Introduction Number Theory

Background

We will use a bit of number theory to construct:

- Key exchange protocols
- Digital signatures
- Public-key encryption

Notation

From here on:

- N denotes a positive integer.
- p denote a prime.

Notation: $\mathbb{Z}_{N}=\{0,1, \ldots, N-1\}$

Can do addition and multiplication modulo N

Modular arithmetic

Examples: let $N=12$

$$
\begin{array}{ll}
9+8=5 & \text { in } \mathbb{Z}_{12} \\
5 \times 7=\square & \text { in } \mathbb{Z}_{12} \\
5-7=\square & \text { in } \mathbb{Z}_{12}
\end{array}
$$

Arithmetic in \mathbb{Z}_{N} works as you expect, e.g $\quad x \cdot(y+z)=x \cdot y+x \cdot z$ in \mathbb{Z}_{N}

Modular arithmetic

Examples: let $N=12$

$$
\begin{array}{ll}
9+8=5 & \text { in } \mathbb{Z}_{12} \\
5 \times 7=11 & \text { in } \mathbb{Z}_{12} \\
5-7=10 & \text { in } \mathbb{Z}_{12}
\end{array}
$$

Arithmetic in \mathbb{Z}_{N} works as you expect, e.g $\quad x \cdot(y+z)=x \cdot y+x \cdot z$ in \mathbb{Z}_{N}

Greatest common divisor

Def: For ints. $x, y: \operatorname{gcd}(x, y)$ is the greatest common divisor of x, y
Example: $\quad \operatorname{gcd}(12,18)=6$

Fact: for all ints. x, y there exist ints. a, b such that

$$
a \cdot x+b \cdot y=\operatorname{gcd}(x, y)
$$

a, b can be found efficiently using the extended Euclid alg.

If $\operatorname{gcd}(x, y)=1$ we say that x and y are relatively prime
Example: $2 \times 12-1 \times 18=6$

Modular inversion

Over the rationals, inverse w.r.t. the moltiplication of 2 is $1 / 2$. What about \mathbb{Z}_{N} ?

Def: The inverse of x in \mathbb{Z}_{N} is an element y in \mathbb{Z}_{N} s.t. $x \cdot y=1$ y is denoted x^{-1}.

Example: let N be an odd integer.
The inverse of 2 in \mathbb{Z}_{N} is $\frac{N+1}{2}$ since $2 \cdot \frac{N+1}{2}=N+1=1$

Modular inversion

Which elements have an inverse in \mathbb{Z}_{N} ?

Lemma: $\quad x$ in \mathbb{Z}_{N} has an inverse if and only if $\operatorname{gcd}(x, N)=1$
Proof:

$$
\begin{aligned}
\operatorname{gcd}(x, N)=1 & \Rightarrow \exists a, b: a \cdot x+b \cdot N=1 \Rightarrow a \cdot x=1 \text { in } \mathbb{Z}_{N} \\
& \Rightarrow x^{-1}=a \text { in } \mathbb{Z}_{N} \\
\operatorname{gcd}(x, N)>1 & \Rightarrow \forall a: \operatorname{gcd}(a \cdot x, N)>1 \Rightarrow a \cdot x \neq 1 \text { in } \mathbb{Z}_{N}
\end{aligned}
$$

More notation

Def: $\quad \mathbb{Z}_{N}^{*}=\left(\right.$ set of invertible elements in $\left.\mathbb{Z}_{N}\right)=$

$$
=\left\{x \in \mathbb{Z}_{N}: \operatorname{gcd}(x, N)=1\right\}
$$

Examples:

1. for prime $\mathrm{p}, \mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}=\{1,2, \ldots, p-1\}$
2. $\mathbb{Z}_{12}^{*}=\square$

For x in \mathbb{Z}_{N}^{*}, can find x^{-1} using extended Euclid algorithm.

More notation

Def: $\quad \mathbb{Z}_{N}^{*}=\left(\right.$ set of invertible elements in $\left.\mathbb{Z}_{N}\right)=$

$$
=\left\{x \in \mathbb{Z}_{N}: \operatorname{gcd}(x, N)=1\right\}
$$

Examples:

1. for prime $\mathrm{p}, \mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}=\{1,2, \ldots, p-1\}$
2. $\mathbb{Z}_{12}^{*}=\{1,5,7,11\}$

For x in \mathbb{Z}_{N}^{*}, can find x^{-1} using extended Euclid algorithm.

