Fondamenti di Cybersecurity - Modulo I

- 20h circa
- Docente: Riccardo Treglia
- Email: riccardo.treglia@unibo.it

Piattaforma didattica

- Virtuale
e verrà costantemente aggiornato con:
- Informazioni
- Materiale didattico (slides)
- Annunci

Materiale didattico

- Slide caricate su Virtuale del corso
- Testi consigliati:
- Jean-Philippe Aumasson, Serious Cryptography: A Practical Introduction to Modern Encryption.
- Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C.
- Mark Stamp, Information Security: Principles and Practice.
- William Stallings Crittografia
- Dan Boneh, Victor Shoup, A Graduate Course in Applied Cryptography. (approccio matematico)

Esame

- Prova scritta
- Voto finale = Scritto + Successo laboratori Scritto: 24/25 pt
Laboratori: max 8 pt NO orali
- Date esami: consultare il sito del Dipartimento Due appelli a Giugno, uno a Luglio e uno a Settembre

Roadmap

O. What is Cryptography - History of Cryptography

1. Introduction Mathematics: Modular Arithmetic - Discrete Probability
2. One-time pad, Stream Ciphers and Pseudo Random Generators
3. Attacks on Stream Ciphers and The OneTime Pad
4. Real-World Stream Ciphers (weak(RC4), eStream,nonce, Salsa20)
5. Secret key cryptographic systems;
6. Public key cryptographic systems
7. DES protocols (just as an introduction), AES
8. Electronic Signatures, Public-key Infrastructure, Certificates and Certificate Authorities
9. Sharing of secrets; User authentication; Passwords
10. Tutor Training

Bonus. Legislation, Ethics and Management

Introduction

Welcome

Course objectives:

- Learn how crypto primitives work
- Learn how to use them correctly and reason about security

Che cos'è la Crittografia?

- Crittografia

- Kryptós: nascosto
- Graphía: scrittura
- Metodi che consentano di memorizzare, elaborare e trasmettere informazioni in presenza di agenti ostili
- Crittoanalisi
- Analisi di un testo cifrato nel tentativo di decifrarlo senza possedere la chiave
- Crittologia: Crittografia + Crittoanalisi

Cryptography is everywhere

Secure communication:

- web traffic: HTTPS
- wireless traffic: Wireless Network, GSM, Bluetooth

Encrypting files on disk

Content protection (e.g., DVD, Blu-ray)
User authentication
... and much much more (more "magical" applications later...)

Secure communication

Symmetric Encryption (confidentiality)

- k: secret key (A SHARED SECRET KEY)
- m: plaintext
- c: ciphertext
- E: Encryption algorithm
- D: Decryption algorithm
- E, D: Cipher
- Confidentiality scenario
- Other scenarios are possible, with the secret key used differently...
- e.g., MACs (for integrity)

Algorithms are publicly known, never use a proprietary cipher

Use Cases

- Single-use key: (or one-time key):

Key is only used to encrypt one message

- encrypted email: new key generated for every email
- Multi-use key: (or many-time key): Same key used to encrypt multiple messages
- encrypted files: same key used to encrypt many files Need more machinery than for one-time key

Asymmetric Encryption

- Confidentiality scenario
- Other scenarios are possible, with keys used differently...
- e.g., Digital signatures

Public Repository

Bob's PRIVATE KEY

Things to remember

Cryptography is:

- A tremendous tool
- The basis for many security mechanisms

Cryptography is not:

- The solution to all security problems
- Reliable unless implemented and used properly
- Something you should try to invent yourself
- many many examples of broken ad-hoc designs

Some Applications

Secure communication

1. Secret key establishment:
2. Secure communication:

But crypto can do much more

- Digital signatures

- Signatures of the same person change over different documents
- Asymmetric Cryptography is used

But crypto can do much more

- Anonymous communication
(e.g., mix networks)

Who did I
just talk to?

\qquad

But crypto can do much more

- Anonymous digital cash
- Can I spend a "digital coin" without anyone knowing who I am?
- How to prevent double spending?

