Key Exchange

Outline

- Trusted Third Parties
- Merkle Puzzles
- The Diffie-Hellman Protocol

Trusted Third Parties

Key Management

Problem: \mathbf{n} users. Storing mutual secret keys is difficult

$\mathbf{O}(\mathrm{n})$ keys per user $\mathbf{O}\left(\mathbf{n}^{2}\right)$ keys in total

A Better Solution

Online Trusted Third Party (TTP)

Every user only remembers ONE key

Generating keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Bob (k_{B})
Alice $\left(k_{A}\right)$
TTP

Generating keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: $E\left(k_{A}, ~ " A, B " \| k_{A B}\right)$; $E\left(k_{B}, \quad " A, B " \| k_{A B}\right)$
(E, D) is CPA-secure \Rightarrow eavesdropper learns nothing about $k_{A B}$

Note: TTP needed for every key exchange, knows all session keys (k_{AB}).
(basis of Kerberos system)

Key Question

Can we generate shared keys without an online TTP?

Answer: yes!

Starting point of public-key cryptography:

- Merkle (1974),
- Diffie-Hellman (1976),
- RSA (1977)
- ...

Merkle Puzzles

Key exchange without an online TTP?

- Goal: Alice and Bob want a shared key, unknown to eavesdropper
- Security against eavesdropping only (no tampering, no message injection)

- Can this be done using generic symmetric crypto?

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: "puzzles"

- Puzzles: Problems that can be solved with "some effort"
- Example:
- $\mathrm{E}(\mathrm{k}, \mathrm{m})$ a symmetric cipher with $\mathrm{k} \in\{0,1\}^{128}$
- puzzle $=E\left(P\right.$, "message") where $P=0^{96} \| b_{1} \ldots b_{32}$
- To "solve" a puzzle, find \mathbf{P} by trying all $\mathbf{2}^{32}$ possibilities

Merkle Puzzles

Alice:

- Prepare $\mathbf{2}^{32}$ puzzles:
- For $i=1, \ldots, 2^{32}$ choose random $P_{i} \in\{0,1\}^{32}$ and random $x_{i}, k_{i} \in\{0,1\}^{128} \quad x_{i} \neq x_{j}$ Set puzzle ${ }_{i} \leftarrow E\left(0^{96} \| P_{i}\right.$, "Puzzle \#" II $\left.x_{i} \| k_{i}\right)$
- Send puzzle ${ }_{1}, \ldots$, puzzle $_{2^{\wedge} 32}$ to Bob.

Bob:

- Choose a random puzzle j_{j} and solve it by brute-force.
- Obtain ($\mathrm{x}_{\mathrm{j}}, \mathrm{k}_{\mathrm{j}}$) and use k_{j} as shared secret.
- Send x_{j} to Alice.

Alice:

- Lookup puzzle with number x_{j}.
- Use k_{j} as shared secret.

In a figure

Alice's work: $\mathbf{O}\left(\mathbf{2}^{32}\right)$ (prepare 2^{32} puzzles)
Bob's work: $\mathbf{O}\left(\mathbf{2}^{32}\right)$ (solve one puzzle)
Eavesdropper's work: $\mathbf{O}\left(\mathbf{2}^{64}\right)$ (solve $\mathbf{2}^{\mathbf{3 2}}$ puzzles)
in general $\mathbf{O}(\mathrm{n})$
in general $\mathbf{O}(\mathrm{n})$
in general $O\left(n^{2}\right)$

The eavesdropper didn't know which puzzle has been chosen by Bob

Impossibility Result

Can we achieve a better gap using a general symmetric cipher?
Answer: unknown

The Diffie-Hellman Protocol

Key exchange without an online TTP?

- Goal: Alice and Bob want a shared key, unknown to eavesdropper
- Security against eavesdropping only (no tampering)

- Can this be done with an exponential gap?

The Diffie-Hellman Protocol

High-level idea:

- Alice and Bob do NOT share any secret information beforehand
- Alice and Bob exchange messages
- After that, Alice and Bob have agreed on a shared secret key \mathbf{k}
- k unknown to eavesdropper

The Diffie-Hellman Protocol

(Security) Based on the Discrete Logarithm Problem: Given

```
g
p
gk}\operatorname{mod}\textrm{p
```

Find k

The Diffie-Hellman Protocol

Fix a large prime \mathbf{p} (e.g., 600 digits)
Fix an integer \mathbf{g} in $\{2, \ldots, p-2\}$

Alice

Choose random a in $\{1, \ldots, \mathrm{p}-2\}$	Bob	
	$\mathrm{g}^{\text {a }} \bmod \mathrm{p}$	Choose random \mathbf{b} in $\{1, \ldots, \mathrm{p}-2\}$
	$\mathrm{g}^{\text {b }} \bmod \mathrm{p}$	
Alice computes $\left(g^{b}\right)^{a} \bmod p=$	$\mathrm{g}^{\text {ab }} \bmod \mathrm{p}$	Bob computes $\left(g^{a}\right)^{b} \bmod p$

Security

Eavesdropper sees: $\mathbf{p}, \mathbf{g}, \mathbf{g}^{\mathbf{a}} \bmod \mathbf{p}$, and $\mathbf{g}^{\mathbf{b}} \bmod \mathbf{p}$
Can she compute $\mathbf{g}^{\text {ab }} \bmod \mathbf{p}$??

How hard is the DH function $\bmod p$?

Suppose prime \mathbf{p} is \mathbf{n} bits long.
Best known algorithm (General number field sieve: GNFS): run time is exponential in $\mathbf{n}: \exp (\tilde{O}(\sqrt[3]{n}))$

Insecure against Man-in-The-Middle (MiTM)

- As described, the protocol is insecure against active attacks

Alice

MiTM
Bob

$$
A^{\prime}=g^{a^{\prime}} \bmod p
$$

$B^{\prime}=g^{b^{\prime}} \bmod p$
$g^{a b^{\prime}} \bmod p \quad g^{a b^{\prime}}, g^{a^{\prime} b} \bmod p \quad g^{a^{\prime} b} \bmod p$

- Attacker relays traffic from Alice to Bob and reads it in clear