Solving modular linear equations

Solve:

$$
a \cdot x+b=0 \quad \text { in } \quad \mathbb{Z}_{N}
$$

Solution: $\quad \mathbf{x}=-\mathrm{b} \cdot \mathrm{a}^{-1}$ in \mathbb{Z}_{N}

Find a^{-1} in \mathbb{Z}_{N} using extended Euclid. Run time: $\mathrm{O}\left(\log ^{2} \mathrm{~N}\right)$

What about modular quadratic equations? next segments

Fermat's theorem

Thm: Let p be a prime

$$
\forall x \in\left(Z_{p}\right)^{*}: \quad x^{p-1}=1 \text { in } Z_{p}
$$

Example: $p=5 . \quad 3^{4}=81=1$ in Z_{5}

Example of application:
So: $x \in\left(Z_{p}\right)^{*} \Rightarrow x \cdot x^{p-2}=1 \Rightarrow x^{-1}=x^{p-2}$ in Z_{p}
another way to compute inverses, but less efficient than Euclid

Application: generating random primes

Suppose we want to generate a large random prime
say, prime p of length 1024 bits (i.e. $p \approx 2^{1024}$)

Step 1: choose a random integer $p \in\left[2^{1024}, 2^{1025}-1\right]$
Step 2: test if $2^{p-1}=1$ in Z_{p}
If so, output p and stop. If not, goto step 1 .

Simple algorithm (not the best). $\operatorname{Pr}[p$ not prime $]<\mathbf{2}^{-60}$

The structure of $\left(Z_{p}\right)^{*}$

Thm (Euler): $\quad\left(Z_{p}\right)^{*}$ is a cyclic group, that is

$$
\exists g \in\left(Z_{p}\right)^{*} \text { such that }\left\{1, g, g^{2}, g^{3}, \ldots, g^{p-2}\right\}=\left(Z_{p}\right)^{*}
$$

g is called a generator of $\left(Z_{p}\right)^{*}$

Example: $\quad p=7 . \quad\left\{1,3,3^{2}, 3^{3}, 3^{4}, 3^{5}\right\}=\{1,3,2,6,4,5\}=\left(Z_{7}\right)^{*}$

Not every elem. is a generator: $\quad\left\{1,2,2^{2}, 2^{3}, 2^{4}, 2^{5}\right\}=\{1,2,4\}$

Order

For $g \in\left(Z_{p}\right)^{*}$ the set $\left\{1, g, g^{2}, g^{3}, \ldots\right\}$ is called the group generated by g, denoted <g>

Def: the order of $g \in\left(Z_{p}\right)^{*}$ is the size of $<g>$

$$
\operatorname{ord}_{p}(g)=|<g>|=\left(\text { smallest } a>0 \text { s.t. } g^{a}=1 \text { in } Z_{p}\right)
$$

Examples: $\quad \operatorname{ord}_{7}(3)=6 ; \operatorname{ord}_{7}(2)=3 ; \operatorname{ord}_{7}(1)=1$

Thm (Lagrange): $\forall g \in\left(Z_{p}\right)^{*}: \quad \operatorname{ord}_{\mathrm{p}}(\mathrm{g})$ divides $\mathrm{p}-1$

Euler's generalization of Fermat

Def: For an integer N define $\varphi(N)=\left|\left(Z_{N}\right)^{*}\right| \quad$ (Euler's φ func.)

Examples:

$$
\begin{aligned}
& \varphi(12)=|\{1,5,7,11\}|=4 \quad ; \quad \varphi(p)=p-1 \\
& \text { For } N=p \cdot q: \quad \varphi(N)=N-p-q+1=(p-1)(q-1)
\end{aligned}
$$

Thm (Euler): $\forall x \in\left(Z_{N}\right)^{*}: \quad x^{\varphi(N)}=1$ in Z_{N}
Example: $5^{\varphi(12)}=5^{4}=625=1$ in Z_{12}
Generalization of Fermat. Basis of the RSA cryptosystem

Modular e'th roots

We know how to solve modular linear equations:

$$
a \cdot x+b=0 \text { in } Z_{N} \quad \text { Solution: } \quad x=-b \cdot a^{-1} \text { in } Z_{N}
$$

What about higher degree polynomials?

Example: let p be a prime and $c \in Z_{p}$. Can we solve:

$$
x^{2}-c=0, \quad y^{3}-c=0 \quad, \quad z^{37}-c=0 \quad \text { in } Z_{p}
$$

Modular eth roots

Let p be a prime and $c \in Z_{p}$.
Def: $\quad x \in Z_{p}$ s.t. $x^{e}=c$ in Z_{p} is called an eth root of c.
Examples: $\quad 7^{1 / 3}=6^{3}$ in $\mathbb{Z}_{11}=216=7$ in \mathbb{Z}_{11}

$$
3^{1 / 2}=5 \text { in } \mathbb{Z}_{11} \quad 2^{1 / 2} \text { does not exist in } \mathbb{Z}_{11}
$$

$$
1^{1 / 3}=1 \text { in } \mathbb{Z}_{11}
$$

The easy case

When does $\mathbf{c}^{1 / e}$ in \mathbf{Z}_{p} exist? Can we compute it efficiently?

