
Key Exchange

Outline

• Trusted Third Parties

• Merkle Puzzles

• The Diffie-Hellman Protocol

Trusted Third Parties

Key Management

Problem: n users. Storing mutual secret keys is difficult

O(n) keys per user
O(n2) keys in total

U1 U2

U3 U4

A Better Solution

Online Trusted Third Party (TTP)

TTP

U1
U2

U3 U4

Every user only remembers ONE key

k1

k3 k4

k2

k13

Generating keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Bob (kB) Alice (kA) TTP

ticket

kAB kAB

“Alice wants key with Bob”

(E,D) a CPA-secure cipher

choose
random kABE(kA, “Alice, Bob” ll kAB) ;

ticket = E(kB, “Alice, Bob” ll kAB)

Generating keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: E(kA, “A, B” ll kAB) ; E(kB, “A, B” ll kAB)

(E,D) is CPA-secure eavesdropper learns nothing about kAB

Note: TTP needed for every key exchange, knows all session keys (kAB).

(basis of Kerberos system)

Key Question

Can we generate shared keys without an online TTP?

Answer: yes!

Starting point of public-key cryptography:

• Merkle (1974),

• Diffie-Hellman (1976),

• RSA (1977)

• …

Merkle Puzzles

Key exchange without an online TTP?
• Goal: Alice and Bob want a shared key, unknown to eavesdropper
• Security against eavesdropping only (no tampering, no message

injection)

• Can this be done using generic symmetric crypto?

BobAlice

eavesdropper ??

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: “puzzles”
• Puzzles: Problems that can be solved with “some effort”

• Example:

• E(k,m) a symmetric cipher with k {0,1}128

• puzzle = E(P, “message”) where P = 096 ll b1 … b32

• To “solve” a puzzle, find P by trying all 232 possibilities

Merkle Puzzles
Alice:
• Prepare 232 puzzles:

• For i = 1, …, 232 choose random Pi {0,1}32 and random xi , ki {0,1}128 xi ≠ xj

Set puzzlei E(096 ll Pi , “Puzzle # ” ll xi ll ki)
• Send puzzle1 , … , puzzle2^32 to Bob.

Bob:
• Choose a random puzzlej and solve it by brute-force.
• Obtain (xj, kj) and use kj as shared secret.
• Send xj to Alice.

Alice:
• Lookup puzzle with number xj .
• Use kj as shared secret.

In a figure

Alice’s work: O(232) (prepare 232 puzzles) in general O(n)
Bob’s work: O(232) (solve one puzzle) in general O(n)
Eavesdropper’s work: O(264) (solve 232 puzzles) in general O(n2)
The eavesdropper didn’t know which puzzle has been chosen by Bob

BobAlice
puzzle1 , … , puzzle2^32

xj

kj kj

Impossibility Result

Can we achieve a better gap using a general symmetric cipher?

Answer: unknown

The Diffie-Hellman Protocol

Key exchange without an online TTP?

• Goal: Alice and Bob want a shared key, unknown to eavesdropper
• Security against eavesdropping only (no tampering)

• Can this be done with an exponential gap?

BobAlice

eavesdropper ??

The Diffie-Hellman Protocol

High-level idea:
• Alice and Bob do NOT share any secret information beforehand
• Alice and Bob exchange messages
• After that, Alice and Bob have agreed on a shared secret key k
• k unknown to eavesdropper

BobAlice

k k
????

The Diffie-Hellman Protocol

(Security) Based on the Discrete Logarithm Problem:
Given

g
p
gk mod p

Find k

The Diffie-Hellman Protocol

Fix a large prime p (e.g., 600 digits)
Fix an integer g in {2, …, p-2}

Alice
Bob

Choose random a in {1,…,p-2} Choose random b in {1,…,p-2}

= gab mod p =
Bob computes
(ga)b mod p

Alice computes
(gb)a mod p

ga mod p

gb mod p

Alice and Bob now share SECRET KEY gab mod p

Security

Eavesdropper sees: p, g, ga mod p, and gb mod p
Can she compute gab mod p ??

How hard is the DH function mod p?

Suppose prime p is n bits long.
Best known algorithm (General number field sieve: GNFS): run time is
exponential in n: exp()

Insecure against Man-in-The-Middle (MiTM)

• As described, the protocol is insecure against active attacks

● Attacker relays traffic from Alice to Bob and reads it in clear

Alice BobMiTM
A = ga mod p A’ = ga’ mod p

a’

B’ = gb’ mod p B = gb mod p
b’

ga’b mod pgab’ , ga’b mod pgab’ mod p