Protocols

- Elections
- Private auctions

Protocols

$$
x_{1} \longleftrightarrow x_{2} \longleftrightarrow x_{3} \longleftrightarrow x_{4} \longrightarrow f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

- Elections
- Private auctions

Secure multi-party computation
Goal: compute $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

"Thm:" anything that can done with trusted auth. can also be done without

Crypto magic

- Privately outsourcing computation

Crypto magic

- Zero knowledge (proof of knowledge)

A rigorous science

The three steps in cryptography:

- Precisely specify threat model
- Propose a construction
- Prove that breaking construction under threat model will solve an underlying hard problem

Brief History of Crypto

Che cos'è la Crittografia?

- Metodi per memorizzare, elaborare e trasmettere informazioni in maniera sicura in presenza di agenti ostili
- Crittografia: Kryptós: nascosto + Graphía: scrittura

History

David Kahn, "The code breakers" (1996)

Symmetric Ciphers

Cypher: (E, D)

Un classico scenario

Algoritmi di cifratura e decifratura: pubblici

Crittografia simmetrica e asimmetrica

Cifratura

Decifratura

Cifrario di Cesare

Chiave	A	B	C	D		E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	v	W	X	Y	Z
	D	E	F	G		H	1	J	K	L	M	N	0	P	Q	R	S	T	U	v	W	X	Y	Z	A	B	C

Testo in chiaro

Dwwdffduh Iq Jdoold doo'doed

Few Historic Examples (all badly broken)

1. Substitution cipher
$c:=E(k$, "bcza") = "wnac"

$$
D(k, c)=\text { "bcza" }
$$

Caesar Cipher (no key)

Shift by 3

What is the size of key space in the substitution cipher assuming 26 letters?

$$
\begin{aligned}
& |\mathcal{K}|=26 \\
& |\mathcal{K}|=26! \\
& |\mathcal{K}|=2^{26} \\
& |\mathcal{K}|=26^{2}
\end{aligned}
$$

How to break a substitution cipher?

What is the most common letter in English text?
" ${ }^{\prime \prime}$ "
"L"
"E"
" $H^{\prime \prime}$

How to break a substitution cipher?

(1) Use frequency of English letters
e: $12,7 \%$
t: 9,1\%
a: 8,1\%
(2) Use frequency of pairs of letters (digrams) he, an, in, th

An Example

UKBYBIPOUZBCUFEEBORUKBYBHOBBRFESPVKBWFOFERVNBCVBZPRUBOFERVNBCVBPCYYFVU FOFEIKNWFRFIKJNUPWRFIPOUNVNIPUBRNCUKBEFWWFDNCHXCYBOHOPYXPUBNCUBOYNRV NIWNCPOJIOFHOPZRVFZIXUBORJRUBZRBCHNCBBONCHRJZSFWNVRJRUBZRPCYZPUKBZPUNV PWPCYVFZIXUPUNFCPWRVNBCVBRPYYNUNFCPWWJUKBYBIPOUZBCUIPOUNVNIPUBRNCHOP YXPUBNCUBOYNRVNIWNCPOJIOFHOPZRNCRVNBCUNENVVFZIXUNCHPCYVFZIXUPUNFCPWZP UKBZPUNVR

B	36	$\rightarrow \mathrm{E}$	NC	11	$\begin{aligned} & \Rightarrow \mathrm{IN} \\ & \rightarrow \mathrm{AT} \end{aligned}$	UKB	6	\rightarrow THE
N	34		PU	10		RVN	6	
U	33	$\begin{aligned} & \Rightarrow \mathrm{T} \\ & \rightarrow \mathrm{~A} \end{aligned}$	UB	10		FzI	4	
P	32		UN	9		trigrams		
C	26		digr					

2. Vigenère cipher (16'th century, Rome)

$$
C=Y Y Y I T B K T C S T M V F B P R
$$

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| :--- |
| \mathbf{O} | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | 4 | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | 8 | $\mathbf{9}$ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

$$
\begin{aligned}
& k=C R Y P T O C R Y P T O C R Y P T \\
& \text { (+ mod 26) } \\
& m=W H A T A N C E D A Y T O A Y
\end{aligned}
$$

2. Vigenère cipher (16'th century, Rome)

$$
\begin{aligned}
& k=C R Y P T O C R Y P T O C R Y P T \\
& m=W H A T A N I C E D A Y T O D A Y
\end{aligned}
$$

