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Piattaforma didattica

• Virtuale

e verrà costantemente aggiornato con:
• Informazioni

• Materiale didattico (slides)

• Annunci



Materiale didattico

• Slide caricate su Virtuale del corso

• Testi consigliati:
• Jean-Philippe Aumasson,

Serious Cryptography: A Practical Introduction to Modern Encryption.

• Bruce Schneier,
Applied Cryptography: Protocols, Algorithms, and Source Code in C.

• Mark Stamp,
Information Security: Principles and Practice.

• William Stallings
Crittografia

• Dan Boneh, Victor Shoup,
A Graduate Course in Applied Cryptography. (approccio matematico)



Esame

• Prova scritta
• Voto finale = Scritto + Successo laboratori
Scritto: 24/25 pt
Laboratori: max 8 pt
NO orali

• Date esami: consultare il sito del Dipartimento
Due appelli a Giugno, uno a Luglio e uno a Settembre



Roadmap

0. What is Cryptography - History of 
Cryptography

1. Introduction Mathematics: Modular 
Arithmetic - Discrete Probability 

2. One-time pad, Stream Ciphers and Pseudo 
Random Generators

3. Attacks on Stream Ciphers and The One-
Time Pad

4. Real-World Stream Ciphers
(weak(RC4), eStream,nonce, Salsa20)

5. Secret key cryptographic systems;

6. Public key cryptographic systems

7. DES protocols (just as an introduction), AES

8. Electronic Signatures, Public-key 
Infrastructure, Certificates and Certificate 
Authorities

9. Sharing of secrets; User authentication; 
Passwords

10. Tutor Training

Bonus. Legislation, Ethics and Management



Introduction



Welcome

Course objectives:

• Learn how crypto primitives work

• Learn how to use them correctly and reason about security



Che cos’è la Crittografia?

• Crittografia
• Kryptós: nascosto

• Graphía: scrittura

• Metodi che consentano di memorizzare, elaborare e trasmettere
informazioni in presenza di agenti ostili

• Crittoanalisi
• Analisi di un testo cifrato nel tentativo di decifrarlo senza possedere la chiave

• Crittologia: Crittografia + Crittoanalisi
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Cryptography is everywhere

Secure communication:
• web traffic: HTTPS
• wireless traffic: Wireless Network, GSM, Bluetooth

Encrypting files on disk

Content protection (e.g., DVD, Blu-ray)

User authentication

…   and much much more (more “magical” applications later…)



Secure communication

no eavesdropping
no tampering



Symmetric Encryption (confidentiality)

• k: secret key (A SHARED SECRET KEY)
• m: plaintext 
• c: ciphertext
• E: Encryption algorithm 
• D: Decryption algorithm 
• E, D: Cipher     

Algorithms are publicly known, never use a proprietary cipher

Alice

E
m c = E(k,m)

Bob

D
c m = D(k,c)

k k

• Confidentiality scenario
• Other scenarios are possible, 

with the secret key used
differently…
• e.g., MACs (for integrity)



Use Cases

• Single-use key: (or one-time key):
Key is only used to encrypt one message
• encrypted email: new key generated for every email

• Multi-use key: (or many-time key):
Same key used to encrypt multiple messages
• encrypted files: same key used to encrypt many files

Need more machinery than for one-time key



Asymmetric Encryption

13

E Network

Plaintext Ciphertext Ciphertext

D

Plaintext

Alice Bob

Bob’s PUBLIC KEY

Public Repository

Bob’s PRIVATE KEYBob’s PUBLIC KEY

• Confidentiality scenario
• Other scenarios are possible, 

with keys used differently…
• e.g., Digital signatures



Things to remember

Cryptography is:
• A tremendous tool

• The basis for many security mechanisms

Cryptography is not:
• The solution to all security problems

• Reliable unless implemented and used properly

• Something you should try to invent yourself

• many many examples of broken ad-hoc designs



Some Applications



Secure 
communication

1. Secret key establishment:

2. Secure communication:

confidentiality and integrity

m1

m2

Alice
Bob

Talking to 
Alice

Talking to 
Bob

k k

Alice
Bob



But crypto can do much more

• Digital signatures

Alice 
signature

• Signatures of the same person change
over different documents

• Asymmetric Cryptography is used



But crypto can do much more

• Anonymous communication
(e.g., mix networks)

Alice

Who did I 
just talk to?

Bob



Alice

But crypto can do much more

• Anonymous digital cash
• Can I spend a “digital coin” without anyone knowing who I am?

• How to prevent double spending?

Who was 
that?Internet

1$
(anon. comm.)



Protocols

• Elections

• Private auctions

Election Center
winner

0 1            0 0            1

winner= majority [votes]

(Vickrey Auction)
Auction winner = highest bidder

pays 2nd highest bid

(encrypted)

Election Center must determine the winner
without knowing the individual votes!



Protocols

• Elections

• Private auctions

Secure multi-party computation

Goal:   compute   f(x1, x2, x3, x4)

“Thm:”   anything that can done with trusted auth. can also 
be done without

trusted
authority

f(x1, x2, x3, x4)

f(x1, x2, x3, x4)

x1                 x2                x3 x4 



Crypto magic

• Privately outsourcing computation

Alice

search
query

What did she 
search for?

results

E[ query ]

E[ results ]



Crypto magic

• Zero knowledge (proof of knowledge)

acme.com

I know the password

Can you prove it?



A rigorous science

The three steps in cryptography:

• Precisely specify threat model

• Propose a construction

• Prove that breaking construction under 
threat model will solve an underlying hard problem



Brief History of Crypto



Che cos’è la Crittografia?

• Metodi per memorizzare, elaborare e trasmettere informazioni 
in maniera sicura in presenza di agenti ostili

• Crittografia: Kryptós: nascosto + Graphía: scrittura

Scitala Cifrario di Cesare        Enigma             DES               RSA             AES         Crittografia ellittica

400 aC 50 aC 1918               1975             1977           2001                     2005

n = p × q
p, q?
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History

David Kahn,   “The code breakers”   (1996)



Symmetric Ciphers
Alice

E
m E(k,m) = c

Bob

D
c D(k,c) = m

k k

Cypher: (E, D)

Same key



Testo in chiaro

Attaccare
in Gallia
all’alba

Testo cifrato

@R$7#dt
#H G!T%
$F£?T&y

Testo in chiaro

Attaccare
in Gallia
all’alba

Chiave

Un classico scenario

Chiave

Cifratura Decifratura

Testo cifrato

@R$7#dt
#H G!T%
$F£?T&y

Algoritmi di cifratura e decifratura: pubblici

Crittografia simmetrica e asimmetrica
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Cifrario di Cesare

Dwwdffduh
lq Jdoold
doo’doed

Attaccare
in Gallia
all’alba

Testo in chiaro Testo cifrato
(Cifrario a sostituzione)

Chiave



Few Historic Examples    (all badly broken)

1.   Substitution cipher

k := 
c:= E(k, “bcza”) = “wnac”

D(k,c) = “bcza”

a                  c
b                 w
c                  n

.

.

.

z                 a



Caesar Cipher    (no key)

Shift by 3

a                 d
b                 e
c                  f 

.

.

.
y                 b
z                 c



What is the size of key space in the 
substitution cipher assuming 26 letters? 



How to break a substitution cipher?

What is the most common letter in English text?

“X”

“L”

“E”

“H”



How to break a substitution cipher?

(1) Use frequency of English letters

e: 12,7% t: 9,1% a: 8,1%

(2)     Use frequency of pairs of letters   (digrams)
he, an, in, th



An Example

UKBYBIPOUZBCUFEEBORUKBYBHOBBRFESPVKBWFOFERVNBCVBZPRUBOFERVNBCVBPCYYFVU
FOFEIKNWFRFIKJNUPWRFIPOUNVNIPUBRNCUKBEFWWFDNCHXCYBOHOPYXPUBNCUBOYNRV
NIWNCPOJIOFHOPZRVFZIXUBORJRUBZRBCHNCBBONCHRJZSFWNVRJRUBZRPCYZPUKBZPUNV
PWPCYVFZIXUPUNFCPWRVNBCVBRPYYNUNFCPWWJUKBYBIPOUZBCUIPOUNVNIPUBRNCHOP
YXPUBNCUBOYNRVNIWNCPOJIOFHOPZRNCRVNBCUNENVVFZIXUNCHPCYVFZIXUPUNFCPWZP
UKBZPUNVR

B 36

N 34

U 33

P 32

C 26

➔ E

➔ T
➔ A

NC 11

PU 10

UB 10

UN 9

➔ IN
➔ AT

UKB 6

RVN 6

FZI 4

➔ THE

digrams

trigrams



2. Vigenère cipher    (16’th century,  Rome)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

k    =     C R Y P T O C R Y P T O

m =     W H A T A N I C E D A Y T O D A Y

C R Y P T 
(+ mod 26)

c   =     Y Y Y I T B K T C S T M V F B P R 



2. Vigenère cipher    (16’th century,  Rome)

k    =     C R Y P T O C R Y P T O

m =     W H A T A N I C E D A Y T O D A Y

C R Y P T 
(+ mod 26)

c   =     Y Y Y I T B K T C S T M V F B P R 

Polyalphabetic cypher



2. Vigenère cipher    (16’th century,  Rome)

k    =     C R Y P T O C R Y P T O

m =     W H A T A N I C E D A Y T O D A Y

C R Y P T 
(+ mod 26)

c   =     Y Y Y I T B K T C S T M V F B P R 

Suppose the most common letter is “G”              It is likely that “G” corresponds to “E”       
First letter of key = “G” – “E” = “C” (c[i] = m[i] + k[i]  k[i] = c[i] – m[i])



3. Rotor Machines   (1870-1943)

Early example:   the Hebern machine   (single rotor)

A
B
C
.
.
X
Y
Z

K
S
T
.
.
R
N
E

E
K
S
T
.
.
R
N

N
E
K
S
T
.
.
Rkey



Rotor Machines   (cont.)

Most famous:   the Enigma  (3-5 rotors)



4.  Data Encryption Standard   (1974)

DES:      # keys = 256 ,    block size = 64 bits

Today:     AES (2001),   Salsa20 (2008) (and many others)



Discrete Probability
(crash course)



Probability distribution

• U: finite set, called Universe or Sample space

Examples:
• Coin flip: U = { heads, tail }     or     U = { 0, 1 } 
• Rolling a dice: U = { 1, 2, 3, 4, 5, 6 }

• A Probability distribution P over U is a function  P : U ⟶ [0,1]

such that σx∈U P x = 1

Examples:
• Coin flip: P(heads) = P(tail) = 1/2
• Rolling a dice:   P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6



Probability distribution

• U: finite set, called Universe or Sample space
• A Probability distribution P over U is a function  P : U ⟶ [0,1]

such that σx∈U P x = 1

• Notation: U = {0,1}n

• Example:

Universe U = {0,1}2 = {00, 01, 10, 11}

Probability distribution P defined as follows:

P(00)= 1/2 P(01)= 1/8 P(10)= 1/4 P(11)= 1/8



Probability distributions

Examples:

1. Uniform distribution: for all x∈U:   P(x) = 1/|U|

2. Point distribution at x0: P(x0) = 1,    ∀x≠x0:  P(x) = 0

… and many others



Events

Let us consider a universe U and a probability distribution P over U.

• An event is a subset A of U, that is, A ⊆ U

• The probability of A is 𝐏𝐫 𝐀 = σ𝐱∈𝐀 𝐏(𝐱)

Note: Pr[U] = 1

Example

• Universe U = { 1, 2, 3, 4, 5, 6 }

• Probability distribution P s.t. P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6

• A = {1, 3, 5}

• P[A] = 1/6 + 1/6 + 1/6 = 1/2



Events

Let us consider a universe U and a probability distribution P over U.

• An event is a subset A of U, that is, A ⊆ U

• The probability of A is 𝐏𝐫 𝐀 = σ𝐱∈𝐀 𝐏(𝐱)

Example

• Universe U = {0,1}8

• Uniform distribution P over U, that is, P(x) = 1/28 for every x ∈ U

• A = { all x in U such that  lsb2(x)=11  }   ⊆ U

• Pr[A] =   ¼

Hints: Pr[A] = 1/28 × |A|
each element in A is of the form  _  _  _  _  _  _  1  1



Union of Events

Given events A1 and A2, 

A1 ∪ A2 is an event.

