
Reverse engineering and binary analysis
Davide Berardi (D)

March 16, 2021

License

Released under CC-BY-SA License

https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

Agenda

I How programs are compiled

I ELF Structure

I Deassembly

I Decompilation

I Debug

I Anti debug

I Assembly

I Kernel space vs user space

I Systemcall vs library call

I Dynamic library vs static library

I Dynamic tracing

The real problem of C...

How programs are compiled

Suppose to have a C code like this:

#i n c l u d e <s t d i o . h>
i n t main (i n t argc , cha r ∗∗ a rgv)
{

char who [] = wor ld ;
p r i n t (” He l l o %s !\ n” , who) ;
r e t u r n 0 ;

}

Which are the passes to compile it?

Precompilation

The compiler is istructed to include code or translate code from other sources,
therefore the content of stdio.h (which, in ubuntu is placed at /usr/include/stdio.h) is
placed before the main. You can inspect the results using gcc -E or with cpp.

$ gcc −E /tmp/ t e s t . c | grep ’ i n t p r i n t f ’
e x t e r n i n t p r i n t f (con s t cha r ∗ r e s t r i c t f o rmat , . . .) ;

Another example can be:

$ ca t t e s t . c
#d e f i n e CIAO 5
i n t main (i n t argc , cha r ∗∗ a rgv) {

p r i n t f (”%d\n” , CIAO) ;
}
$ gcc −E t e s t . c | grep p r i n t f
p r i n t f (”%d\n” , 5) ;

Compilation

The compiler will translate (and optimize) the C code into Assembly code.

$ gcc −S t e s t . c −o − 2>/dev/ n u l l | grep main : −A 15
main :
. LFB0 :

. c f i s t a r t p r o c
pushq %rbp
. c f i d e f c f a o f f s e t 16
. c f i o f f s e t 6 , −16
movq %rsp , %rbp
. c f i d e f c f a r e g i s t e r 6
subq $16 , %r sp
movl %ed i , −4(%rbp)
movq %r s i , −16(%rbp)
l e a q . LC0(% r i p) , %r d i
c a l l puts@PLT
movl $0 , %eax
l e a v e
. c f i d e f c f a 7 , 8

Assembly

The optimized assembly code will therefore be translated in opcodes, the binary
language understandable by the machine, using an assembler (as).

$ gcc −c −o t e s t . o t e s t . c
$ f i l e t e s t . o
t e s t . o : ELF 64− b i t LSB r e l o c a t a b l e , x86−64, v e r s i o n 1 (SYSV) , not s t r i p p e d

Linking

If we look inside the code we have just placeholder and not the code of the functions
not declared in our C code. This code will be injected into the program by the linker
(ld).

$ gcc −o t e s t t e s t . c
$. / t e s t
He l l o wor ld !

ELF Structure

The constructed binary is serialized in a structured file which is formatted in the
Executable and Linkable Format. This format declares different areas called segments:

$ r e a d e l f −S $ (which / b in / l s)
. . .
[1 3] . t e x t PROGBITS 0000000000004040 00004040

0000000000012 db2 0000000000000000 AX 0 0 16
[1 5] . r oda ta PROGBITS 0000000000017000 00017000

0000000000005309 0000000000000000 A 0 0 32
[2 3] . data PROGBITS 0000000000022000 00021000

0000000000000268 0000000000000000 WA 0 0 32
[2 4] . b s s NOBITS 0000000000022280 00021268

00000000000012 d8 0000000000000000 WA 0 0 32
. . .

ELF Structure

Some common segments are:

I .interp Contains the path of the interpreter which will be used tu run the program.

I .text Contains the code of the executable i.e. return 3 + 4;.

I .rodata Contains read-only data. i.e. the string ciao in printf("ciao");

I .data Contains read and writable data. i.e. static int x = 0x41;

I .bss Contains uninitialized global variables. i.e. static int x;

We will introduce some of the other segments, useful for security or exploit in a next
lecture.

Information leak!

We can also read the plain-text readable portions of code!