The easy case: suppose $\operatorname{gcd}(e, p-1)=1$
Then for all c in $\left(Z_{p}\right)^{*}: \quad c^{1 / e}$ exists in Z_{p} and is easy to find.

The case $\mathrm{e}=2$: square roots

If p is an odd prime then $\operatorname{gcd}(2, p-1) \neq 1$

Fact: in $\mathbb{Z}_{p}^{*}, x \rightarrow \mathrm{x}^{2}$ is a 2-to-1 function

Def: x in \mathbb{Z}_{p} is a quadratic residue (Q.R.) if it has a square root in \mathbb{Z}_{p} p odd prime \Rightarrow the \# of Q.R. in \mathbb{Z}_{p} is $(p-1) / 2+1$

Euler's theorem

Thm: $\quad x$ in $\left(Z_{p}\right)^{*}$ is a Q.R. $\quad \Leftrightarrow \quad x^{(p-1) / 2}=1$ in $Z_{p} \quad$ (p odd prime)

Example:

$$
\begin{array}{r}
\text { in } \begin{array}{l}
\mathbb{Z}_{11}: \\
1^{5}, 2^{5}, 3^{5}, 4^{5}, 5^{5}, 6^{5}, 7^{5}, 8^{5}, 9^{5}, 10^{5} \\
\quad= \\
1
\end{array}-1 \quad 1 \quad 1 \quad 1,-1,-1,-1,1,-1
\end{array}
$$

Note: $x \neq 0 \Rightarrow x^{(p-1) / 2}=\left(x^{p-1}\right)^{1 / 2}=1^{1 / 2} \in\{1,-1\}$ in Z_{p}

Def: $x^{(p-1) / 2}$ is called the Legendre Symbol of x over p

Computing square roots mod p

Suppose $p=3(\bmod 4)$

Lemma: if $c \in\left(Z_{p}\right)^{*}$ is $Q . R$. then $V_{c}^{-}=c^{(p+1) / 4}$ in Z_{p}

Solving quadratic equations mod p

Solve:

$$
a \cdot x^{2}+b \cdot x+c=0 \quad \text { in } \quad Z_{p}
$$

Solution: $\quad x=\left(-b \pm \sqrt{b^{2}-4 \cdot a \cdot c}\right) / 2 a$ in Z_{p}

- Find $(2 a)^{-1}$ in Z_{p} using extended Euclid.
- Find square root of $b^{2}-4 \cdot a \cdot c$ in Z_{p} (if one exists)
using a square root algorithm

Computing e'th roots mod N ??

Let N be a composite number and $\mathrm{e}>1$

When does $c^{1 / e}$ in Z_{N} exist? Can we compute it efficiently?

Answering these questions requires the factorization of N (as far as we know)

Easy problems

- Given composite N and x in Z_{N} find x^{-1} in Z_{N}
- Given prime p and polynomial $f(x)$ in $Z_{p}[x]$ find x in Z_{p} s.t. $f(x)=0$ in $Z_{p} \quad$ (if one exists) Running time is linear in $\operatorname{deg}(f)$.
... but many problems are difficult

Intractable problems with primes

Fix a prime $p>2$ and g in $\left(Z_{p}\right)^{*}$ of order q.
Consider the function: $\quad \mathrm{x} \mapsto \mathrm{g}^{\mathrm{x}} \quad$ in Z_{p}
Now, consider the inverse function:

$$
\operatorname{Dlog}_{g}\left(\mathrm{~g}^{\mathrm{x}}\right)=\mathrm{x} \quad \text { where } \mathrm{x} \text { in }\{0, \ldots, q-2\}
$$

Example: in $\mathbb{Z}_{11}: 1,2,3,4,5,6,7,8,9,10$
$\operatorname{Dlog}_{2}(\cdot): \quad 0,1,8,2,4,9,7,3,6,5$

Intractable problems with composites

Consider the set of integers: (e.g. for $n=1024$)

$$
\mathbb{Z}_{(2)}(n):=\{N=p \cdot q \text { where } p, q \text { are } n \text {-bit primes }\}
$$

Problem 1: Factor a random N in $\mathbb{Z}_{(2)}(n) \quad$ (e.g. for $\mathrm{n}=1024$)

Problem 2: Given a polynomial $\mathbf{f}(\mathbf{x})$ where degree(f) >1 and a random N in $\mathbb{Z}_{(2)}(n)$
find x in $\mathbb{Z}_{N} \quad$ s.t. $\mathrm{f}(\mathrm{x})=0$ in \mathbb{Z}_{N}

The factoring problem

Gauss (1805):
"The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic."

Best known alg. (NFS): run time $\exp (\tilde{O}(\sqrt[3]{n}))$ for n-bit integer
Current world record: RSA-768 (232 digits)

- Work: two years on hundreds of machines
- Factoring a 1024-bit integer: about 1000 times harder
\Rightarrow likely possible this decade