• Pr[ A1 ∪ A2 ]  =  Pr[A1] + Pr[A2] – Pr[A1 ∩ A2 ]

• Pr[ A1 ∪ A2 ]  ≤  Pr[A1] + Pr[A2] (“Union bound”)

• A1 ∩ A2 = ∅ ⇒ Pr[ A1 ∪ A2 ]  =  Pr[A1] + Pr[A2]



Random Variables

Def:  a random variable  X  is a function X : U ⟶ V

Example (Rolling a dice):

U = { 1, 2, 3, 4, 5, 6 }

Uniform distribution P over U:      P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6

Random variable X : U ⟶ { “even”, “odd” }

X(2) = X(4) = X(6) = “even”

X(1) = X(3) = X(5) = “odd”

Pr[ X=“even” ] =  1/2     ,      Pr[ X=“odd” ] =  1/2

More generally:  X induces a distribution on V



The uniform random variable

Let S be some set,   e.g.   S = {0,1}n

We write  r ⟵ S to denote a uniform random variable over S 

for all a ∈ S:     Pr[ r=a ]  =  1/|S|



Defining a random variable in terms of another

• Let  r  be a uniform random variable on  {0,1}2 

• Define the random variable    X = r1 + r2   

• Then     Pr[X=2]   =   ¼

• Hint:     Pr[X=2]   =   Pr[ r=11 ]



Randomized algorithms

• Deterministic algorithm:  y ⟵ A(m)

• Randomized algorithm     
output is a random variable y ⟵ A( m )

A(m)
m

inputs outputs

A(m)
m



Recap

• U: Universe or Sample space  (e.g., U = {0,1}n )

• A Probability distribution P over U is a function  P : U ⟶ [0,1] such 
that  σx∈U P x = 1

• An event is a subset A of U, that is, A ⊆ U

• The probability of event A is Pr A = σx∈A P(x)

• A random variable is a function X : U ⟶ V 
X takes values in V and defines a distribution on V



Independence

Definition. Independent events

Events A and B are independent if  

Pr[ A ∩ B ] = Pr[A] ∙ Pr[B]

Definition. Independent random variables

Random variables X and Y taking values in V are independent if

∀a,b∈V:    Pr[ X=a  and  Y=b] = Pr[X=a] ∙ Pr[Y=b]



XOR

XOR of two strings in {0,1}n is their bit-wise addition mod 2

0  1  1  0  1  1  1

1  0  1  1  0  1  0

1  1  0  1  1  0  1

⊕
X Y X       Y

0 0 0

0 1 1

1 0 1

1 1 0

⊕



An important property of XOR
Theorem:
1. X: a random variable over {0,1}n with a uniform distribution 
2. Y: a random variable over {0,1}n with an arbitrary distribution
3. X and Y are independent
• Then Z := Y⨁X is a UNIFORM random variable over {0,1}n

Proof: (for n=1)
Pr[ Z=0 ] = 

Pr[(X,Y)=(0,0) or (X,Y)=(1,1)] =

Pr[(X,Y)=(0,0)] + Pr[(X,Y)=(1,1)] =

p0/2 + p1/2 = ½

Therefore Pr[ Z=1 ] = ½

Y Pr

0 p0

1 p1

X Pr

0 1/2

1 1/2

X Y Pr

0 0 p0/2

0 1 p1/2

1 0 p0/2

1 1 p1/2



The birthday paradox

Let  r1, …, rn ∈ U  be independent identically distributed random variables

Theorem:   when  n = 1.2 × |U|1/2 then   Pr[ ∃i≠j:   ri = rj ] ≥  ½ 

Example:
• U = {1, 2, 3, ..., 366}

• When 𝒏 = 1.2 × 366 ≈ 𝟐𝟑, two people have the same birthday with 
probability ≥  ½

Example:
• Let U = {0,1}128

• After sampling about 264 random messages from U, some two sampled 
messages will likely be the same



|U|=106

# samples  n

co
lli

si
o

n
 p

ro
b

ab
ili

ty



Stream Ciphers



Outline

• One-Time Pad

• Perfect Secrecy

• Pseudorandom Generators (PRGs) and Stream Ciphers

• Attacks

• Security of PRGs

• Semantic Security



Symmetric Ciphers

Definition.

A (symmetric) cipher defined over (K, M, C)

is a pair of “efficient” algorithms  (E,D) where

• E:  K × M → C

• D: K × C  →M

such that ∀m∈M, ∀k∈K :  D(k, E(k,m)) = m

• E  is often randomized.      
• D  is always deterministic.



The One-Time Pad        (Vernam 1917)

First example of a “secure” cipher

• K = M = C = {0,1}n

• E(k, m) = k ⊕m

• D(k, c)  = k ⊕ c

• k used only once

• k is a random key (i.e., uniform distribution over K)

m: 0  1  1  0  1  1  1

k : 1  0  1  1  0  1  0

c : 1  1  0  1  1  0  1

⊕



The One-Time Pad        (Vernam 1917)

The one-time pad is a cipher:

•D(k, E(k,m)) = 

•D(k, k ⊕m) = 

• k ⊕ (k⊕m) = 

• (k ⊕ k) ⊕m = 

• 0 ⊕m = 

•m

One-time pad definition:
• E(k, m) = k ⊕m
• D(k, c)  = k ⊕ c



The One-Time Pad        (Vernam 1917)

• Pro:
• Very fast encryption and decryption

• Con:
• Long keys (as long as the plaintext),

If Alice wants to send a message to Bob, 
she first has to transmit a key of the same length to Bob in a secure way.
If Alice has a secure mechanism to transmit the key, she might use that same 
mechanism to transmit the message itself!

Is the OTP secure?    What is a secure cipher?



What is a secure cipher?

Attacker’s abilities:    CT only attack (for now)

Possible security requirements:   
attempt #1:  attacker cannot recover secret key

attempt #2:  attacker cannot recover all of plaintext

Shannon’s idea:  
CT should reveal no “info” about PT  

E(k, m) = m    would be secure

E(k, m0 || m1) = m0 || k ⊕m1 would be secure



Information Theoretic Security  (Shannon 1949)

Definition.

A cipher (E, D) over (K, M, C) has perfect secrecy if

∀m0, m1 ∈M with len(m0) = len(m1) and ∀c ∈ C 

Pr[E(k, m0)=c] = Pr[E(k, m1)=c]

where k is uniform in K (k ⟵ K)



Information Theoretic Security  

• Given CT, can’t tell if PT is m0 or m1 (for all m0, m1)

• Most powerful adversary learns nothing about PT from CT

• No CT only attack! (but other attacks are possible…)



Is OTP ‘’secure’’?

OTP has perfect secrecy.

Proof:



Let m∈M and c∈ C.

How many OTP keys map m to  c ?

•None
•1
•2
• It depends on m

m: 0  1  1  0  1  1  1

k : ?  ?   ?  ?  ?  ?  ?

c : 1  1  0  1  1  0  1

⊕



Is OTP ‘’secure’’?

OTP has perfect secrecy.

Proof:

1



The bad news …

• OTP drawback: key-length=msg-length

• Are there ciphers with perfect secrecy that use shorter keys?

Theorem: perfect secrecy⇒ |K| ≥ |M|

i.e. perfect secrecy⇒ key-length ≥ msg-length

• Hard to use in practice!!!! 



Pseudorandom Generators
and Stream Ciphers



Review

Cipher over (K,M,C):  a pair of “efficient” algorithms  (E, D)  s.t.
∀m ∈M, ∀ k ∈ K:   D(k, E(k, m)) = m

Weak ciphers:    substitution cipher,  Vigener, …

A good cipher:   OTP M = C = K = {0,1}n

E(k, m) = k ⊕m   ,     D(k, c) = k ⊕ c

OTP has perfect secrecy  (i.e., no CT only attacks)

Bad news:   perfect-secrecy ⇒ key-len ≥ msg-len



Stream Ciphers:  making OTP practical

Idea: replace “random” key by “pseudorandom” key

Pseudorandom Generator (PRG):
PRG is a function  G: {0,1}s →  {0,1}n        n>>s

seed space

(efficiently computable by a deterministic algorithm)



Stream Ciphers:  making OTP practical

E(k, m) = G(k) ⊕m D(k, c)  =  G(k) ⊕ c

k

G(k)
⊕

m

c

G

• k must be random
• k must not be used 

multiple times

k

G(k)
⊕

c

m

G



Can a stream cipher have perfect secrecy?

• Yes, if the PRG is really “secure”

• No, there are no ciphers with perfect secrecy

• Yes, every cipher has perfect secrecy

• No, since the key is shorter than the message



Can a stream cipher have perfect secrecy?

• Yes, if the PRG is really “secure”

• No, there are no ciphers with perfect secrecy

• Yes, every cipher has perfect secrecy

• No, since the key is shorter than the message



Stream Ciphers:  making OTP practical

Stream ciphers cannot have perfect secrecy !!

•Need a different definition of security

• Security will depend on specific PRG



Weak PRGs     (do not use for crypto)

glibc random():

r[i] ← ( r[i-3] + r[i-31] ) % 232

output  r[i] >> 1

Linear congruential generator with parameters a, b, p:
(a, b are integers, p is a prime)

r[0] := seed
r[i] ← a r[i-1] + b mod p
output few bits of r[i]
i++

has some good statistical properties
But it’s easy to predict

Do not use random() for crypto
(e.g., Kerberos v4)



Attacks on OTP and 
Stream Ciphers



Review

• One-time pad:       
• E(k,m) = k ⊕m
• D(k,c)  = k⊕ c

• Stream ciphers 
making OTP practical using a PRG G: K ⟶ {0,1}n

• E(k,m) = G(k) ⊕m
• D(k,c)  = G(k) ⊕ c

• k is random (uniform) 
• k used only once



Attack 1:    two time pad is insecure !!

Never use stream cipher key more than once !!

c1  m1  PRG(k)

c2  m2  PRG(k)

Eavesdropper does:

c1  c2       → m1  m2 

Enough redundancy in English and ASCII encoding that:

m1  m2       → m1 ,  m2



Real-world examples

• Project Venona (1941 – 1946)



Real-world examples

• Project Venona (1941 – 1946)

• MS-PPTP   (windows NT):

k k
m1

m2

m3

s1

s2

s3

[ m1 || m2 || m3 ] ⊕ PRG(k) [ s1 || s2 || s3 ] ⊕ PRG(k)

Need different keys for    C⟶S    and    S⟶C

k = (kC⟶S , kS⟶C ) 



Real-world examples

802.11b WEP:

Length of IV:     24 bits

• Repeated IV after 224 ≈ 16M frames

• On some 802.11 cards:   IV resets to 0 after power cycle

k k

m CRC(m)

PRG(  IV  ll k ) 

ciphertextIV

Client Access Point

⊕

k: LONG-TERM KEY 



Avoid related keys

802.11b WEP:

key for frame #1:     (1 ll k)

key for frame #2:     (2 ll k)

k k

m CRC(m)

PRG(  IV  ll k ) 

ciphertextIV

⋮

24 bits 104 bits

Very related keys!!
Not random keys!

The PRG used in WEP (called RC4) is 
not secure for such related keys
• Attack that can recover k after 106

frames (FMS 2001)
• Recent attack => 40.000 frames 

⊕



A better construction

⇒ now each frame has a pseudorandom key

better solution:  use stronger encryption method (as in WPA2)

k k
PRG

key for 
frame #1

key for 
frame #2

key for 
frame #3



Yet another example:  disk encryption

To: Bob

To: Eve

Encr.

Encr.

The sameChanged



Two time pad:   summary

Never use stream cipher key more than once !!

• Network traffic:  negotiate new key for every session (e.g. TLS)
• One key (or ‘’sub-key’’) for traffic from Client to Server 

• One key (or ‘’sub-key’’) for traffic from Server to Client

• Disk encryption: typically do not use a stream cipher



Attack 2:  no integrity   (OTP is malleable)

Alice

E
m c = k ⊕ m 

Bob

D
c*

k

c

c* = c ⊕ p 

c*

k

k ⊕ c* = 

k ⊕ c ⊕ p =

k ⊕ k ⊕ m ⊕ p =

m ⊕ p

Modifications to ciphertext are undetected and 
have predictable impact on plaintext



Attack 2:  no integrity   (OTP is malleable)
Alice

E
m c = k ⊕ m 

Bob

D
c*

k

c

c* = c ⊕ ??? 

c*

k

k ⊕ c* = 

not m

• Alice has to answer yes (1) or no (0) to Bob’s invitation. She’ll encrypt the answer with OTP.
• The attacker cannot recover Alice’s answer from CT. 
• Still, can the attacker ‘’flip’’ Alice’s answer? 

Yes !! Apply⊕ 1 to the intercepted CT



Attack 2:  no integrity   (OTP is malleable)

Alice

E
m =  0 c = k ⊕ 0 

Bob

D
c*

k

c

c* = c ⊕ 1 

c*

k

k ⊕ c* = 

k ⊕ c ⊕ 1 =

k ⊕ k ⊕ 0 ⊕ 1 =

0 ⊕ 0 ⊕ 1 =

1



Attack 2:  no integrity   (OTP is malleable)

Alice

E
m =  1 c = k ⊕ 1 

Bob

D
c*

k

c

c* = c ⊕ 1 

c*

k

k ⊕ c* = 

k ⊕ c ⊕ 1 =

k ⊕ k ⊕ 1 ⊕ 1 =

0 ⊕ 1 ⊕ 1 =

0



Attack 2:  no integrity   (OTP is malleable)

Alice

E

From Alice

…

…. 

Bob

D

k k

m =

Attacker wants to change Alice into Maria.
Can he do that?

