Key Exchange

Outline

- Trusted Third Parties
- Merkle Puzzles
- The Diffie-Hellman Protocol

Trusted Third Parties

Key Management

Problem: n users. Storing mutual secret keys is difficult

O(n²) keys in total

A Better Solution

Online Trusted Third Party (TTP)

Every user only remembers **ONE key**

Generating keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Generating keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: $E(k_A, "A, B" \parallel k_{AB})$; $E(k_B, "A, B" \parallel k_{AB})$

(E,D) is CPA-secure \Rightarrow eavesdropper learns nothing about k_{AB}

Note: **TTP needed for every key exchange, knows all session keys (k_{AB}).**

(basis of Kerberos system)

Key Question

Can we generate shared keys **without** an **online TTP**?

Answer: **yes!**

Starting point of **public-key cryptography**:

- Merkle (1974),
- Diffie-Hellman (1976),
- RSA (1977)
- ...

Merkle Puzzles

Key exchange without an online TTP?

- Goal: Alice and Bob want a shared key, unknown to eavesdropper
- Security against eavesdropping only (no tampering, no message injection)

• Can this be done using generic symmetric crypto?

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: "puzzles"

- Puzzles: Problems that can be solved with "some effort"
- Example:
 - E(k,m) a symmetric cipher with $k \in \{0,1\}^{128}$
 - puzzle = E(P, "message") where $P = 0^{96} II b_1 ... b_{32}$
 - To "solve" a puzzle, find **P** by trying all **2**³² possibilities

Merkle Puzzles

<u>Alice</u>:

- Prepare 2³² puzzles:
 - For i = 1, ..., 2^{32} choose random $P_i \in \{0,1\}^{32}$ and random $x_i, k_i \in \{0,1\}^{128}$ $x_i \neq x_j$ Set $puzzle_i \leftarrow E(0^{96} || P_i, "Puzzle #" || x_i || k_i)$
 - Send **puzzle₁**, ..., **puzzle_{2^32}** to Bob.

<u>Bob</u>:

- Choose a random puzzle_j and solve it by brute-force.
- Obtain (x_i, k_i) and use k_i as shared secret.
- Send **x**_j to Alice.

<u>Alice</u>:

- Lookup puzzle with number **x**_i.
- Use k_i as shared secret.

In a figure

Alice's work: $O(2^{32})$ (prepare 2^{32} puzzles)in general O(n)Bob's work: $O(2^{32})$ (solve one puzzle)in general O(n)Eavesdropper's work: $O(2^{64})$ (solve 2^{32} puzzles)in general $O(n^2)$ The eavesdropper didn't know which puzzle has been chosen by Bob

Impossibility Result

Can we achieve a better gap using a general symmetric cipher? Answer: **unknown**

Key exchange without an online TTP?

- Goal: Alice and Bob want a shared key, unknown to eavesdropper
- Security against eavesdropping only (no tampering)

• Can this be done with an **exponential gap**?

High-level idea:

- Alice and Bob do NOT share any secret information beforehand
- Alice and Bob exchange messages
- After that, Alice and Bob have agreed on a shared secret key k
- k unknown to eavesdropper

(Security) Based on the **Discrete Logarithm** Problem: **Given**

g p g^k mod p Find k

Fix a large prime **p** (e.g., 600 digits) Fix an integer **g** in {2, ..., p-2}

<u>Alice</u>

Choose random a in {1,,p-2}	g ^a mod p	Choo	se random b in {1,,p)-2 }
	g ^b mod p			
Alice computes (g ^b) ^a mod p =	g ^{ab} mod p	=	Bob computes (g ^a) ^b mod p	
Alice and Bob n	ow share SECRE	Т КЕҮ	g ^{ab} mod p	

Roh

Security

Eavesdropper sees: **p**, **g**, **g**^a **mod p**, and **g**^b **mod p** Can she compute **g**^{ab} **mod p** ??

How hard is the DH function mod p?

Suppose prime **p** is **n** bits long. Best known algorithm (*General number field sieve: GNFS*): run time is exponential in **n**: $\exp(\tilde{O}(\sqrt[3]{n}))$

Insecure against Man-in-The-Middle (MiTM)

• As described, the protocol is insecure against **active** attacks

• Attacker relays traffic from Alice to Bob and reads it in clear