2. Vigenère cipher (16'th century, Rome)

$$
\begin{aligned}
& k=C R Y P T O C R Y P T O C R Y P T \\
& \text { (+ mod 26) } \\
& m=W H A T A N C E D A Y T O A Y
\end{aligned}
$$

Suppose the most common letter is " G " \longrightarrow It is likely that " G " corresponds to " E " \longrightarrow First letter of key = "G" - "E" = "C"
$(\mathrm{c}[\mathrm{i}]=\mathrm{m}[\mathrm{i}]+\mathrm{k}[\mathrm{i}] \Rightarrow \mathrm{k}[\mathrm{i}]=\mathrm{c}[\mathrm{i}]-\mathrm{m}[\mathrm{i}])$

3. Rotor Machines (1870-1943)

Early example: the Hebern machine (single rotor)

Rotor Machines (cont.)

Most famous: the Enigma (3-5 rotors)

4. Data Encryption Standard (1974)

DES: \# keys = 2^{56}, block size $=64$ bits

Today: AES (2001), Salsa20 (2008) (and many others)

Discrete Probability (crash course)

Probability distribution

- U: finite set, called Universe or Sample space

Examples:

- Coin flip: $\mathbf{U}=\{$ heads, tail $\}$ or $\mathbf{U}=\{\mathbf{0}, \mathbf{1}\}$
- Rolling a dice: $\mathbf{U}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, 5,6\}$
- A Probability distribution P over U is a function $\mathrm{P}: \mathrm{U} \longrightarrow[0,1]$ such that $\sum_{\mathrm{x} \in \mathrm{U}} \mathrm{P}(\mathrm{x})=1$

Examples:

- Coin flip: $P($ heads $)=P($ tail $)=1 / 2$
- Rolling a dice: $P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$

Probability distribution

- U: finite set, called Universe or Sample space
- A Probability distribution P over U is a function $\mathbf{P}: \mathbf{U} \rightarrow[0,1]$ such that $\sum_{x \in U} P(x)=1$
- Notation: $\mathrm{U}=\{0,1\}^{n}$
- Example:

Universe $\mathbf{U}=\{0,1\}^{2}=\{00,01,10,11\}$
Probability distribution \mathbf{P} defined as follows:
$P(00)=1 / 2$
$P(01)=1 / 8$
$P(10)=1 / 4$
$P(11)=1 / 8$

Probability distributions

Examples:

1. Uniform distribution: for all $x \in U: P(x)=1 /|U|$
2. Point distribution at x_{0} :

$$
P\left(x_{0}\right)=1, \quad \forall x \neq x_{0}: P(x)=0
$$

... and many others

Events

Let us consider a universe \mathbf{U} and a probability distribution \mathbf{P} over \mathbf{U}.

- An event is a subset A of U, that is, $A \subseteq U$
- The probability of \mathbf{A} is $\operatorname{Pr}[\mathbf{A}]=\sum_{\mathbf{x} \in \mathbf{A}} \mathbf{P}(\mathbf{x})$

Note: $\operatorname{Pr}[\mathrm{U}]=1$

Example

- Universe U = \{1, 2, 3, 4, 5, 6$\}$
- Probability distribution P s.t. $P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$
- $A=\{1,3,5\}$
- $P[A]=1 / 6+1 / 6+1 / 6=1 / 2$

Events

Let us consider a universe \mathbf{U} and a probability distribution \mathbf{P} over \mathbf{U}.

- An event is a subset A of U, that is, $A \subseteq U$
- The probability of \mathbf{A} is $\operatorname{Pr}[\mathbf{A}]=\sum_{\mathbf{x} \in \mathbf{A}} \mathbf{P}(\mathbf{x})$

Example

- Universe $U=\{0,1\}^{8}$
- Uniform distribution P over U, that is, $P(x)=1 / 2^{8}$ for every $x \in U$
- $A=\left\{\right.$ all x in U such that $\left.\operatorname{lsb}_{2}(x)=11\right\} \subseteq U$
- $\operatorname{Pr}[A]=1 / 4$

Hints: $\operatorname{Pr}[A]=1 / 2^{8} \times|A|$ each element in A is of the form _ _ _ _ _ 11

Union of Events

Given events $\mathbf{A}_{\mathbf{1}}$ and $\mathbf{A}_{\mathbf{2}}$, $A_{1} \cup A_{2}$ is an event.