…



Attack 2:  no integrity   (OTP is malleable)

Alice

E

Bob

D

k k

m = Alice

Attacker wants to change Alice into Maria.
Can he do that?

c* = c ⊕ ??? 

c c*

D(k,c*) = Maria



Attack 2:  no integrity   (OTP is malleable)

Alice

E

Bob

D

k k

m = Alice

Attacker wants to change Alice into Maria.
Can he do that?

c* = c ⊕ Alice ⊕ Maria

c c*

D(k,c*) = Maria



Attack 2:  no integrity   (OTP is malleable)

Alice

E
Alice c = k ⊕ Alice 

Bob

D
c*

k

c

c* = c ⊕ Alice ⊕ Maria

c*

k

k ⊕ c* = 

k ⊕ c ⊕ Alice ⊕ Maria = 

k ⊕ k ⊕ Alice ⊕ Alice ⊕ Maria = 

0 ⊕ Alice ⊕ Alice ⊕ Maria = 

0 ⊕ 0 ⊕ Maria = 

Maria

Consider the bank account number in a wire transfer…



Real-world Stream Ciphers



Old example (software):  RC4     (1987)

• Used in HTTPS and WEP

2048 bits
128 bits

seed

1 byte
per round

Variable size seed 
(e.g., 128 bits)



RC4 PRG

The RC4 stream cipher key s is a seed for the PRG and is used to initialize the array S 
to a pseudo-random permutation of the numbers 0 : : : 255. Initialization is 
performed using the following setup algorithm:

During the loop the index i runs linearly through the array while the index j jumps 
around. At each iteration the entry at index i is swapped with the entry at index j.



RC4 PRG

Once the array S is initialized, the PRG generates pseudo-random output one byte 
at a time using the following stream generator:

The procedure runs for as long as necessary. Again, the index i runs linearly through 
the array while the index j jumps around. Swapping S[i] and S[j] continuously 
shuffles the array S.



Security of RC4

Weaknesses:

1.  Bias in initial output: let us assume that the RC4 setup algorithm is perfect and 
generates a uniform permutation from the set of all 256! permutations. 
Mantin and Shamir showed that, even assuming perfect initialization, the output of 
RC4 is biased:      Pr[ 2nd byte = 0 ]  =  2/256   → RC4-drop[n]

2. Fluhrer and McGrew: Prob. of   (0,0)   is     1/2562  +  1/2563

3.  Related key attacks: attack on WEP



Old example (hardware):   CSS    (badly broken)

Linear feedback shift register  (LFSR):

DVD encryption (CSS): 2 LFSRs

GSM encryption (A5/1,2): 3 LFSRs

Bluetooth (E0): 4 LFSRs

all broken

⊕ Seed = initial state of the LFSR

(Taps not for all cells)

Content Scrambling System

1         0        1         0         1



Old example (hardware):   CSS    (badly broken)

CSS:     seed = 5 bytes = 40 bits

17-bit LFSR

25-bit LFSR

+ (mod 256)

8 bits (in 8 cycles)

8 bits

8 bits

Carry from 
previous block

Easy to break in time ≈ 217

One byte at a time

1 || [first 2 bytes of the seed] 

1 || [last 3 bytes of the seed] 



Modern stream ciphers: eStream

PRG:     {0,1}s × R  ⟶ {0,1}n       n>>s

Nonce:   a non-repeating value for a given key, that is 

a pair (k,r) is never used more than once 

=> can re-use the key as long as the nonce changes

E(k, m , r)  =  m ⊕ PRG(k , r)

Seed Nonce



eStream:   Salsa 20   (SW+HW)

Salsa20:    {0,1} 128 or 256  × {0,1}64 ⟶ {0,1}n (max n = 273 bits)

Salsa20( k, r)   :=   H( k , (r, 0))   ll H( k , (r, 1))   ll …

h:  invertible function.    designed to be fast on x86   (SSE2)

τ0

k
τ1

r
i

τ2

k
τ3

64 bytes

k
r
i

32 bytes

64 byte
output

⊕h

(τi’s: fixed 4-byte constants)

H:
(16 bytes)

(8 bytes)

(8 bytes)

h h h
…

(Apply h 10 times)

64 bytes

addition



Performance: Crypto++  5.6.0      [ Wei Dai ]

AMD Opteron,   2.2 GHz     ( Linux)

PRG Speed  (MB/sec)

RC4 126

Salsa20/12 643

Sosemanuk 727
eStream



When is a PRG ‘‘secure’’?



When is a PRG ‘‘secure’’?

1. Unpredictable PRG

2. Secure PRG

We’ll see that they are equivalent notions



PRG must be unpredictable

Suppose PRG is predictable:

⊕
c

m

G(k)

Even

is a problem



PRG must be unpredictable

We say that  G: K ⟶ {0,1}n is predictable if:

PRG is unpredictable if it is not predictable

⇒ ∀i:  no “efficient” adversary can predict bit (i+1) for “non-neg” ε



• Suppose  G:K ⟶ {0,1}n is such that for all k:   XOR(G(k)) = 1

• Is G predictable ??

1. Yes, given the first bit I can predict the second

2. No, G is unpredictable

3. Yes, given the first (n-1) bits I can predict the n-th bit

4. It depends



• Suppose  G:K ⟶ {0,1}n is such that for all k:   XOR(G(k)) = 1

• Is G predictable ??

1. Yes, given the first bit I can predict the second

2. No, G is unpredictable

3. Yes, given the first (n-1) bits I can predict the n-th bit

4. It depends



One more definition of  ‘‘secure’’ PRG

Let G:K ⟶ {0,1}n be a PRG 

Goal: 

define what it means that

is “indistinguishable” from

G: {0,1}10 ⟶ {0,1} 1000

[k ⟵ {0,1}10, output G(k)]

[r ⟵ {0,1}1000, output r]



Note

A minimum security requirement for a PRG is that 

the length s of the random seed should be sufficiently large

so that a search over 2s elements (the total number of possible seeds) 
is infeasible for the adversary.



Statistical Tests

Statistical test on {0,1}
n
:   

An algorithm A s.t. A(x) outputs  “0” or “1”, 
that is A : {0,1}n⟶{0,1}

Examples:

1. A(x)=1 iff |#0(x) - #1(x)| ≤ 10 √n

2. A(x)=1 iff |#00(x) – n/4| ≤ 10 √n

3. A(x)=1 iff max-run-of-0(x) < 10 log2(n)

…..



Advantage

• Let  G:K ⟶{0,1}
n

be a PRG

• Let  A: {0,1}
n
⟶ {0,1} be a statistical test on {0,1}

n

Define:  

• Adv close to 0 => A cannot distinguish G from random

• Adv non-negligible => A can distinguish G from random

• Adv close to 1 => A can distinguish G from random very well

A silly example:    A(x) = 0   ⇒ AdvPRG [A,G] =    0 – 0 = 0



Example of Advantage

• Suppose  G:K ⟶{0,1}n satisfies   msb(G(k)) = 1    for 2/3 of keys in K

• Define statistical test  A(x) as:  

if  [  msb(x)=1  ]  output “1” else output “0”

Then

AdvPRG [A,G]  =  | Pr[ A(G(k))=1]  - Pr[ A(r)=1 ] | = 

| 2/3 – 1/2 | =   1/6

A breaks  G with advantage 1/6 (which is not negligible) 
hence G is not a good PRG



Secure PRGs:  crypto definition

Definition:

We say that  G : K ⟶ {0,1}
n

is a secure PRG if 

for every “efficient” statistical test A, AdvPRG[A,G] is “negligible”

Are there provably secure PRGs? Unknown (=> P ≠ PN)



A secure PRG is unpredictable

We show:  PRG predictable   ⇒ PRG is insecure

Suppose  A is an efficient algorithm s.t.

for non-negligible  ε (e.g.   ε = 1/1000)



A secure PRG is unpredictable

Define statistical test  B  as:



Thm (Yao’82): an unpredictable PRG is secure

Let  G : K ⟶ {0,1}
n

be  PRG

“Thm”:   if  ∀ i ∈ {0, … , n-1}   G is unpredictable at position i

then G is a secure PRG.

If next-bit predictors cannot distinguish G from random
then no statistical test can !!



More Generally

Let  P1 and P2 be two distributions over  {0,1}n

We say that P1 and P2 are computationally indistinguishable  (denoted  P1 ≈p P2 )

Example:   a PRG is secure if   { k ⟵K :  G(k) } ≈p uniform({0,1}n)



Semantic Security



What is a secure cipher?

Attacker’s abilities: CT only attack: obtains one ciphertext

Possible security requirements:   
attempt #1:  attacker cannot recover secret key

attempt #2:  attacker cannot recover all of plaintext

Shannon’s idea:  
CT should reveal no “info” about PT  

E(k, m) = m    would be secure

E(k, m0 || m1) = m0 || k ⊕m1 would be secure



Recall Shannon’s perfect secrecy

Let (E,D) be a cipher over (K,M,C) 

Shannon’s perfect secrecy:

(E,D) has perfect secrecy if      ∀m0, m1 ∈M    (  |m0| = |m1| )

{ E(k,m0) }     =    { E(k,m1) }       where   k⟵K

Weaker Definition:

(E,D) has perfect secrecy if      ∀m0, m1 ∈M    (  |m0| = |m1| )

{ E(k,m0) }   ≈p { E(k,m1) }       where   k⟵K

(One more requirement) … but also need adversary to exhibit  m0, m1 ∈M explicitly

• The two distributions must be 
identical

• Too strong definition
• It requires long keys
• Stream Ciphers can’t satisfy it

Rather than requiring the two 
distributions to be identical, we 
require them to be 
COMPUTATIONALLY 
INDISTINGUISHABLE



Semantic Security (one-time key)

For a cipher Q = (E,D) and an adversary A define a game as follows.

For b=0,1 define experiments EXP(0) and EXP(1) as:

AdvSS[A,Q] := | Pr[EXP(0)=1 ] −  Pr[ EXP(1)=1 ] | 

Challenger

b

Adversary A

kK
m0 , m1  M :    |m0| = |m1|

c  E(k, mb)

b’  {0,1}



Semantic Security (one-time key)

AdvSS[A,Q] = | Pr[ EXP(0)=1 ] −  Pr[ EXP(1)=1 ] | should be “negligible” for all “efficient” A 

Challenger Adversary A

kK

m0 , m1  M :    |m0| = |m1|

c  E(k,m0) b’  {0,1}
EXP(0):

Challenger Adversary A

kK

m0 , m1  M :    |m0| = |m1|

c  E(k,m1) b’  {0,1}
EXP(1):



Semantic Security (one-time key)

Definition:

Q is semantically secure if for all “efficient” A,  

AdvSS[A,Q] is “negligible”.



Adversary B  (us)

Example
Suppose efficient A can always deduce LSB of PT from CT 
⇒ Q is not semantically secure. 

Challenger

b{0,1}

Algorithm  A
(given)

kK
c  E(k, mb)

m0 s.t. LSB(m0)=0
m1 s.t. LSB(m1)=1

c

LSB(mb)=b

Then  AdvSS[B,Q] = | Pr[ EXP(0)=1 ] −  Pr[ EXP(1)=1 ] |= |0 – 1| = 1 



Stream ciphers are semantically secure

Theorem:

G is a secure PRG  ⇒ stream cipher Q derived from G is semantically secure

In particular:

∀ semantic security adversary A, ∃ a PRG adversary B (i.e., a statistical test) s.t.

AdvSS[A,Q]  ≤  2 ∙ AdvPRG[B,G]   



Block Ciphers



Outline

• Block Ciphers

• Pseudo Random Functions (PRFs)

• Pseudo Random Permutations (PRPs)

•DES – Data Encryption Standard

• AES – Advanced Encryption Standard 

• PRF ⇒ PRG

• PRG ⇒ PRF



Block Ciphers:  crypto work horse

E, D CT Block

n bits

PT Block

n bits

Key k bits

Canonical examples:

• DES: n= 64 bits, k = 56 bits

• 3DES: n= 64 bits, k = 168 bits

• AES: n=128 bits, k = 128, 192, 256 bits



Block Ciphers Built by Iteration

R(k,m) is called a round function

for  3DES (n=48),      for AES-128  (n=10)

key  k

key expansion

k1 k2 k3 kn

R
(k

1
,m

)

R
(k

2
,m

2
)

R
(k

3
,m

3
)

R
(k

n
,m

n
)

m c
m2 m3 mn



Performance: Crypto++  5.6.0      [ Wei Dai ]

AMD Opteron,   2.2 GHz     ( Linux)

Cipher Block/key size Speed  (MB/sec)

RC4 126

Salsa20/12 643

Sosemanuk 727

3DES 64/168 13

AES-128 128/128 109

b
lo

ck
stream



Abstractly: PRPs and PRFs

• Pseudo Random Function   (PRF)  defined over (K,X,Y):

F:  K  X  → Y    

such that there exists “efficient” algorithm to evaluate F(k,x)

• Pseudo Random Permutation   (PRP)  defined over (K,X):

E:   K  X  → X     

such that:
1. There exists “efficient” deterministic algorithm to evaluate  E(k,x)

2. The function  E(k,  )   is  one-to-one (for every k)

3. There exists “efficient” inversion algorithm D(k,y)



Running example

• Example PRPs:    3DES,   AES,   …

AES:   K  X  → X where      K = X = {0,1}128

3DES:   K  X  → X where      X = {0,1}64 ,  K = {0,1}168

• Functionally, any PRP is also a PRF.

• A PRP is a PRF where X=Y and is efficiently invertible.