#i n c l u d e <s t d i o . h>
#i n c l u d e < s t r i n g . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

char ∗ password = ” super−s e c r e t−password ” ;
i f (a rgc < 2) {

p r i n t f (”Usage : %s <name>\n” , a rgv [0]) ;
r e t u r n 1 ;

}

i f (! s t rcmp (password , a rgv [1]))
p r i n t f (” Access g ran t ed !\ n”) ;

r e t u r n 0 ;
}

$ gcc −o t e s t t e s t . c
$ s t r i n g s t e s t | grep pas s
super−s e c r e t−password

Static analysis

If we invert the compilation process we can retrieve the assembly code of the program.
While the assembly is nearly 1:1 with the opcodes, the C program is not nearly 1:1
with the assembly code.
We can invert the assembly and the compilation phase with some techniques.

Going back: disassembly

The assembly phase is easily revertable, you can map the opcodes to their meaning in
the x86 64 assembly. Beware that x86 64 does not use a different alphabet for data
and code, therefore you can disassemble garbage (for example disassembling .rodata or
.data).

$ objdump −D ./ t e s t | grep ’ˆ[0−9]\+ <main>’ −A 10
0000000000001149 <main>:

1149 : 55 push %rbp
114a : 48 89 e5 mov %rsp ,%rbp
114d : 48 83 ec 20 sub $0x20 ,% r sp
1151 : 89 7d ec mov %ed i ,−0x14(%rbp)
1154 : 48 89 75 e0 mov %r s i ,−0x20(%rbp)
1158 : 64 48 8b 04 25 28 00 mov %f s : 0 x28 ,% rax
115 f : 00 00
1161 : 48 89 45 f8 mov %rax ,−0x8(%rbp)
1165 : 31 c0 xo r %eax ,%eax
1167 : c7 45 f2 77 6 f 72 6c movl $0x6c726f77 ,−0 xe(%rbp)

Going back: disassembling

Some tools that can disassemble the code

I objdump Open source, it is a basic disassembler, it can read most of the
architecture but sometimes it can be disabled by simple tricks.

I gdb Open source, GNU debugger. It can disassemble most architectures.

I radare2 Open source, it can disassemble most architectures but it is really
bleeding edge and have a complex command set.

I IDA Closed source, available for linux, windows, and mac. A free version is
available but it disassemble only x86 64 64-bit code.

I Binary ninja Closed source, available for linux, windows, and mac. A free version
is available but it disassemble only x86 64 32-bit code.

I Ghidra Open source, developed by nsa

Going back: decompilation

From the assembly code we can try to reconstruct pseudo-C code. There are some
decompilers which work using different techniques like:

I Ghidra Open source reverse engineering tool developed by NSA.

I HexRay Closed source decompiler, it can be attached to IDA.

I Snowman Open source decompiler.

Going back: decompilation, an example

Anti static analysis technique

Beware! The static analyzers are complex and most of the times try to analyze the
code using heuristics and complex approaches. Expecially for open source code, never
rely on a single tool.
An example of an anti debug technique can start by changing the headers searched by
objdump, in this case this tool will not work.
There are two main approaches that a disassembler can use

I Linear sweep: scan the code and analyze it translating byte by byte.

I Recursive descent: during a Linear sweep, when a branch is encountered, a new
linear sweep is executed on this new branch.

Anti static analysis technique: obfuscation

The code can also be obfuscated, by introducing strange optimizations or unuseful
instructions to break the disassemblers.
N.B. x86 Intel syntax!!!

0000 : B8 00 03 C1 BB mov eax , 0xBBC10300
0005 : B9 00 00 00 05 mov ecx , 0 x05000000
000A: 03 C1 add eax , ecx
000C : EB F4 jmp $−10

If we read the code starting from 0x02 we get a totally different interpretation.

0002 : 03 C1 add eax , ecx
0004 : BB B9 00 00 00 mov ebx , 0xB9
0009 : 05 03 C1 EB F4 add eax , 0xF4EBC103
000E : 03 C3 add eax , ebx
0010 : C3 r e t

What is the stack?

The stack is the place where automatic memory of a program is placed, when you call
a function or you declare an automatic variable it will be placed into this memory.

stack

int a;

heap

...

What is the heap?

The heap is the place where you can allocate memory (e.g. using malloc)

stack

int a;

heap

...

x86 64 Assembly

CPU MMU Memory

Ring 0 Ring 1 Ring 2 Ring 3

We will focus on x86 64 assembly because it is the most common in CTF nowadays.

