256 bits

Cathy

Signature

Accept if equal1-way hash

256 bits

Signature

?

Bob’s Public Key

Why Digital Signature ?
• Unforgeable

– takes 1 billion years to forge !
• Un-deniable by the signatory
• Universally verifiable
• Differs from doc to doc

Digital Signature - summary
• Three (3) steps are involved in digital signature

– Setting up public and private keys
– Signing a document
– Verifying a signature

Setting up Public & Private Keys
• Bob does the following

– prepares a pair of public and private keys
– Publishes his public key in the public key file (such as an

on-line phone book)
– Keeps the private key to himself

• Note:
– Setting up needs only to be done once !

Signing a Document
• Once setting up is completed, Bob can sign a document (such

as a contract, a cheque, a certificate, ...) using the private key
• The pair of document & signature is a proof that Bob has

signed the document.

Verifying a Signature
• Any party, say Cathy, can verify the pair of document and

signature, by using Bob’s public key in the public key file.
• Important !

– Cathy does NOT have to have public or private key !

(Other) Asymmetric Cryptosystems

ElGamal Cryptosystem
Encryption schemes built from the Diffie-Hellman protocol
• Key Generation (for Bob)

– chooses a prime p and a number g primitive root modulo p
• i.e., for every integer a coprime to p, there is an integer k such

that gk = a mod p
– Two integers are coprime if their gcd is 1

– chooses a random exponent a in [0, p-2]
– computes A = ga mod p
– public key (published in the phone book): (p,g,A)
– private key: a

ElGamal Cryptosystem
• Encryption: Alice has a message m (0<=m<n) to be sent to

Bob:

– finds out Bob’s public key (p,g,A).
– chooses a random exponent b in [0,p-2]
– computes B = gb mod p
– computes c = Abm mod p.
– The complete ciphertex is (B,c)
– sends the ciphertext (B,c) to Bob.

ElGamal Cryptosystem
• Decryption: Bob

– receives the ciphertext (B,c) from Alice.
– uses his matching private decryption key a to calculate m as

follows.
• Compute x = p-1-a
• Compute m = Bx c mod p

ElGamal Cryptosystem
• Randomized cryptosystem
• Based on the Diffie–Hellman key exchange
• Efficiency

– The ciphertext is twice as long as the plaintext. This is called
message expansion and is a disadvantage of this cryptosystem.

• Security
– Its security depends upon the difficulty of a certain problem

related to computing discrete logarithms.

Rabin Cryptosystem
Key Generation (for Bob)

– generates 2 large random and distinct primes p, q s.t.

p (mod 4) = q (mod 4) = 3

– multiplies p and q: n = p × q
– public key (published in the phone book): n
– private key: (p, q)

(other options are possible, this makes decryption more efficient)

Rabin Cryptosystem
• Encryption: Alice has a message m (0<=m<n) to be sent to

Bob:

– finds out Bob’s public key n.

– calculates the ciphertext c= m2 mod n.

– sends the ciphertext c to Bob.

Rabin Cryptosystem
• Decryption: Bob

– receives the ciphertext c from Alice.
– uses his matching private decryption key (p,q) to calculate m as

follows.
• Compute mp = c(p+1)/4 mod p
• Compute mq = c(q+1)/4 mod q
• Find yp and yq such that yp p + yq q = 1 (Euclidean algorithm)
• Compute r = (yp p mq + yq q mp) mod n
• Compute s = (yp p mq - yq q mp) mod n
• One of r, -r, s, -s must be the original message m

Rabin Cryptosystem
• Efficiency

– Encryption more efficient than RSA encryption

• Security
– The Rabin cryptosystem has the advantage that the problem on

which it relies has been proved to be as hard as integer
factorization

• Recovering the plaintext m from the ciphertext c and the public
key n is computationally equivalent to factoring

• Not currently known to be true for the RSA problem.