Secure PRFs 

• Let   F:  K  X  → Y   be a PRF. Set some notation:

Funs[X,Y]:  the set of all functions from X to Y

SF =  { F(k,)  s.t. k  K }    Funs[X,Y]

• Intuition: a PRF is secure if a random function in Funs[X,Y] is 
“indistinguishable” from a random function in SF

SF

Size |K|

Funs[X,Y]
Size |Y|

|X|



Secure PRF: definition

• Consider a PRF F : K  X  → Y. For  b=0,1  define experiment EXP(b) as:

Definition: F is a secure PRF if for all “efficient” adversary A:

AdvPRF[A,F]  :=  |Pr[EXP(0)=1] – Pr[EXP(1)=1] | is “negligible”.

Challenger

b

Adversary Ab=0:   k  K,  f = F(k,)

b=1:   f  Funs[X,Y] x1  X

f(x1)

b’  {0,1}

f
,     …, xq

,  …, f(xq)

,     x2

,     f(x2)



Secure PRPs   (secure block cipher)

• Let   E:  K  X  → X   be a PRP

Perms[X]: the set of all one-to-one functions from X to X
(i.e., permutations)

SE =  { E(k,)  s.t. k  K  }    Perms[X]

• Intuition: a PRP is secure if a random function in Perms[X] is 
“indistinguishable” from a random function in SE



Secure PRP   (secure block cipher)

• Consider a PRP E : K  X  → X. For b=0,1 define experiment EXP(b)  as:

Definition. E is a secure PRP if for all “efficient” adversary A:

AdvPRP[A,E]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] | is “negligible”.

Challenger

b

Adversary Ab=0:   k  K,  f = E(k,)

b=1:   f  Perms[X] x1  X

f(x1)

b’  {0,1}

f
,    x2,      …,  xq

,    f(x2),  …, f(xq)



Data Encryption Standard 
(DES)



The Data Encryption Standard (DES)

• Early 1970s:  Horst Feistel designs Lucifer at IBM

key-length = 128 bits  ;   block-length = 128 bits

• 1973:  NBS (nowadays called NIST) asks for block cipher proposals.   

IBM submits variant of Lucifer.

• 1976:  NBS adopts DES as a federal standard
key-length = 56 bits  ;   block-length = 64 bits

• 1997:  DES broken by exhaustive search

• 2000:  NIST adopts Rijndael as AES to replace DES



DES:  core idea – Feistel Network

Given functions f1, …, fd:  {0,1}n ⟶ {0,1}n (not necessarily invertible)

Goal:  build invertible function F: {0,1}2n ⟶ {0,1}2n

In symbols:

input output

Rd-1

Ld-1

Rd

Ld

R0

L0

n
-b

its
n

-b
its

R1

L1

⊕

f1

R2

L2

⊕

f2 ⋯

⊕

fd

Ri = fi(Ri-1) ⊕ Li-1

Li = Ri-1



Feistel network is invertible

Claim:   for all (arbitrary) f1, …, fd:   {0,1}n ⟶ {0,1}n

Feistel network  F: {0,1}2n ⟶ {0,1}2n is invertible

Proof:   construct inverse

Ri-1

Li-1

Ri

Li

⊕

fi

inverse Ri-1 = Li

Li-1 = fi(Li) ⨁ Ri



Feistel network is invertible

Claim:   for all (arbitrary) f1, …, fd:   {0,1}n ⟶ {0,1}n

Feistel network  F: {0,1}2n ⟶ {0,1}2n is invertible

Proof:   construct inverse

Ri-1

Li-1

Ri

Li

⊕

fi

inverse Ri

Li

Ri-1

Li-1

⊕

fi



Decryption circuit

• Inversion is basically the same circuit, 
with  f1, …, fd applied in reverse order

• General method for building invertible functions (block ciphers) from 
arbitrary functions.      

• Used in many block ciphers … but not AES

R1

L1

R0

L0

Rd

Ld

n
-b

its
n

-b
its

Rd-1

Ld-1

⊕

fd

Rd-2

Ld-2

⊕

fd-1 ⋯
⊕

f1



Theorem (Luby-Rackoff ‘85):

f:  K × {0,1}n ⟶ {0,1}n a secure PRF    

⇒ 3-round Feistel F:  K3 × {0,1}2n ⟶ {0,1}2n is a secure PRP 
(k0, k1, k2 three independent keys)

R3

L3

R0

L0

input

R1

L1

⊕

R2

L2

⊕ ⊕

output

f(k0,R0) f(k1,R1) f(k2,R2)



DES:    16 round Feistel network

f1, …, f16:   {0,1}32 ⟶ {0,1}32 ,      fi(x) = F(ki, x ) 

input

6
4

  b
it

s

output

6
4

  b
it

s

16 round 
Feistel network

IP IP-1

k

key expansion

k1 k2 k16⋯

To invert, use keys in reverse order

56 bits

48 bits each



The function    F(ki, x)

S-box:  function {0,1}6 ⟶ {0,1}4  ,  implemented as look-up table.

x ki

48 bits

S3 S4 S5 S6 S7 S8S1 S2

⊕

E

48 bits32 bits

32 bits

6

P 32 bits

6 6 6 66 6 6

4 4 4 4 44 4 4

48

Replicates and moves around



The S-boxes (substitution boxes)

Si: {0,1}6 ⟶ {0,1}4 

S5(011011) ⟶ 1001



Choosing the S-boxes and P-box

• Choosing the S-boxes and P-box at random would result 
in an insecure block cipher   (key recovery after ≈224 outputs)

• Several rules used in choice of S and P boxes:

• No output bit should be close to a linear func. of the input bits

• S-boxes are 4-to-1 maps (4 pre-images for each output)

• …



Exhaustive Search for block cipher key

Goal:   given a few input output pairs  (mi, ci = E(k, mi)) i=1,..,3
find key k.



Exhaustive Search for block cipher key

Goal:   given a few input output pairs  (mi, ci = E(k, mi)) i=1,..,3
find key k.

Lemma:   Suppose DES is an ideal cipher
( 256 random invertible functions ⫪1, …, ⫪2^56 : {0,1}64 → {0,1}64)

Then ∀ m, c   there is at most one key k s.t. c = DES(k, m) 

Proof: 

with prob. ≥ 1 – 1/256 ≈ 99.5%

Pr[∃k’≠ k: c=DES(k,m)=DES(k’,m)] ≤ ∑k’∈{0,1}
56 Pr[DES(k,m) = DES (k’,m)] ≤ 256 × 1/(264) =

= 1/(28)= 1/256



Exhaustive Search for block cipher key

For two DES pairs   (m1, c1=DES(k, m1)),   (m2, c2=DES(k, m2))
unicity prob. ≈  1 - 1/271

For AES-128:    given two inp/out pairs, unicity prob. ≈  1 - 1/2128

⇒ two input/output pairs are enough for exhaustive key search.



Exhaustive Search Attacks



DES challenge

msg =   “The unknown messages is: XXXX … “
CT    =              c1 c2 c3                         c4

Goal:    find k ∈ {0,1}56 s.t. DES(k, mi) = ci for  i=1,2,3 and decrypt c4,c5…

1997:   Internet search  -- 3 months
1998:   EFF machine (deep crack)  -- 3 days         (250K $)
1999:   combined search  -- 22 hours
2006:   COPACOBANA (120 FPGAs) -- 7 days     (10K $)

⇒ 56-bit ciphers should not be used  !!        

m1 m2 m3

8 byte blocks, encrypted with the same key



Strengthening DES against exhaustive search

• Method 1:     Triple-DES

• Method 2:     DESX

• General construction that can be applied to other block 

ciphers as well.



Triple DES

• Consider a block cipher  

E : K × M ⟶M

D : K × M ⟶ M

• Define 3E: K3 × M ⟶M as

3E (k1,k2,k3, m) = E(k1, D(k2, E(k3,m)))

• For 3DES (or Triple DES)

• key lenght = 3×56 = 168 bits.             

• 3×slower than DES. 

• k1=k2=k3 ⇒ single DES

• simple attack in time  ≈ 2118 (more on this later …)



Why not double DES?

• Given a block cipher E, define 2E( k1, k2, m)  =  E(k1 , E(k2 , m))

• Double DES: 2DES( k1, k2, m)  =  E(k1 , E(k2 , m))

key-length = 112 bits for 2DES

• Attack: Given m and c the goal is to

find (k1,k2) s.t. E(k1, E(k2,m)) = c or  equivalently

find (k1,k2) s.t. E(k2,m) = D(k1,c) 

m E(k2,⋅) E(k1,⋅) c



Meet in the middle attack

• Attack: Given m and c the goal is to

find (k1,k2) s.t. E(k1, E(k2,m)) = c or  equivalently

find (k1,k2) s.t. E(k2,m) = D(k1,c) 

• Attack involves TWO STEPS

m E(k2,⋅) E(k1,⋅) c



Meet in the middle attack

Step 1:   
• build table.
• sort on 2nd column

k0 = 00…00
k1 = 00…01
k2 = 00…10

⋮
kN = 11…11

E(k0 , m)
E(k1 , m)
E(k2 , m)

⋮
E(kN , m)

256

entries



Meet in the middle attack

Step 2:   
• for each k ∈ {0,1}56 do:

test if  D(k, c) is in the 2nd column of the table
If so, then E(ki,m) = D(k,c)   ⇒ (ki,k) = (k2,k1)

k0 = 00…00
k1 = 00…01

⋮
ki = 00…….

⋮
kN = 11…11

E(k0 , m)
E(k1 , m)

⋮
E(ki , m)

⋮
E(kN , m)

m E(k2,⋅) E(k1,⋅) c



Meet in the middle attack

Time =  256 log(256)  +  256 log(256)  < 263    <<   2112   ,      

Space ≈ 256 

build + sort table search in table



Meet in the middle attack

Same attack on 3DES:

Time = 2118   ,      space ≈ 256

Time =  256log(256)  +  2112log(256) < 2118  

m D(k2,⋅) E(k1,⋅) cE(k3,⋅)

build + sort table search in table



DESX

• Consider a block cipher  

E : K × M ⟶M

D : K × M ⟶ M

• Define EX as

EX( k1, k2, k3, m)   =   k1 ⨁ E(k2,  m⨁k3 ) 

• For DESX

• key-len = 64+56+64 = 184 bits k1 ⨁ E(k2,  m⨁k3 ) 

• …  but easy attack in time  264+56 = 2120

• Note:    k1 ⨁ E(k2, m)    and    E(k2, m⨁k1)    insecure !!
(XOR outside)          or          (XOR inside)  ⇒ As weak as E w.r.t. exhaustive search



Few others attacks on 
block ciphers



Linear attacks on DES

A tiny bit of linearly in S5 lead to a 243 time attack.

Total attack time ≈243 ( << 256 )   with  242 random inp/out pairs 



Quantum attacks

Generic search problem:

Let   f: X ⟶ {0,1}  be a function.

Goal:    find  x*∈X    s.t. f(x*)=1.

Classical computer:    best generic algorithm time = O( |X| )

Quantum computer [Grover ’96] :  time = O( |X|1/2 )



Quantum exhaustive search

Given m and  c = E(k,m) define

Grover   ⇒ quantum computer can find k in time   O( |K|1/2 )

DES:    time   ≈228 ,         AES-128:   time   ≈264

Quantum computer   ⇒ 256-bits key ciphers   (e.g.,  AES-256)

1    if  E(k,m) = c

0    otherwise
For k ∈ K,  f(k) = 



Advanced Encryption Standard 
(AES)



The AES process

• 1997:  NIST publishes request for proposal

• 1998:  15 submissions.     Five claimed attacks.

• 1999:  NIST chooses 5 finalists

• 2000:  NIST chooses Rijndael as AES    (designed in Belgium)

Key sizes:   128, 192, 256 bits.        Block size:  128 bits



AES is a Substitution–permutation Network
(not Feistel)

in
p

u
t

⨁
S1

S2

S3

S8

⋯

o
u

tp
u

t

substitution
layer

permutation
layer inversion

k1

⨁

S1

S2

S3

S8
⋯

k2

S1

S2

S3

S8

⋯

⨁⋯

kn



AES-128 schematic

input

4

4

10 rounds

(1) ByteSub
(2) ShiftRow
(3) MixColumn

⨁

k2

⋯

k9

⨁

(1) ByteSub
(2) ShiftRow
(3) MixColumn

⨁

k1

⨁

k0

(1) ByteSub
(2) ShiftRow

output

4

4

⨁

k10

key

16 bytes
key expansion: 16 bytes ⟶ 176 bytes (11 x 16)

invertible



The round function

• ByteSub:    a 1 byte S-box.    256 byte table     (easily computable)
• Apply S-box to each byte of the 4x4 input A, i.e., A[i,j] = S[A[i,j]], for 1 ≤i,j≤4

• ShiftRows:  

• MixColumns:



AES in hardware

AES instructions in Intel Westmere:

• aesenc,  aesenclast:    do one round of AES

128-bit registers:  xmm1=state,   xmm2=round key

aesenc xmm1, xmm2   ;   puts result in xmm1  

• aeskeygenassist:    performs AES key expansion

• Claim  14 x speed-up over OpenSSL on same hardware 

Similar instructions on AMD Bulldozer 



Attacks

• Best key recovery attack:  

four times better than ex. search  [BKR’11]

• Related key attack on AES-256:    [BK’09]

Given  299  inp/out  pairs from four related keys in AES-256

can recover keys in time ≈ 299



PRF ⇒ PRG
PRG ⇒ PRF



An easy application:   PRF ⇒ PRG (counter mode)

• Let  F: K  {0,1}n → {0,1}n be a PRF.