GP Registers

A x86 64 cpu have 16 GP registers

I *ax, *bx, *cx, *dx, *si, *di

I *sp, *bp

I r8-r15

These can be accessed in 4 ways:

I full register (64 bit): rax

I half register (lowest 32 bit): eax

I 1/4 register (lowest 16 bit): ax

I 1/8 register (lowest 8 bit): al

x86 64 special registers

There are some registers which are automatically used by the CPU, these are:

I rip Points to the instruction that will be executed at the next step.

I rsp used automatically to keep the pointer to the stack frame with push and pop;

I rflags The flags set that describes the status of the current run (e.g. zero to
indicate that the previous instruction returned 0).

I Also, rbp is not used by the CPU automatically but it is normally used to
calculate offset from memory locations.

x86 64 SIMD registers

xmm0-15 registers are 16 registers which enables the use of SIMD instructions (Single
Instruction Multiple Data). Usually there are 128-bit or 256-bit and can be used to
accelerate cryptographical operations or vector graphics.

I AESENC xmm1,xmm2/m128 —Perform One Round of an AES Encryption Flow
round key from the second source operand, operating on 128-bit data (state) from
the first source operand, and store the result in the destination operand.

I AESENCLAST xmm1, xmm2/m128 —Perform Last Round of an AES Encryption
Flow a round key from the second source operand, operating on 128-bit data
(state) from the first source operand, and store the result in the destination
operand.

I AESKEYGENASSIST xmm1, xmm2/m128, imm8 Assist in expanding the AES
cipher key, by computing steps towards generating a round key for encryption,
using 128-bit data specified in the source operand and an 8-bit round constant
specified as an immediate, store the result in the destination operand.

Example of x86 64 assembly code

xo r %rax , %rax ;
mov $$0xFF978CD091969DD1 , %rbx ;
neg %rbx ;
push %rbx ;
push %r sp ;
pop %r d i ;
cdq ;
push %rdx ;
push %r d i ;
push %r sp ;
pop %r s i ;
mov $$0x3b , %a l ;
s y s c a l l

Example of x86 64 assembly code

Parameters for functions get passed in RDI, RSI, RDX, RCX, R8, R9, XMM0–7

push %rbp
mov %rsp ,%rbp
sub $0x10 ,% r sp
mov %ed i ,−0x4(%rbp)
mov %r s i ,−0x10(%rbp)
l e a 0 xeb5(% r i p) ,% r d i
c a l l q 1030 <sys tem@pl t>
mov $0x0 ,%eax
l e a v e q
r e t q
nop l 0x0(%rax ,%rax , 1)

Dynamic analysis: debugging

We can use a debugger to see the code running and to analyze the instruction that are
executed.

Dynamic analysis: debugging

We will focus on gdb, some example commands of gdb are:

I r < <(shell command) run the program with input from a shell script (like a
pipe).

I ni next instruction without following calls.

I si step in following jumps.

I info register print the status of the

I b printf Break on printf invokation.

I b *0x123456 Break on address 0x123456.

I d3 Delete breakpoint 3.

GDB (and generally debuggers under linux) use a systemcall called ptrace, which can
trace a process and retrieve the current status of the registers.

A glimpse of future!

GDB therefore can change the registers and modify the code of the process.
What happens if you attach a privileged process? and a privileged executable? (e.g.
setuid)

Dynamic analysis: debugging

GDB have a pretty steep learning curve, to make the process easier you can install
some of the following extensions:

I peda, Python Exploit Development Assistance. A python init script for gdb to
debug the program in a more user-friendly way.

I https://github.com/longld/peda

https://github.com/longld/peda

Dynamic analysis: debugging

GDB have a pretty steep learning curve, to make the process easier you can install
some of the following extensions:

I gef, GDB Enhanced Features. Like peda, this init script makes the use of gdb
more user-friendly. Super useful for heap analysis!

I https://github.com/hugsy/gef

https://github.com/hugsy/gef

Dynamic analysis: debugging

GDB have a pretty steep learning curve, to make the process easier you can install
some of the following extensions:

I layout next, while not being an extension, it can help the debug process and the
concurrent visualization of the assembly and the status of the registries.

I https://www.youtube.com/watch?v=PorfLSr3DDI

https://www.youtube.com/watch?v=PorfLSr3DDI

Library

A library is a collection of functions that exports symbols available to be linked to the
other applications.

$ nm / l i b 6 4 / l i b a s a n . so
0000000000116710 T a s a n a d d r e s s i s p o i s o n e d
0000000000035 b50 T a s a n a d d r i s i n f a k e s t a c k
0000000000038710 T a s a n a f t e r d y n am i c i n i t
0000000000035 be0 T a s a n a l l o c a p o i s o n
. . .
0000000000188 ea0 d ZZN6 asan22Er ro rA l l ocTypeMismatch5Pr in tEvE13dea l l oc names
000000000019 d758 b ZZN6 a s a n 2 6 I n i t i a l i z eA s a n I n t e r c e p t o r s E vE 1 5wa s c a l l e d o n c e
00000000001 a2c74 b ZZN6 asanL15AsanCheckFa i l edEPKc iS1 yyE9num ca l l s
00000000001 a2c78 b ZZN6 asanL7AsanDieEvE9num cal l s

Dynamic linking

The executable can also be linked to external library to save space and simplify the
updates of the system.
This is achieved by the linker and is the standard behaviour of linux c compilers.

$ ca t − << END > t e s t . c
#i n c l u d e <s t d i o . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

p r i n t f (” h e l l o wor ld ! ”) ;
r e t u r n 0 ;

}
$ gcc −− s t a t i c −o t e s t t e s t . c
$ du −h t e s t
764K t e s t

$ ca t − << END > t e s t . c
#i n c l u d e <s t d i o . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

p r i n t f (” h e l l o wor ld ! ”) ;
r e t u r n 0 ;

}
$ gcc −o t e s t t e s t . c
$ du −h t e s t
20K t e s t

Dynamic linking analysis

When the program is executed the loader (.interp section) will load the libraries and
update the reference in the code we will see the procedure in details in Software
security 2.

$ ldd $ (which l s)
l i n u x−vdso . so . 1 (0 x00007 f f e55373000)
l i b s e l i n u x . so . 1 => / l i b / x86 64−l i n u x−gnu/ l i b s e l i n u x . so . 1 (0 x00007fd754796000)
l i b c . so . 6 => / l i b / x86 64−l i n u x−gnu/ l i b c . so . 6 (0 x00007fd7543a5000)
l i b p c r e . so . 3 => / l i b / x86 64−l i n u x−gnu/ l i b p c r e . so . 3 (0 x00007fd754133000)
l i b d l . so . 2 => / l i b / x86 64−l i n u x−gnu/ l i b d l . so . 2 (0 x00007 fd753 f2 f000)
/ l i b 6 4 / ld−l i n u x−x86−64. so . 2 (0 x00007fd754be0000)
l i b p t h r e a d . so . 0 => / l i b / x86 64−l i n u x−gnu/ l i b p t h r e a d . so . 0 (0 x00007fd753d10000)

What is a kernel

The kernel is a program that constitutes the central core of a computer op-
erating system. It has complete control over everything that occurs in the
system.1

I We will focus on monolitic kernels (expecially linux and BSD).

I The kernel is responsible for:

I Manage the lifecycle of the userland (processes);
I Manage resources;
I Interacting with hardware;
I Security of the system.

1http://www.linfo.org/kernel.html

http://www.linfo.org/kernel.html

What is the userland

The term userland (or user space) refers to all code that runs outside the
operating system’s kernel.2

Probably most of the code you wrote runs in user space. If you need to write a device
driver for Linux it will be in kernel space.

User Processes

User Land

Kernel Land

Kernel Modules

Hardware

2https://en.wikipedia.org/wiki/User_space

https://en.wikipedia.org/wiki/User_space

Process

A process is an instance of a program. Beware that in linux the terms process, task,
and thread are sometimes misleading!
In general term

I Task - the task of a process, what you want to achieve and how.

I Thread - an instance of a program, share the memory with other related threads.

I Process - a container of threads which share the same memory.

I In Linux a Thread and a process are the same thing! A process is a thread with
separated memory from the other processes.

Examples of threads and process

In firefox every tab was a thread

In chrome every tab was a process

Process loading

When a program is launched, the interpreter (loader) is executed and the content of
its ELF is loaded in memory by the MMU (the .text, .rodata, ...). The .bss section
is therefore initialized to zero (mapped to an empty page).
The dynamic libraries are therefore loaded in memory and shared between common
process (This could be a comment to docker if you want :)).

Segmented memory

The memory in a program is segmented similarly to the ELF. In this case the system
will load different areas, comprending area allocated for the heap and the stack
(allocated by the MMU).