• We define the PRG G: K → {0,1}nt as follows:

(t is a parameter that we can choose)

G(k) =   F(k, 0 𝒏)  ||  F(k, 1 𝒏)  ||  ⋯ ||  F(k, t-1 𝒏)

• Properties:

• Theorem: If F is a secure PRF then G is a secure PRG

• Key property: parallelizable



Can we build a PRF from a PRG?

Let  G: K ⟶ K2 be a PRG

Define a 1-bit PRF  F: K × {0,1} ⟶ K  as

F(k, x∈{0,1}) = G(k)[x]

Theorem. If G is a secure PRG then F is a secure PRF

Can we build a PRF with a larger domain? (e.g., 128 bits)

G(k)[0]

k

G(k)[1]

G

F(k,0) F(k,1)



Extending a PRG

Let G:   K ⟶ K2 be a PRG

Define G1:  K ⟶ K4 as   

G1(k) = G(G(k)[0]) ll G(G(k)[1])

Then define a 2-bit PRF  F: K × {0,1}2 ⟶ K  as

F(k, x∈{0,1}2) = G1(k)[x]

G(k)[0]

k

G(k)[1]

G

G1(k)

G G

00 01 10 11



Extending more

Let   G: K ⟶ K2 .    

Define  G2: K ⟶ K8 as   G2(k) =

Then define a 3-bit PRF 

F: K × {0,1}3 ⟶ K  as

F(k, x∈{0,1}3 ) = G2(k)[x]

G(k)[0]

k

G(k)[1]

G

G2(k)

G G

G G G G

000 001 010 011 100 101 110 111

eval F(k,101) 
as follows:



Extending even more:   the GGM PRF

Let   G: K ⟶ K2 .        define   PRF    F: K × {0,1}n ⟶ K   as

For input   x = x0 x1 … xn-1 ∈ {0,1}n   do:  

Security:  G a secure PRG ⇒ F is a secure PRF on {0,1}n .

Not used in practice due to slow performance. 

k k1 k2 k3
kn

G(k)[x0] G(k1)[x1] G(k2)[x2] G(kn-1)[xn-1]
⋯



Secure block cipher from a PRG?

Can we build a secure PRP from a secure PRG?

• No, it cannot be done

• Yes, just plug the GGM PRF into the Luby-Rackoff theorem

• It depends on the underlying PRG



Theorem (Luby-Rackoff ‘85):

f:  K × {0,1}n ⟶ {0,1}n a secure PRF    

⇒ 3-round Feistel F:  K3 × {0,1}2n ⟶ {0,1}2n is a secure PRP 
(k0, k1, k2 three independent keys)

R3

L3

R0

L0

input

R1

L1

⊕

R2

L2

⊕ ⊕

output

f(k0,R0) f(k1,R1) f(k2,R2)



Modes of Operation
(using block ciphers)



Outline

• One-Time Key
• Semantic Security

• Electronic Code Book (ECB)

• Deterministic Counter Mode (DETCTR)

• Many-Time Key
• Semantic Security for Many-Time Key: 

Semantic Security under Chosen-Plaintext Attack (CPA)

• Cipher Block Chaining (CBC)
• Randomized

• Nonce-based



Review: PRPs and PRFs



Block Ciphers

E, D CT Block

n bits

PT Block

n bits

Key k bits

Canonical examples:

• DES: n= 64 bits, k = 56 bits

• 3DES: n= 64 bits, k = 168 bits

• AES: n=128 bits, k = 128, 192, 256 bits



Abstractly:   PRPs and PRFs

• Pseudo Random Function   (PRF)  defined over (K,X,Y):

F:  K  X  → Y    

such that there exists “efficient” algorithm to evaluate F(k,x)

• Pseudo Random Permutation   (PRP)  defined over (K,X):

E:   K  X  → X     

such that:
1. There exists “efficient” deterministic algorithm to evaluate  E(k,x)

2. The function  E(k,  )  is  one-to-one, for every k

3. There exists “efficient” inversion algorithm   D(k,y)



Using block ciphers

• Don’t think about the inner-workings of AES and 3DES.

• We assume both are secure PRPs and will see how to use them



Modes of Operation

How to use a block cipher on messages consisting of more than one block

• One-Time Key
• Electronic Code Book 

• Deterministic Counter Mode

• Many-Time Key
• Cipher Block Chaining

• Counter Mode



Modes of Operation
One-Time Key

(example: encrypted email, new key for every message)



Using PRPs and PRFs

Goal:  build “secure” encryption from a secure PRP   (e.g., AES).

This segment: one-time key

1. Adversary’s power: Adversary sees only one ciphertext   (one-time key)

2. Adversary’s goal: Learn info about PT from CT   (semantic security)

Next segment:   many-time keys   (a.k.a.  chosen-plaintext security)



Incorrect use of a PRP

Electronic Code Book (ECB):

Problem: if    b1 = b2 then  c1 = c2

PT:

CT:

b1 b2

c1 c2



In pictures 

Plain text Cipher text with ECB Cipher text with 
other modes of operation



Semantic Security (one-time key)

AdvSS[A,Cipher] = | Pr[ EXP(0)=1 ] −  Pr[ EXP(1)=1 ] | should be “negligible” for all “efficient” A 

Challenger
Adversary Ak  K

m0 , m1  M :    |m0| = |m1|

c  E(k,m0) b’  {0,1}
EXP(0):

Challenger
Adversary Ak  K

m0 , m1  M :    |m0| = |m1|

c  E(k,m1) b’  {0,1}
EXP(1):

one time key  ⇒ adversary sees only one ciphertext



ECB is not Semantically Secure
ECB is not semantically secure for messages that contain 
more than one block. (known-plaintext attack)

Two blocks

Challenger

b{0,1}

Adversary  Ak  K

c = (c1,c2)  E(k, mb)

m0 = “Hello  World”

m1 = “Hello  Hello”

If  c1=c2 output 1, else output 0Then  AdvSS [A, ECB] = 1 



Deterministic Counter Mode (Secure Construction)

• PRF F : K × {0,1}n → {0,1}n (e.g., n=128 with AES)

• EDETCTR (k, m)  = 
(Encryption)

⇒ Stream cipher built from a PRF   (e.g.,  AES, 3DES)

m[0] m[1] …

F(k,0) F(k,1) …

m[L]

F(k,L)


c[0] c[1] … c[L]



Deterministic Counter Mode (Secure Construction)

• PRF F : K × {0,1}n → {0,1}n (e.g., n=128 with AES)

• DDETCTR (k, c)  = 
(Decryption)

No need to invert F when decrypting

c[0] c[1] …

F(k,0) F(k,1) …

c[L]

F(k,L)


m[0] m[1] … m[L]



Deterministic Counter Mode Security

Theorem:  For any L>0,

If F is a secure PRF over (K,X,X) then 

DETCTR is semantically secure over (K,XL,XL).

In particular,  for every efficient adversary A attacking DETCTR

there exists an efficient adversary B attacking F s.t.:

AdvSS[A, DETCTR] = 2  AdvPRF[B, F]

AdvPRF[B, F]  is negligible (since F is a secure PRF)

Hence, AdvSS[A, DETCTR] must be negligible.



Modes of Operation
Many-Time Key

Examples: 

• File systems:  Same AES key used to encrypt many files.

• IPsec:  Same AES key used to encrypt many packets.



Semantic Security for Many-Time Key

Key used more than once   ⇒ adversary sees many CTs with same key

(i.e., used for multiple messages)

Adversary’s power:  Chosen-Plaintext Attack (CPA)

• Adversary can obtain the encryption of arbitrary messages of his choice 
(conservative modeling of real life)

Adversary’s goal:  Break semantic security



Challengerb Adversary

kK m1,0 , m1,1  M :    |m1,0| = |m1,1|

c1  E(k, m1,b)

Semantic Security for Many-Time Key (CPA Security)

Q = (E,D)  a cipher defined over  (K,M,C).    For   b=0,1   define EXP(b)  as:



Challenger Adversary

kK m2,0 , m2,1  M :    |m2,0| = |m2,1|

c2  E(k, m2,b)

Q = (E,D)  a cipher defined over  (K,M,C).    For   b=0,1   define EXP(b)  as:

b

Semantic Security for Many-Time Key (CPA Security)



Q = (E,D)  a cipher defined over  (K,M,C).    For   b=0,1   define EXP(b)  as:

Definition: Q is semantically secure under CPA if for all “efficient” adversary A:

AdvCPA [A,Q]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] | is “negligible”.

Challenger Adversary

kK

b’{0,1}

mi,0 , mi,1  M :    |mi,0| = |mi,1|

ci  E(k, mi,b)

CPA ⇒ if adversary wants  c = E(k, m)  it queries with  mj,0= mj,1= m

for i=1,…,q:  b

Semantic Security for Many-Time Key (CPA Security)



Ciphers Insecure under CPA

Suppose E(k,m) always outputs same ciphertext for msg m and key k. Then:

So what? an attacker can learn that two encrypted files are 
the same,  two encrypted packets are the same, etc.

• Leads to significant attacks when the message space M is small

Challenger Adversary

kK
m0 , m1  M 

c  E(k, mb)

m0 , m0 M    (chosen PT query) 

c0 E(k, m0)

if c = c0   output 0
else output  1

Adv=1



Ciphers Insecure under CPA

Suppose E(k,m) always outputs same ciphertext for msg m and key k. Then:

If secret key is to be used multiple times   

given the same plaintext message twice, 
encryption must produce different outputs.

Challenger

kK
m0 , m1  M 

c  E(k, mb)

m0 , m0 M    (chosen PT query) 

c0 E(k, m0)
Adversary

if c = c0   output 0
else output  1

Adv=1



Solution 1:   Randomized Encryption

• E(k,m) is a randomized algorithm:

⇒ encrypting same msg twice gives different ciphertexts   (w.h.p.)

⇒ ciphertext must be longer than plaintext

Roughly speaking:   CT-size =   PT-size + “# random bits”

m1

m0

enc
m0

dec

m1



Solution 2:  Nonce-based Encryption

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

Nonce n:  

• a value that changes from msg to msg

• (k,n)  pair never used more than once

• n does not need to be secret and does not need to be random



Solution 2:  Nonce-based Encryption

Nonce

• Method 1:  nonce is a counter (e.g., packet counter)
• used when encryptor keeps state from msg to msg

• if decryptor has same state, need not send nonce with CT

• Method 2:   encryptor chooses a random nonce,   n N 
(It’s like randomized encryption)
(ex. Multiple devices encrypting with the same key)
• N must be large enough to ensure that the same nonce is not chosen twice 

with high probability



CPA Security for Nonce-based Encryption
System should be secure when nonces are chosen adversarially.

Definition. Nonce-based Q is semantically secure under CPA if for all “efficient” adversary A:

AdvnCPA [A,Q]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] |  is “negligible”.

Challenger Adversary

kK ni and  mi,0 , mi,1  :   |mi,0| = |mi,1|

ci  E(k, mi,b , ni) b’  {0,1}

All nonces {n1, …, nq}  must be distinct.

for i=1,…,q:  

b



Many-time Key Mode of Operation:

Cipher Block Chaining (CBC)



Construction 1:   CBC with random IV

• PRP E : K × {0,1}n → {0,1}n

• (Encryption) ECBC(k,m):  choose random IV∈{0,1}n and do:

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3]IV

 

E(k,)



c[0] c[1] c[2] c[3]IV

ciphertext



Construction 1:   CBC with random IV

• D : K × {0,1}n → {0,1}n   inversion algorithm of E

• (Decryption) DCBC(k,c):

D(k,) D(k,) D(k,)

m[0] m[1] m[2] m[3]

 

D(k,)



c[0] c[1] c[2] c[3]IV



(Randomized) CBC Security

Theorem: For any L>0 (length of the message we are encrypting),

If E is a secure PRP over (K,X) then 

CBC is semantically secure under CPA over (K, XL, XL+1).

In particular, for every efficient q-query adversary A attacking CBC

there exists an efficient PRP adversary B attacking E s.t.

AdvCPA [A, CBC]  2AdvPRP[B, E]  +  2 q2 L2 / |X|

Note:    CBC is only secure as long as   q2L2 << |X|

(the error term should be negligible)



An example

q = # messages encrypted with k  ,    L = length of max message 

Suppose we want   AdvCPA [A, CBC] ≤  1/232 ⇐ q2 L2 /|X| < 1/ 232

• AES:     |X| = 2128 ⇒ q L < 248

So, after  248 AES blocks, must change key

• 3DES:    |X| = 264 ⇒ q L < 216

So, after  216 DES blocks, must change key 

⇒ after 216 blocks (each of 8 bytes) need to change key ⇒ 216  × 8 = ½ MB !!!

AdvCPA [A, CBC]  2 AdvPRP[B, E]  +  2 q2 L2 / |X|



Warning:   an attack on CBC with rand. IV

CBC where adversary can predict the IV is not CPA-secure !!