$ ca t / proc / s e l f /maps
55 ddcdbfe000−55ddcdc02000 r−xp 00002000 08 :01 2232386 / u s r / b in / ca t
. . .
55 ddced1e000−55ddced3f000 rw−p 00000000 00 :00 0 [heap]
7 f2 fb5442000−7f2 fb5467000 r−−p 00000000 08 :01 2231702 / u s r / l i b / l i b c −2.31. so
7 f2 fb5467000−7f2 fb55b3000 r−xp 00025000 08 :01 2231702 / u s r / l i b / l i b c −2.31. so
7 f2 fb5601000−7f2 fb5604000 rw−p 001 be000 08 :01 2231702 / u s r / l i b / l i b c −2.31. so
. . .
7 f2 fb5604000−7f2 fb560a000 rw−p 00000000 00 :00 0
7 f2 fb563e000−7f2 fb5640000 r−−p 00000000 08 :01 2231656 / u s r / l i b / ld −2.31. so
7 f2 fb5640000−7f2 fb5660000 r−xp 00002000 08 :01 2231656 / u s r / l i b / ld −2.31. so
. . .
7 f2 fb566a000−7f2 fb566b000 rw−p 0002 b000 08 :01 2231656 / u s r / l i b / ld −2.31. so
7 f2fb566b000−7f2 fb566c000 rw−p 00000000 00 :00 0
7 f f c1ac7b000−7f f c 1 a c9 c000 rw−p 00000000 00 :00 0 [s t a c k]
. . .

Library hijacking

When you declare a library call:

put s (” c i a o \n ”) ;

You get a call into the library

1154 : e8 d7 f e f f f f c a l l q 1030 <put s@p l t>

So...Can we hijack the call changing the library?

Library hijacking

Yes you can! At loading time Without relinking the application :D

$. / t e s t
c i a o
$ LD LIBRARY PRELOAD=./ f a k e l i b . so . / t e s t
hacked

Using this environment variable you can hijack the library call hooking and changing
the behaviour of the library functions.

Library hijacking: tracing

Using this trick you can trace the execution of a program without debugging it with
conventional method.

$ ca t t e s t . c
#i n c l u d e <s t d i o . h>
#i n c l u d e < s t r i n g . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

i f (a rgc < 2)
r e t u r n 1 ;

i f (! s t rcmp (” super−s ecu re−password ” , a rgv [1]))
p r i n t f (” Access g ran t ed !\ n”) ;

r e t u r n 0 ;
}
$ l t r a c e . / t e s t c i a o
strcmp (” super−s ecu r e−password ” , ” c i a o ”) = 16
+++ e x i t e d (s t a t u s 0) +++

Another question!

What happens if you use LD LIBRARY PRELOAD over a privileged (setuid or with
ep capabilities) executable?

Systemcall

A systemcall is a procedure to communicate with the kernel. Issuing the systemcall the
system will process the request and operate accordingly.
Some examples of systemcalls are:

I open

I read

I write

I socket

Systemcall: assembly

The operating system must agree on the procedure used by the userland program to
retrieve the correct parameters from the userland.
An x86 32bit example:

i n t 0x80 ;

The trap way was too slow! It was microprogrammed to a dedicated opcode in x86 64

s y s c a l l

The systemcall number is loaded in rax (eax on 32 bit);
Parameters get passed in eax, ebx, ecx, edx, esi, edi, ebp.
and the return code for the systemcall is returned to the user throug rax (eax) register.
For 64 bit systems the parameters are passed in rdi, rsi, rdx, r10, r8, r9.

Library vs systemcall

A systemcall could be, at first sight, related to library calls. That is true, but library
and systemcall could have subtle differences, can you spot the difference here?

#i n c l u d e <s t d i o . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

char c ;
i n t coun t e r = 0 ;
FILE ∗ f = fopen (”/dev/urandom” ,

” r ”) ;

wh i l e (coun t e r < 100 ∗ 1000) {
f r e a d (&c , 1 , 1 , f) ;
i f (c == ’ \ x f f ’)

coun t e r++;
}
p r i n t f (”%d\n” , coun t e r) ;
f c l o s e (f) ;
r e t u r n 0 ;

}

#i n c l u d e <s t d i o . h>
#i n c l u d e < f c n t l . h>
#i n c l u d e <un i s t d . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

char c ;
i n t coun t e r = 0 ;
i n t f = open (”/dev/urandom” ,

O RDONLY) ;
wh i l e (coun t e r < 100 ∗ 1000) {

r ead (f , &c , 1) ;
i f (c == ’ \ x f f ’)

coun t e r++;
}
p r i n t f (”%d\n” , coun t e r) ;
c l o s e (f) ;
r e t u r n 0 ;

}

Library vs systemcall

A systemcall could be, at first sight, related to library calls. That is true, but library
and systemcall could have subtle differences, can you spot the difference here?