Suppose  given  c ⟵ ECBC(k,m) adversary can predict IV for next message

Challenger Adversary

kK
m0 = IV*⨁ IV ,   m1 ≠ m0

c  [ IV*,  E(k, IV) ]   or

0  X

c0  [ IV,  E(k, 0⨁IV) ]

if c[1] = c0[1] output 0
else output 1

predict IV*

for the next message

Bug in SSL/TLS 1.0:  IV for record #i is last CT block of record #(i-1)

c  [ IV*,  E(k, m1⨁IV*) ] Adv. 1



Construction 2: Nonce-based CBC
• key = (k, k1)

• (key, nonce)  pair is used for only one message

• Encryption:

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3]

 

E(k,)



c[0] c[1] c[2] c[3]nonce

ciphertext

nonce

E(k1,)

IV

included only if unknown to decryptor



Construction 2: Nonce-based CBC

• Decryption:

D(k,) D(k,) D(k,)

m[0] m[1] m[2] m[3]

 

D(k,)



c[0] c[1] c[2] c[3]nonce

E(k1,)



An example Crypto API    (OpenSSL)

void AES_cbc_encrypt(

const unsigned char *in, 

unsigned char *out,

size_t length,

const AES_KEY *key,

unsigned char *ivec, ⟵ user supplies IV

AES_ENCRYPT or AES_DECRYPT);

When it is non-random need to encrypt it before use
(Otherwise, no CPA security!!)



A CBC technicality:  padding

TLS:    for n>0,   n byte pad is

if no pad needed, add a dummy block

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3]  ll pad

 

E(k,)



c[0] c[1] c[2] c[3]IV

IV

E(k1,)

IV’

n n ⋯n n removed
during
decryption16 16 ⋯16 16



Key Exchange



Outline

• Trusted 3rd Parties

• Merkle Puzzles

• The Diffie-Hellman Protocol



Trusted 3rd Parties



Key Management

Problem: n users. Storing mutual secret keys is difficult

O(n) keys per user

O(n2) keys in total

U1 U2

U3 U4



A Better Solution

Online Trusted 3rd Party  (TTP)

TTP

U1
U2

U3 U4

Every user only remembers ONE key

k1

k3 k4

k2

k13



Generating keys: A toy protocol

Alice wants a shared key with Bob.  Eavesdropping security only.

Bob (kB) Alice (kA) TTP

ticket

kAB kAB

“Alice wants key with Bob”

(E,D) a CPA-secure cipher

choose 
random kABE(kA,    “Alice, Bob” ll kAB ) ;    

ticket = E(kB,    “Alice, Bob” ll kAB )



Generating keys: A toy protocol

Alice wants a shared key with Bob.     Eavesdropping security only.

Eavesdropper sees:    E(kA,    “A, B” ll kAB ) ;     E(kB,    “A, B” ll kAB )

(E,D) is CPA-secure  ⇒ eavesdropper learns nothing about kAB

Note:  TTP needed for every key exchange,   knows all session keys.

(basis of Kerberos system)



Key Question

Can we generate shared keys without an online trusted 3rd party?

Answer:  yes!

Starting point of public-key cryptography:

• Merkle (1974),         

• Diffie-Hellman (1976),        

• RSA (1977)

• …



Merkle Puzzles



Key exchange without an online TTP?

• Goal: Alice and Bob want a shared key, unknown to eavesdropper

• Security against eavesdropping only (no tampering)

• Can this be done using generic symmetric crypto?

BobAlice

eavesdropper ??



Merkle Puzzles (1974)

Answer:   yes, but very inefficient

Main tool:  “puzzles”

• Puzzles: Problems that can be solved with “some effort”

• Example:      

• E(k,m) a symmetric cipher with k ∈ {0,1}128

• puzzle  =  E(P, “message”) where     P = 096 ll b1 … b32

• To “solve” a puzzle, find P by trying all 232 possibilities



Merkle Puzzles

Alice:    

• Prepare  232 puzzles:

• For  i = 1, …, 232 choose random  Pi  ∈ {0,1}32 and random xi , ki ∈ {0,1}128 xi  ≠ xj

Set  puzzlei ⟵ E( 096 ll Pi ,  “Puzzle # ” ll xi ll ki )

• Send  puzzle1 , … , puzzle232 to Bob.

Bob:   

• Choose a random puzzlej and solve it.   Obtain  (xj, kj ) and use kj as shared secret.

• Send xj to Alice.

Alice:    

• Lookup puzzle with number xj .     

• Use kj as shared secret.



In a figure

Alice’s work: O(232) (prepare 232  puzzles) in general O(n)

Bob’s work:    O(232) (solve one puzzle)  in general O(n)

Eavesdropper’s work:   O(264) (solve 232 puzzles) in general O(n2)

BobAlice

puzzle1 , … , puzzle232

xj

kj kj



Impossibility Result

Can we achieve a better gap using a general symmetric cipher?

Answer:  unknown



The Diffie-Hellman Protocol



Key exchange without an online TTP?

• Goal: Alice and Bob want a shared key, unknown to eavesdropper

• Security against eavesdropping only (no tampering)

• Can this be done with an exponential gap?

BobAlice

eavesdropper ??



The Diffie-Hellman Protocol

High-level idea:

• Alice and Bob do NOT share any secret information beforehand

• Alice and Bob exchange messages

• After that, Alice and Bob have agreed on a shared secret key k

• k unknown to eavesdropper

BobAlice

k k
????



The Diffie-Hellman Protocol

(Security) Based on the Discrete Logarithm Problem:

Given
• g 
•p  
• gk mod p

Find k



The Diffie-Hellman Protocol

Fix a large prime p (e.g., 600 digits)

Fix an integer g in {2, …, p-2}

Alice Bob

Choose random a in {1,…,p-2} Choose random b in {1,…,p-2}

=        gab (mod p) =

Bob computes

(ga)b (mod p)
Alice computes 

(gb)a (mod p)

ga (mod p)

gb (mod p)

SECRET KEY



Security

Eavesdropper sees:  p, g,  ga (mod p), and gb (mod p) 

Can she compute gab (mod p) ??

How hard is the DH function mod p?

Suppose prime p is n bits long. 

Best known algorithm (GNFS):   run time exp(              )



Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

Alice BobMiTM

A = ga (mod p) A’ = ga’ (mod p)
a’

B’ = gb’ (mod p) B = gb (mod p)
b’

ga’b (mod p)gab’ , ga’b (mod p)
gab’ (mod p)



Introduction Number Theory



Background

We will use a bit of number theory to construct:

• Key exchange protocols

• Digital signatures

• Public-key encryption



Notation

From here on:   

• N denotes a positive integer. 

• p denote a prime.

Notation: = {0, 1,… ,𝑁 − 1}

Can do addition and multiplication modulo N   



Modular arithmetic

Examples:      let    N = 12

9 + 8  =   5       in    

5 × 7  =  11      in    

5 − 7  =   10     in    

Arithmetic in       works as you expect, e.g x⋅(y+z) = x⋅y + x⋅z in  



Modular arithmetic

Examples:      let    N = 12

9 + 8  =   5       in    
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Greatest common divisor
Def:   For ints.  x,y:     gcd(x, y)   is the greatest common divisor of  x,y

Example: gcd( 12, 18 )  =   6

Fact:   for all ints.   x,y there exist ints.   a,b such that

a⋅x + b⋅y = gcd(x,y)

a,b can be found efficiently using the extended Euclid alg. 

If  gcd(x,y)=1 we say that x and y are relatively prime

Example: 2 x 12 -1 x 18 = 6



Modular inversion
Over the rationals, inverse w.r.t. the moltiplication of 2 is  ½ .   
What about       ?

Def: The inverse of x in       is an element y in       s.t. 𝑥 ⋅ 𝑦 = 1

y is denoted  x-1  .

Example:    let N be an odd integer.

The inverse of 2 in        is 
𝑁+1

2
since 2 ⋅

𝑁+1

2
= 𝑁 + 1 = 1



Modular inversion

Which elements have an inverse in ℤ𝑁 ?

Lemma:     x in ℤ𝑁 has an inverse if and only if gcd(x,N) = 1 

Proof:

gcd(x,N)=1   ⇒ ∃ a,b:   a⋅x + b⋅N = 1 ⇒ a⋅x = 1 in ℤ𝑁
⇒ x-1  = a in ℤ𝑁

gcd(x,N) > 1     ⇒ ∀a:  gcd( a⋅x, N ) > 1    ⇒ a⋅x ≠ 1  in ℤ𝑁



More notation

Def: =  (set of invertible elements in        )   =

=   {  x∈ :   gcd(x,N) = 1 }

Examples:   

1. for prime p, 

2. = { 1, 5, 7, 11}

For  x in       , can find  x-1 using extended Euclid algorithm.
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Solving modular linear equations

Solve:         a⋅x + b = 0     in    

Solution:      x = −b⋅a-1   in 

Find  a-1 in        using extended Euclid.      Run time:   O(log2 N)

What about modular quadratic equations?

next segments



Fermat’s theorem    (1640)

Thm:     Let p be a prime

∀ x ∈ (Zp)* :      xp-1 =  1  in Zp

Example:    p=5.         34 = 81 = 1    in   Z5

Example of application:

So:     x ∈ (Zp)* ⇒ x⋅xp-2 =  1      ⇒ x−1 = xp-2 in  Zp

another way to compute inverses, but less efficient than Euclid



Application:  generating random primes

Suppose we want to generate a large random prime

say, prime  p  of  length 1024 bits    ( i.e.   p ≈ 21024 )

Step 1:     choose a random integer  p ∈ [  21024 ,  21025-1 ]

Step 2:     test if   2p-1 = 1   in  Zp

If so, output  p  and stop.    If not, goto step 1 .

Simple algorithm (not the best).       Pr[ p not prime ] < 2-60



The structure of   (Zp)*

Thm (Euler):       (Zp)* is a cyclic group, that is

∃ g∈(Zp)*     such that    {1, g, g2, g3, …, gp-2} = (Zp)*

g is called a generator of  (Zp)*

Example:    p=7.      {1, 3, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5} = (Z7)*

Not every elem. is a generator:     {1, 2, 22, 23, 24, 25} = {1, 2, 4} 



Order
For  g∈(Zp)* the set   {1 , g , g2, g3, … }  is called 

the group generated by g,   denoted  <g>

Def:    the order of   g∈(Zp)* is the size of <g>

ordp(g)    =    |<g>|    =   (smallest a>0 s.t. ga = 1 in Zp)

Examples:     ord7(3) = 6    ;   ord 7(2) = 3   ;  ord7(1) = 1

Thm (Lagrange):   ∀g∈(Zp)*   :     ordp(g)   divides    p-1



Euler’s generalization of Fermat  (1736)

Def:  For an integer N define   ϕ (N) = |(ZN)*|       (Euler’s ϕ func.)

Examples:        ϕ (12) = |{1,5,7,11}| = 4      ;     ϕ (p)  =   p-1

For N=p⋅q: ϕ (N) = N-p-q+1 = (p-1)(q-1)  

Thm (Euler):   ∀ x ∈ (ZN)* :      x
ϕ(N)

=  1    in ZN 

Example:     5ϕ(12) = 54 = 625 = 1    in  Z12

Generalization of Fermat.   Basis of the RSA cryptosystem



Modular e’th roots

We know how to solve modular linear equations:

a⋅x + b = 0    in ZN Solution:      x = −b⋅a-1   in ZN

What about higher degree polynomials?

Example:     let  p  be a prime and   c∈Zp .       Can we solve:

x2 – c = 0    ,      y3 – c = 0    ,    z37 – c = 0     in   Zp



Modular e’th roots

Let  p  be a prime and  c∈Zp .

Def:     x∈Zp s.t. xe = c  in Zp is called an  e’th root of c .

Examples:  71/3 =   6    in    

31/2 =   5    in    

11/3 =   1     in    

21/2 does not exist in 



The easy case

When does   c1/e in  Zp exist?      Can we compute it efficiently?

The easy case:     suppose    gcd( e , p-1 ) = 1

Then for all  c  in (Zp)*:      c1/e exists in  Zp and is easy to find.



The case   e=2:   square roots

If p is an odd prime then   gcd( 2, p-1) ≠ 1

Fact:    in        ,    x ⟶ x2 is a 2-to-1 function

Example:   in          :

Def:  x in        is a quadratic residue (Q.R.) if it has a square root in

p odd prime  ⇒ the # of Q.R. in       is   (p-1)/2 + 1 

1 10

1

2 9

4

3 8

9

4 7

5

5 6

3

x −x

x2



Euler’s theorem

Thm: x in (Zp)* is a Q.R.      ⟺ x(p-1)/2 = 1  in Zp (p odd prime)

Example:

Note:    x≠0    ⇒ x(p-1)/2  =  (xp-1)1/2 
=  11/2  ∈ { 1, -1 }     in   Zp

Def:    x(p-1)/2 is called the Legendre Symbol of x over p    (1798)

in           :     15,   25,   35,  45,  55,  65,  75,  85,  95,  105

= 1    -1     1     1    1,   -1,  -1,  -1,   1,    -1     



Computing square roots mod p

Suppose   p = 3  (mod 4)

Lemma:    if    c∈(Zp)*  is  Q.R.   then     √c  =   c(p+1)/4 in Zp



Solving quadratic equations mod p

Solve:         a⋅x2 + b⋅x + c = 0     in   Zp

Solution:      x =    (-b ± √b2 – 4⋅a⋅c   )  /   2a     in   Zp

• Find    (2a)-1 in Zp using extended Euclid.      

• Find square root of    b2 – 4⋅a⋅c    in Zp (if one exists)

using a square root algorithm



Computing e’th roots mod N  ??

Let  N  be a composite number and e>1

When does   c1/e in  ZN exist?      Can we compute it efficiently?

Answering these questions requires the factorization of  N

(as far as we know)



Easy problems

• Given composite N and   x in ZN find   x-1 in ZN 

• Given prime p  and polynomial  f(x) in Zp[x]  

find  x in Zp s.t. f(x) = 0  in Zp (if one exists)

Running time is linear in deg(f) .

…  but many problems are difficult



Intractable problems with primes

Fix a prime p>2  and  g in (Zp)* of order  q.         

Consider the function:      x  ⟼ gx in  Zp

Now, consider the inverse function:

Dlogg (gx)  =  x      where   x in  {0, …, q-2}

Example:    in           :        1,    2,    3,    4,    5,    6,    7,    8,    9,    10

Dlog2(⋅) :       0,    1,    8,    2,    4,    9,    7,    3,    6,     5



Intractable problems with composites

Consider the set of integers:    (e.g. for n=1024)

Problem 1:   Factor a random  N in                       (e.g. for n=1024)

Problem 2:   Given a polynomial  f(x) where degree(f) > 1

and a random  N  in    

find  x in            s.t. f(x) = 0    in 

:=   { N = p⋅q where  p,q are n-bit primes }



The factoring problem

Gauss (1805):

Best known alg.   (NFS):      run time   exp(               )   for n-bit integer

Current world record:     RSA-768    (232 digits) 

• Work:  two years on hundreds of machines

• Factoring a 1024-bit integer:    about 1000 times harder

⇒ likely possible this decade

“The problem of distinguishing prime numbers from 
composite numbers and of resolving the latter into 
their prime factors is known to be one of the most 
important and useful in arithmetic.”



Asymmetric Cryptography
Public key encryption:

definitions and security



Symmetric Cipher

E Network
or Storage

Plain Text Cipher Text Cipher Text

D

Bob

Secret Key

Alice

Secret Key

Plain Text



Problems with Symmetric Ciphers

• In order for Alice & Bob to be able to communicate securely 
using a symmetric cipher, such as AES, they have to have a 
shared key in the first place.

– What if they have never met before?

• Alice needs to keep 100 different keys if she wishes to 
communicate with 100 different people



Motivation of Asymmetric 
Cryptography

• Is it possible for Alice & Bob, who have no shared secret 
key, to communicate securely?

• This led to Asymmetric Cryptography



Alice

Alice’s
Private Key

Bob

Alice’s
Public Key

Bob’s
Private Key

Bob’s
Public Key

Asymmetric Cryptography



Alice

Alice’s
Private Key

Bob

Alice’s
Public Key

LauraAlice’s
Public Key
Alice’s
Public Key

Asymmetric Cryptography



Alice’s
Public Key

Hello, my
name is
Alice

@%y/h 
#p!8£ u#T

Plaintext Ciphertext

Encryption

Alice’s
Private Key

Decryption

Hello, my
name is
Alice

Plaintext

Public and private keys



Alice’s
Public Key

Hello, my
name is
Alice

H$j8 g@f
A#7l&r

Plaintext Ciphertext

Encryption

Alice’s
Private Key

Decryption

Hello, my
name is
Alice

Plaintext

Public and private keys



Alice

Alice’s
Private Key

Alice’s
Public Key

Very hard!

Public and private keys



Asymmetric Cryptography

– Public key

– Private key

– E(private-keyAlice, m) = c

– D(public-keyAlice, c) = m

– E(public-keyAlice, m) = c

– D(private-keyAlice, c) = m



Main ideas

• Bob:

– publishes, say in Yellow/White pages, his public key, and

– keeps to himself the matching private key.



Main ideas (Confidentiality)

• Alice:

– Looks up the phone book, and finds out Bob’s public key

– Encrypts a message using Bob’s public key and the encryption 
algorithm.

– Sends the ciphertext to Bob.



Main ideas (Confidentiality)

• Bob:

– Receives the ciphertext from Alice.

– Decrypts the ciphertext using his private key, together with 
the decryption algorithm



Asymmetric Encryption

15

E Network

Plaintext Ciphertext Ciphertext

D

Plaintext

Alice Bob

Bob’s PUBLIC KEY

Public Repository

Bob’s PRIVATE KEYBob’s PUBLIC KEY

• Confidentiality scenario
• Other scenarios are possible, 

with keys used differently…
• e.g., Digital signatures

Warning!
Bob’s public key 

needs to be 
authentic



Main differences with Symmetric 
Crypto

• The public key is different from the private key.

• Infeasible for an attacker to find out the private key from the 
public key.

• No need for Alice & Bob to distribute a shared secret key 
beforehand!

• Only one pair of public and private keys is required for each 
user!



Let’s start seriously
- define what is public key encryption

- what it means for public key encryption to be secure



Public key encryption

E D

Alice Bob

pk sk

m c c m

Bob:    generates    (PK, SK)    and gives  PK  to Alice 



Applications

Session setup    (for now, only eavesdropping security)

Non-interactive applications:  (e.g.  Email)

• Bob sends email to Alice encrypted using  pkalice

• Note:   Bob needs  pkalice (public key management)

Generate  (pk, sk)

Alice

choose random x
(e.g.  48 bytes) 

Bobpk

E(pk, x)
x



Public key encryption

Def:   a public-key encryption system is a triple of algs.   (G, E, D)

• G():   randomized alg. outputs a key pair    (pk,  sk)

• E(pk, m):  randomized alg. that takes  m∈M and outputs c ∈C

• D(sk,c):   det.  alg. that takes  c∈C and outputs m∈M or ⊥

Consistency:    ∀(pk,  sk) output by G :    

∀m∈M:     D(sk,  E(pk, m) ) = m



Security:   eavesdropping
For   b=0,1   define experiments EXP(0) and EXP(1) as:

Def:  E =(G,E,D) is sem. secure (a.k.a IND-CPA) if for all efficient  A:

AdvSS [A,E]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] |  <   negligible

Chal.b Adv. A

(pk,sk)G()
m0 , m1  M :    |m0| = |m1|

c  E(pk, mb) b’  {0,1}

EXP(b)

pk



Relation to symmetric cipher security

Recall:   for symmetric ciphers we had two security notions:

• One-time security      and    many-time security (CPA)

• We showed that  one-time security  ⇒ many-time security

For public key encryption:

• One-time security    ⇒ many-time security  (CPA)

(follows from the fact that attacker can encrypt by himself)

• Public key encryption must be randomized



Security against active attacks

attacker

skserver

pkserver

to: caroline@gmail body

Attacker is given decryption of msgs
that start with “to: attacker”

What if attacker can tamper with ciphertext?

to: attacker@gmail body

attacker:

mail server
(e.g. Gmail)

Caroline



(pub-key) Chosen Ciphertext Security:  definition

E = (G,E,D)  public-key enc. over  (M,C).  For   b=0,1   define EXP(b):

b

Adv. AChal.

(pk,sk)G()

b’  {0,1}

challenge: m0 , m1   M :    |m0| = |m1|

c  E(pk, mb)

pk

CCA phase 1: ci  C 

mi  D(k, ci)

CCA phase 2: ci  C  :     ci ≠ c

mi  D(k, ci)



Chosen ciphertext security: definition

Def:   E is CCA secure (a.k.a IND-CCA)  if for all efficient  A:

AdvCCA [A,E]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] |  is negligible.

Example:   Suppose                                      ⟶(to: alice,  body) (to: david,  body)

Adv. Ab Chal.

(pk,sk)G()

b

chal.: (to:alice,  0) ,     (to:alice,  1)

c  E(pk, mb)

pk

CCA phase 2:    c’ =                                ≠c

m’  D(sk, c’ )

(to: david,  b)

(to: david,   b)

c



Active attacks:   symmetric vs. pub-key

Recall:  secure symmetric cipher provides   authenticated encryption

[ chosen plaintext security   &   ciphertext integrity  ]

• Roughly speaking: attacker cannot create new ciphertexts

• Implies security against chosen ciphertext attacks

In public-key settings:

• Attacker can create new ciphertexts using  pk !!

• So instead:    we directly require chosen ciphertext security



Trapdoor Permutations



Trapdoor functions (TDF)

Def:   a trapdoor func.  X⟶Y  is a triple of efficient algs.   (G, F, F-1)

• G():   randomized alg. outputs a key pair    (pk,  sk)

• F(pk,⋅):   det. alg. that defines a function    X ⟶ Y

• F-1(sk,⋅):    defines a function    Y ⟶ X    that inverts   F(pk,⋅)

More precisely:    ∀(pk,  sk) output by G     

∀x∈X:     F-1(sk,  F(pk, x) ) = x



Secure Trapdoor Functions (TDFs)
(G, F, F-1) is secure if   F(pk, ⋅)   is a “one-way” function:

can be evaluated, but cannot be inverted without  sk

Def:   (G, F, F-1)  is a secure TDF if for all efficient  A:

AdvOW [A,F]  =  Pr[ x = x’ ]   <  negligible

Adv. AChal.

(pk,sk)G()

x ⟵ X x’pk,   y  F(pk, x)R



Hash Functions

• Hash functions:

– Input: arbitrary length

– Output: fixed length (generally much shortern than the 
input)

Hash Function

Document with arbitrary length

Hash value for the document
(fixed length, e.g. 256 bit)



One-Way Hash Algorithm

• A one-way hash algorithm hashes an input document into a 
condensed short output (say of 256 bits)

– Denoting a one-way hash algorithm by H(.), we have:

• Input: m - a binary string of any length

• Output: H(m) - a binary string of L bits, called the “hash of m 
under H”.

• The output length parameter L is fixed for a given one-way 
hash function H, 

• Examples:
– The one-way hash function “MD5” has L = 128 bits

– The one-way hash function “SHA-1” has L = 160 bits



Properties of One-Way Hash Algorithm

• A good one-way hash algorithm H needs to have these properties:
– 1. Easy to Evaluate: 

• The hashing algorithm should be fast
– 2. Hard to Reverse: 

• There is no feasible algorithm to “reverse” a hash value, 
• That is, given any hash value h, it is computationally infeasible to find 

any document m such that H(m) = h.
– 3. Hard to find Collisions: 

• There is no feasible algorithm to find two or more input documents 
which are hashed into the same condensed output, 

• That is, it is computationally infeasible to find any two documents m1, 
m2 such that H(m1)= H(m2).

– 4. A small change to a message should change the hash value so 
extensively that the new hash value appears uncorrelated with the old 
hash value



Public-key encryption from TDFs 

• (G, F, F-1):    secure TDF   X ⟶ Y       

• (Es, Ds) :   symmetric auth. encryption defined over (K,M,C)

• H: X ⟶ K   a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G:    same as G for TDF



Public-key encryption from TDFs 

E( pk, m) :

x ⟵ X,    y ⟵ F(pk, x)

k ⟵ H(x),  c ⟵ Es(k, m)

output   (y, c)

D( sk, (y,c) ) :

x ⟵ F-1(sk, y),

k ⟵ H(x),  m ⟵ Ds(k, c)

output   m

• (G, F, F-1):    secure TDF   X ⟶ Y       

• (Es, Ds) :   symmetric auth. encryption defined over (K,M,C)

• H: X ⟶ K   a hash function

R



In pictures:

Security Theorem:    

If  (G, F, F-1)  is a secure TDF,     (Es, Ds) provides auth. enc.

and   H: X ⟶ K    is a   “random oracle” 

then   (G,E,D) is  CCAro secure.

F(pk, x) Es( H(x),  m )

header body



Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

Problems:

• Deterministic:    cannot be semantically secure !!

• Many attacks exist   (next segment)

E( pk, m) :

output    c ⟵ F(pk, m)

D( sk,  c ) :

output   F-1(sk, c)



The RSA trapdoor permutation

■One of the first practical responses to the challenge posed by Diffie-Hellman was 
developed by Ron Rivest, Adi Shamir, and Len Adleman of MIT in 1977
■Resulting algorithm is known as RSA 
■Based on properties of prime numbers and results from number theory 



Review: trapdoor permutations
Three algorithms:   (G, F, F-1)

• G:   outputs   pk,  sk.       pk defines a function  F(pk, ): X → X

• F(pk, x):   evaluates the function at  x

• F
-1

(sk, y):  inverts the function at y using sk

Secure trapdoor permutation:   

The function  F(pk, )  is one-way without the trapdoor sk



Review: arithmetic mod composites

Let    N = pq where   p,q are prime where p,q≈ N1/2

ZN = {0,1,2,…,N-1}     ;     (ZN)* =  {invertible elements in ZN}

Facts:     x  ZN  is invertible  gcd(x,N) = 1

– Number of elements in  (ZN)*  is    (N) = (p-1)(q-1) = N-p-q+1

Euler’s thm:          x (ZN)*    :    x(N)  =  1     



The RSA trapdoor permutation

First published:      Scientific American, Aug. 1977.