$ t ime . / t e s t−f r e a d
100000
. / t e s t−f r e a d 0 .46 s u s e r 0 .16 s system 93% cpu 0 .667 t o t a l

$ t ime . / t e s t−r ead
100000
. / t e s t−r ead 5 .82 s u s e r 15 .15 s system 99% cpu 21 .056 t o t a l

Library vs systemcall

A systemcall could be, at first sight, related to library calls. That is true, but library
and systemcall could have subtle differences, can you spot the difference here?

User Processes

User Land

Kernel Land

Kernel Modules

Hardware

Systemcall

Every read you are making a context switch, fread will read a block of data and return
to you byte by byte without the switch.

Dynamic tracing of systemcall: ptrace

Ptrace is a systemcall which can control the behaviour of a traced program. As stated
before is the systemcall that gdb uses to debug programs. It can be instructed to
retrieve memory, registries and systemcall invoked by the traced process.

l ong p t r a c e (enum p t r a c e r e q u e s t r eque s t , p i d t p id ,
v o i d ∗addr , v o i d ∗ data) ;

Dynamic tracing of systemcall: strace

Strace is a tool based on ptrace that can dynamically analyze a program to print out
all the systemcall that gets issued.

#i n c l u d e <s t d i o . h>
#i n c l u d e < f c n t l . h>
#i n c l u d e < s t r i n g . h>
#i n c l u d e <un i s t d . h>
i n t main (i n t argc , cha r ∗∗ a rgv)
{

char b u f f e r [4 0 9 6] ;
i n t f ;
i f (a rgc < 2)

r e t u r n 1 ;
f = open (” . / password ” , O RDONLY) ;
r ead (f , b u f f e r , s i z e o f (b u f f e r)) ;
i f (! s t rcmp (argv [1] , b u f f e r))

p r i n t f (” Access g ran t ed \n”) ;
c l o s e (f) ;
r e t u r n 0 ;

}

Dynamic tracing of systemcall: strace

Strace is a tool based on ptrace that can dynamically analyze a program to print out
all the systemcall that gets issued.

$ gcc −− s t a t i c −o t e s t−r ead2 t e s t−r ead2 . c
$ l t r a c e . / t e s t−r ead2 c i a o
Couldn ’ t f i n d . dynsym or . d y n s t r i n ”/ proc /19647/ exe ”
$ s t r a c e . / t e s t−r ead2 c i a o 2>&1 | grep read
execve (” . / t e s t−r ead2 ” , [” . / t e s t−r ead2 ” , ” c i a o ”] , 0 x7 f fda35b8618 /∗ 45 v a r s ∗/) = 0
r e a d l i n k (”/ proc / s e l f / exe ” , ”/tmp/ t e s t−r ead2 ” , 4096) = 15
read (3 , ” super−s ecu re−password ” , 4096) = 21

Anti dynamic analysis technique

Ptrace can be simply eluded by tracing itself and disabling ptrace mechanism,
according to manpages:

EPERM The s p e c i f i e d p r o c e s s cannot be t r a c e d . Th i s cou ld be because the
t r a c e r has i n s u f f i c i e n t p r i v i l e g e s (the r e q u i r e d c a p a b i l i t y i s
CAP SYS TRACE) ; u n p r i v i l e g e d p r o c e s s e s cannot t r a c e p r o c e s s e s t ha t tehy
cannot send s i g n a l s to or tho s e runn ing se t−use r−ID/ se t−group−ID
programs , f o r obv i ou s r e a s on s . A l t e r n a t i v e l y , the p r o c e s s may a l r e a d y
be be ing t raced , o r (on k e r n e l s b e f o r e 2 . 6 . 2 6) be i n i t (1) (PID 1) .

Also, sometimes language virtual machines are employied to obfuscate the code.

Anti dynamic analysis technique: anti breakpoint

Debuggers insert the opcode 0xcc (int 3) in the program to trace breakpoints. With
this technique a program can check if it is being debugged checking for breakpoints.

#i n c l u d e <s t d i o . h>
#de f i n e PRINT SIZE 16
i n t foo ()
{

uns i gned char x = ∗ (((uns i gned char ∗) foo) + 4) ;
p r i n t f (”%02x\n” , x) ;
i f (x == 0 xcc)

p r i n t f (” d e t e c t e d debugger ! :D\n”) ;
r e t u r n 0 ;

}
i n t main (i n t argc , cha r ∗∗ a rgv)
{

f oo () ;
r e t u r n 0 ;

}

Anti dynamic analysis technique: anti breakpoint

Debuggers insert the opcode 0xcc (int 3) in the program to trace breakpoints. With
this technique a program can check if it is being debugged checking for breakpoints.

Systemcall firewalls: seccomp

Systemcalls can be firewalled in linux using BGP. This can be loaded in the following
way:
BPF (Berkeley packet filter, a concept ported from BSD systems) is a language virtual
machine embedded in the linux kernel to accelerate the filtering of firewalls (like
iptables). That language specifies rules to accept or drop a packet. In this case the
systemcall parameters are mapped as packet field. In this way the systemcall can be
filtered by the invoking program, limiting the set of usable systemcall.

Systemcall firewalls: seccomp

Other kernel have different implementation of this concept like pledge(2) in OpenBSD.
This will be clear in subsequent Software security lessons, for the moment imagine a
firewall that can block the ptrace systemcall.
In this case the use of gdb will be blocked by the firewall itself.

Static modification of the binary

We can change the dynamic behaviour of the program, but what about the static
behaviour of the program?
We can alter the code by placing different opcodes, we can do that with basic tools
like vim and xxd.

#i n c l u d e <s t d i o . h>
#i n c l u d e < s t r i n g . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

char buf [8] ;
FILE ∗ f ;
i f (a rgc < 2)

r e t u r n 1 ;
f = fopen (”/dev/urandom” , ” r ”) ;
f r e a d (buf , 1 , s i z e o f (buf) , f) ;
f c l o s e (f) ;
i f (!memcmp(buf , a rgv [1] , s i z e o f (buf)))

p r i n t f (”Wow!\ n”) ;
r e t u r n 1 ;

}

Static modification of the binary

We can change the dynamic behaviour of the program, but what about the static
behaviour of the program?
We can alter the code by placing different opcodes, we can do that with basic tools
like vim and xxd.

11 f c : 48 8b 08 mov (%rax) ,% r c x
11 f f : 48 8d 45 f0 l e a −0x10(%rbp) ,% rax
1203 : ba 08 00 00 00 mov $0x8 ,%edx
1208 : 48 89 ce mov %rcx ,% r s i
120b : 48 89 c7 mov %rax ,% r d i
120 e : e8 5d f e f f f f c a l l q 1070 <memcmp@plt>
1213 : 85 c0 t e s t %eax ,%eax
1215 : 75 11 j n e 1228 <main+0x9f>
1217 : 48 8d 3d f5 0d 00 00 l e a 0 xd f5(% r i p) ,% r d i
121 e : b8 00 00 00 00 mov $0x0 ,%eax
1223 : e8 38 f e f f f f c a l l q 1060 <p r i n t f @ p l t >

Static modification of the binary

We can change the dynamic behaviour of the program, but what about the static
behaviour of the program?
We can alter the code by placing different opcodes, we can do that with basic tools
like vim and xxd.
We can see that the jne code is 0x75.

What happens if we change it to je (0x74)?

$ xxd −ps t e s t > t e s t . hex
$ sed − i ’ s / f f f f 8 5 c 0 7 5 1 1 / f f f f 8 5 c 0 7 4 1 1 / ’ t e s t . hex
$ xxd −ps −r t e s t . hex > t e s t

Static modification of the binary

We can change the dynamic behaviour of the program, but what about the static
behaviour of the program?
We can alter the code by placing different opcodes, we can do that with basic tools
like vim and xxd.