Very widely used:

– SSL/TLS:  certificates and key-exchange

– Secure e-mail and file systems

… many others



The RSA trapdoor permutation
G(): choose random primes   p,q 1024 bits.      Set  N=pq. 

choose integers   e , d   s.t. e⋅d = 1   (mod (N) )  

output    pk = (N, e)    ,     sk = (N, d)

F-1( sk, y) = yd ;      yd =  RSA(x)d = xed = x
k(N)+1

=  (x
(N))

k 
 x = x

F( pk, x ):  ;     RSA(x) = xe (in  ZN)   



RSA - small example

• Bob (keys generation):

– chooses 2 primes: p=5, q=11

– multiplies p and q: n = p×q = 55

– chooses a number e=3  s.t. gcd(e, 40) = 1

– compute d=27 that satisfy (3 × d) mod 40 = 1

– Bob’s public key: (3, 55)

– Bob’s private key: 27



RSA - small example

• Alice (encryption):

– has a message m=13 to be sent to Bob

– finds out Bob’s public encryption key (3, 55)

– calculates c as follows:
c = me mod n

= 133 mod 55
= 2197 mod 55
= 52

– sends the ciphertext c=52 to Bob



RSA - small example

• Bob (decryption):

– receives the ciphertext c=52 from Alice

– uses his matching private decryption key 27 to calculate m:
m = 5227 mod 55

= 13 (Alice’s message)



The RSA assumption

RSA assumption:      RSA is  one-way permutation

For all efficient algs.  A:

Pr[ A(N,e,y) = y1/e ] < negligible

where      p,q n-bit primes,     Npq,     yZN
*R R



Review:  RSA pub-key encryption   (ISO std)

(Es, Ds):   symmetric enc. scheme providing auth. encryption.

H:  ZN → K   where  K is key space of (Es,Ds)

• G():    generate RSA params:     pk = (N,e),    sk = (N,d)

• E(pk, m): (1) choose random x in ZN

(2)  y  RSA(x) = xe ,   k  H(x)

(3) output    (y ,  Es(k,m) )

• D(sk,  (y, c) ):    output  Ds( H(RSA-1 (y)) ,  c) -> m



Textbook RSA is insecure

Textbook RSA encryption:

– public key:   (N,e) Encrypt:   c ⟵me          (in  ZN)   

– secret key:   (N,d) Decrypt:   cd ⟶m

Insecure cryptosystem !!  

– Is not semantically secure and many attacks exist

⇒ The RSA trapdoor permutation is not an encryption scheme !



A simple attack on textbook RSA

Suppose  k  is 64 bits:   k  {0,…,264}.     Eve sees: c= ke in  ZN

If    k = k1k2 where   k1, k2 < 234 (prob. 20%) then    c/k1
e = k2

e in  ZN

Meet-in-the-middle attack:

Step 1:   build table:   c/1e, c/2e, c/3e, …, c/234e .   time:  234

Step 2:   for  k2 = 0,…, 234 test if  k2
e is in table.   time: 234

Output matching   (k1, k2).           Total attack time:   240  << 264

Web
Browser

Web
Server

CLIENT HELLO

SERVER HELLO (e,N) d

c=RSA(k)

random
session-key k



Is RSA a one-way function?

Is it really hard to invert RSA without knowing the trapdoor?



Is RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute:

x    from     c = xe (mod N).

How hard is computing  e’th roots modulo N  ??

Best known algorithm:   

– Step 1:  factor  N     (hard)

– Step 2:  compute e’th roots modulo  p  and  q     (easy)



Shortcuts?

Must one factor N in order to compute e’th roots?

To prove no shortcut exists show a reduction:

– Efficient algorithm for e’th roots mod N

 efficient algorithm for factoring  N.

– Oldest problem in public key cryptography.

Some evidence no reduction exists: (BV’98)

– “Algebraic” reduction    factoring is easy.



How not to improve RSA’s performance

To speed up RSA decryption use small private key  d     ( d ≈ 2128 )

cd = m  (mod N)

Wiener’87: if   d < N0.25 then RSA is insecure.

BD’98: if   d < N0.292 then RSA is insecure      (open:  d < N0.5 )

Insecure: priv. key  d  can be found from  (N,e)



Wiener’s attack
(N,e) => d and d < N0.25/3

Recall: ed = 1  (mod (N) )      kZ :     ed = k(N) + 1 

(N) = N-p-q+1     |N − (N)|   p+q  3 𝑁

d  N0.25/3    
1

2𝑑2
−

1

𝑁
≥

3

𝑁

Continued fraction expansion of  e/N  gives  k/d.

ed = 1 (mod k)    gcd(d,k)=1     can find d from k/d

ⅇ

𝜓 𝑁
−
𝑘

𝑑
=

1

𝑑 ⋅ 𝜑 𝑁
≤

1

𝑁

ⅇ

𝑁
−
𝑘

𝑑
≤

ⅇ

𝑁
−

ⅇ

𝜑 𝑁
+

ⅇ

𝜑 𝑁
−
𝑘

𝑑
≤

1

2𝑑2



RSA in Practice



RSA With Low public exponent

To speed up RSA encryption use a small   e:  c = me (mod N)

• Minimum value:   e=3  ( gcd(e, (N) ) = 1)     (Q: why not 2?)

• Recommended value:   e=65537=216+1

Encryption:   17 multiplications

Asymmetry of RSA: fast enc. / slow dec.

– ElGamal (next week):   approx. same time for both.



Key lengths

Security of public key system should be comparable to security 
of symmetric cipher:

RSA
Cipher key-size Modulus size

80 bits 1024 bits

128 bits 3072 bits

256 bits (AES) 15360 bits 



Implementation attacks
Timing attack:  [Kocher et al. 1997]   ,   [BB’04]

The time it takes to compute   cd (mod N)    can expose   d

Power attack:  [Kocher  et al. 1999)
The power consumption of a smartcard while 
it is computing  cd (mod N)   can expose  d.

Faults attack:  [BDL’97]
A computer error during   cd (mod N)    can expose   d.   

A common defense:: check output.    10% slowdown.



An Example Fault Attack on RSA  (CRT)

A common implementation of RSA decryption:     x = cd in  ZN

decrypt mod p:     xp = cd in  Zp

decrypt mod q:     xq = cd in  Zq

Suppose error occurs when computing xq ,   but no error in xp

Then:    output is  x’   where     x’ = cd in  Zp but    x’ ≠ cd in  Zq

⇒ (x’)e = c  in Zp but   (x’)e ≠ c  in Zq ⇒ gcd( (x’)e - c , N) = p

combine to get  x = cd in  ZN



RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

OpenSSL RSA key generation  (abstract):

Suppose poor entropy at startup:

• Same p will be generated by multiple devices, but different q

• N1 , N2 :   RSA keys from different devices   ⇒ gcd(N1,N2) = p

prng.seed(seed)

p = prng.generate_random_prime()

prng.add_randomness(bits)

q = prng.generate_random_prime()

N = p*q



RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

Experiment:      factors  0.4% of public HTTPS keys !!

Lesson:       

– Make sure random number generator is properly
seeded when generating keys



Digital Signatures



Digital Signature

Public Key Directory (Yellow/White Pages)

Bob’s public key:

E

Network

Plain Text

Plain Text

Bob

Bob’s Private Key

+

Cathy

Signature

Accept if equal

D

Signature

?

Bob’s Public Key

Warning!
Bob’s public key 

needs to be 
authentic



Digital Signature (based on RSA)

Public Key Directory (Yellow/White Pages)

Bob: (e, n)
(public key)

Network

Plain Text m

Plain Text m

Bob

Bob’s Private Key d

+

Cathy

Signature s

Accept if equal

Signature s

?

Bob’s Public Key (e, n)

s = md mod n t =se mod n

s = RSA-1 (m)                                                                                                t = RSA(s)



RSA Signature - small example

• Bob (keys generation):

– chooses 2 primes: p=5, q=11

– multiplies p and q: n = p×q = 55

– chooses a number e=3  s.t. gcd(e, 40) = 1

– compute d=27 that satisfy (3 × d) mod 40 = 1

– Bob’s public key: (3, 55)

– Bob’s private key: 27



RSA Signature - small example

• Bob: 

– has a document m=19 to sign:

– uses his private key d=27 to calculate the digital signature 
of m=19:

s = md mod n
= 1927 mod 55
= 24

– appends 24 to 19. 
Now (m, s) = (19, 24) indicates that the doc is 19, and 
Bob’s signature on the doc is 24.



RSA Signature - small example

• Cathy, a verifier:

– receives a pair (m,s)=(19, 24)

– looks up the phone book and finds out Bob’s public key (e, 
n)=(3, 55)

– calculates t = se mod n
= 243 mod 55 
= 19

– checks whether t=m

– confirms that (19,24) is a genuinely signed document of 
Bob if t=m.



How about Long Documents ?

• In the previous example, a document has to be an integer in 
[0,...,n)

• To sign a very long document, we need a so called one-way 
hash algorithm

• Instead of signing directly on a doc, 

– we hash the doc first, 

– and sign the hashed data which is normally short.



Hash Functions

• Hash functions:

– Input: arbitrary length

– Output: fixed length (generally much shortern than the 
input)

Hash Function

Document with arbitrary length

Hash value for the document
(fixed length, e.g. 256 bit)

Rather than signing the 
original document, we
sign its hash value



Digital Signature (for long docs)

Public Key Directory (Yellow/White Pages)

Bob’s
Public key:

E

Network

Plain Text

D

Plain Text

H

256 bits

Bob

Bob’s Private Key

+

H 256 bits

Cathy

Signature

Accept if equal1-way hash

256 bits

Signature

?

Bob’s Public Key



Why Digital Signature ?

• Unforgeable

– takes 1 billion years to forge !

• Un-deniable by the signatory

• Universally verifiable

• Differs from doc to doc



Digital Signature - summary

• Three (3) steps are involved in digital signature 

– Setting up public and private keys 

– Signing a document

– Verifying a signature



Setting up Public & Private Keys

• Bob does the following

– prepares a pair of public and private keys

– Publishes his public key in the public key file (such as an 
on-line phone book)

– Keeps the private key to himself

• Note:

– Setting up needs only to be done once !



Signing a Document

• Once setting up is completed,  Bob can sign a document (such 
as a contract, a cheque, a certificate, ...) using the private key

• The pair of document & signature is a proof that Bob has 
signed the document.



Verifying a Signature

• Any party, say Cathy, can verify the pair of document and 
signature, by using Bob’s public key in the public key file.

• Important !

– Cathy does NOT have to have public or private key !



(Other) Asymmetric Cryptosystems 



ElGamal Cryptosystem

Encryption schemes built from the Diffie-Hellman protocol

• Key Generation (for Bob)

– chooses a prime p and a number g primitive root modulo p

• i.e., for every integer a coprime to p, there is an interger k such 
that gk = a mod p

– Two integers are coprime if their gcd is 1

– chooses a random exponent a in [0, p-2]

– computes A = ga mod p

– public key (published in the phone book): (p,g,A)

– private key: a



ElGamal Cryptosystem

• Encryption: Alice has a message m (0<=m<n) to be sent to 
Bob:

– finds out Bob’s public key (p,g,A).

– chooses a random exponent b in [0,p-2]

– computes B = gb mod p

– computes c = Abm mod p.

– The complete ciphertex is (B,c) 

– sends the ciphertext (B,c) to Bob.



ElGamal Cryptosystem

• Decryption: Bob

– receives the ciphertext (B,c) from Alice.

– uses his matching private decryption key a to calculate m as 
follows.

• Compute x = p-1-a

• Compute m = Bx c mod p



ElGamal Cryptosystem

• Randomized cryptosystem

• Based on the Diffie–Hellman key exchange

• Efficiency

– The ciphertext is twice as long as the plaintext. This is called 
message expansion and is a disadvantage of this cryptosystem.

• Security

– Its security depends upon the difficulty of a certain problem 
related to computing discrete logarithms.



Rabin Cryptosystem

Key Generation (for Bob)

– generates 2 large random and distinct primes p, q s.t.

p (mod 4) = q (mod 4) = 3

– multiplies p and q:   n = p × q

– public key (published in the phone book): n

– private key: (p, q)

(other options are possible, this makes decryption more efficient)



Rabin Cryptosystem

• Encryption: Alice has a message m (0<=m<n) to be sent to 
Bob:

– finds out Bob’s public key n.

– calculates the ciphertext c= m2 mod n.

– sends the ciphertext c to Bob.



Rabin Cryptosystem

• Decryption: Bob

– receives the ciphertext c from Alice.

– uses his matching private decryption key (p,q) to calculate m as 
follows.

• Compute mp = c(p+1)/4 mod p

• Compute mq = c(q+1)/4 mod q

• Find yp and yq such that yp p + yq q = 1  (Euclidean algorithm)

• Compute r = (yp p mq + yq q mp) mod n

• Compute s = (yp p mq - yq q mp) mod n

• One of r, -r, s, -s must be the original message m



Rabin Cryptosystem

• Efficiency

– Encryption more efficient than RSA encryption

• Security

– The Rabin cryptosystem has the advantage that the problem on 
which it relies has been proved to be as hard as integer 
factorization

• Recovering the plaintext m from the ciphertext c and the public 
key n is computationally equivalent to factoring 

• Not currently known to be true for the RSA problem.