11 f c : 48 8b 08 mov (%rax) ,% r c x
11 f f : 48 8d 45 f0 l e a −0x10(%rbp) ,% rax
1203 : ba 08 00 00 00 mov $0x8 ,%edx
1208 : 48 89 ce mov %rcx ,% r s i
120b : 48 89 c7 mov %rax ,% r d i
120 e : e8 5d f e f f f f c a l l q 1070 <memcmp@plt>
1213 : 85 c0 t e s t %eax ,%eax
1215 : 74 11 j e 1228 <main+0x9f>
1217 : 48 8d 3d f5 0d 00 00 l e a 0 xd f5(% r i p) ,% r d i
121 e : b8 00 00 00 00 mov $0x0 ,%eax
1223 : e8 38 f e f f f f c a l l q 1060 <p r i n t f @ p l t >

Static modification of the binary

We can change the dynamic behaviour of the program, but what about the static
behaviour of the program?
We can alter the code by placing different opcodes, we can do that with basic tools
like vim and xxd.
We can see that the jne code is 0x75.

What happens if we change it to je (0x74)?

$. / t e s t c i a o
Wow!

Symbolic analysis: angr

Another way to analyze binaries is the symbolic analysis. You encode your binary in a
solver and delimit some constraints over your solution.

impor t angr

p r o j e c t = angr . P r o j e c t (” angr−doc/ examples / defcamp r100 / r100 ” , a u t o l o a d l i b s=Fa l s e)

@p r o j e c t . hook (0 x400844)
de f p r i n t f l a g (s t a t e) :

p r i n t (”FLAG SHOULD BE : ” , s t a t e . p o s i x . dumps (0))
p r o j e c t . t e rm i n a t e e x e c u t i o n ()

p r o j e c t . e x e cu t e ()

Buffer overflow

We will introduce pwn and buffer overflows in a following lecture. A buffer overflow is
an attack that use a misconfigured buffer length:

#i n c l u d e <s t d i o . h>
#i n c l u d e < s t r i n g . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

char buf [8] ;
s t r c p y (buf , a rgv [1]) ;
r e t u r n 0 ;

}

What happens if we copy more than 8 characters in the buf?

Nasal demons again!

We meet again...my old nemesis!

If we are lucky, in CTFs sometimes we struggle to get a segmentation fault. :)
Sometimes...well...the program randomly segfaults.

Secure coding

In this case we can act defensively adding a check on the buffer and placing a
terminating zero at the end of the string.

#i n c l u d e <s t d i o . h>
#i n c l u d e < s t r i n g . h>
#de f i n e BUFLEN 8
i n t main (i n t argc , cha r ∗∗ a rgv) {

char buf [BUFLEN + 1] ;
i f (a rgc < 2)

r e t u r n 1 ;

s t r n c p y (buf , a rgv [1] , BUFLEN) ;
buf [BUFLEN] = ’ \0 ’ ;

r e t u r n 0 ;
}

Format string leak

Even misplaced printf can be problematic for the security of a program, providing a
leak. We will exploit this behaviour in a different lecture, but what happens if we write
something like this?

#i n c l u d e <s t d i o . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

char ∗ password = ” super−s e c r e t−password ” ;
i f (a rgc < 2) {

p r i n t f (”Usage : %s <name>\n” , a rgv [0]) ;
r e t u r n 1 ;

}

p r i n t f (” He l l o ”) ;
p r i n t f (a rgv [1]) ;
p r i n t f (”\n”) ;
/∗ . . . ∗/
r e t u r n 0 ;

}

Format string leak

[language=C] Even misplaced printf can be problematic for the security of a program,
providing a leak. We will exploit this behaviour in a different lecture, but what
happens if we write something like this?

$. / t e s t ”%x%x%x%x%x%x”
He l l o 2000 c76cf2a0679457d18

Race condition: a real world example

Suppose to have an application that have three methods in its API.

I create, the first phase is the creation of an environment where the code get
executed. This is a privileged action.

I init, the init phase will inject the code to run in the run phase. In our case this
was not a privileged action. If an application is already initialized, the init will fail.

I run, in the run phase the code will get executed and takes parameters from the
user.

Can you spot the error here?

Race condition: a real world example

If we keep flooding the system with init we can reach the API endpoint before the
authorized system, enabling our malicious program to take control over the
infrastructure and tampering the system.

API endpoint Docker

Attacker

Create

Init

Init

FYI the problem was even worst that this one ;)

Where nasal demons come from?

i n t x = 10 ;
i n t y = 10 ;
y=y∗(2∗(++x) − 2∗(1−x−−));

GCC: 400
Clang : 420

Well...again