- $\operatorname{Pr}\left[\mathrm{A}_{1} \cup \mathrm{~A}_{2}\right]=\operatorname{Pr}\left[\mathrm{A}_{1}\right]+\operatorname{Pr}\left[\mathrm{A}_{2}\right]-\operatorname{Pr}\left[\mathrm{A}_{1} \cap \mathrm{~A}_{2}\right]$
- $\operatorname{Pr}\left[A_{1} \cup A_{2}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\operatorname{Pr}\left[A_{2}\right] \quad$ ("Union bound")
- $A_{1} \cap A_{2}=\emptyset \Rightarrow \operatorname{Pr}\left[A_{1} \cup A_{2}\right]=\operatorname{Pr}\left[A_{1}\right]+\operatorname{Pr}\left[A_{2}\right]$

Random Variables

Def: a random variable X is a function $\mathbf{X}: \mathbf{U} \longrightarrow \mathbf{V}$

Example (Rolling a dice):
$U=\{1,2,3,4,5,6\}$
Uniform distribution P over U: $P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$
Random variable X : U \longrightarrow \{ "even", "odd" \}
$X(2)=X(4)=X(6)=$ "even"
$X(1)=X(3)=X(5)=" o d{ }^{\prime}$

$$
\operatorname{Pr}[X=" \text { even" }]=1 / 2 \quad, \quad \operatorname{Pr}[X=" o d d "]=1 / 2
$$

More generally: X induces a distribution on V

The uniform random variable

Let S be some set, e.g. $S=\{0,1\}^{n}$

We write $\mathrm{r} \longleftarrow \mathrm{S}$ to denote a uniform random variable over S

$$
\text { for all } a \in S: \quad \operatorname{Pr}[r=a]=1 /|S|
$$

Defining a random variable in terms of another

- Let r be a uniform random variable on $\{0,1\}^{2}$
- Define the random variable $X=r_{1}+r_{2}$
- Then $\operatorname{Pr}[X=2]=1 / 4$
- Hint: $\operatorname{Pr}[\mathrm{X}=2]=\operatorname{Pr}[r=11]$

Randomized algorithms

- Deterministic algorithm: $\mathrm{y} \leftarrow \mathrm{A}(\mathrm{m})$
- Randomized algorithm output is a random variable $y \leftarrow A(m)$
inputs

Recap

- U: Universe or Sample space (e.g., $U=\{0,1\}^{n}$)
- A Probability distribution P over U is a function $P: U \rightarrow[0,1]$ such that $\sum_{\mathrm{x} \in \mathrm{U}} \mathrm{P}(\mathrm{x})=1$
- An event is a subset A of U, that is, $A \subseteq U$
- The probability of event A is $\operatorname{Pr}[\mathrm{A}]=\sum_{\mathrm{x} \in \mathrm{A}} \mathrm{P}(\mathrm{x})$
- A random variable is a function $\mathrm{X}: \mathrm{U} \longrightarrow \mathrm{V}$ \underline{X} takes values in V and defines a distribution on V

Independence

Definition. Independent events
Events A and B are independent if
$\operatorname{Pr}[\mathrm{A} \cap \mathrm{B}]=\operatorname{Pr}[\mathrm{A}] \cdot \operatorname{Pr}[\mathrm{B}]$

Definition. Independent random variables
Random variables X and Y taking values in V are independent if
$\forall a, b \in V: \quad \operatorname{Pr}[X=a$ and $Y=b]=\operatorname{Pr}[X=a] \cdot \operatorname{Pr}[Y=b]$

XOR

XOR of two strings in $\{0,1\}^{n}$ is their bit-wise addition mod 2

\mathbf{X}	\mathbf{Y}	$\mathbf{X} \oplus \mathbf{Y}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

> | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 0 | 1 |

An important property of XOR

Theorem:

1. $\mathrm{X}:$ a random variable over $\{0,1\}^{\mathrm{n}}$ with a uniform distribution
2. Y: a random variable over $\{0,1\}^{n}$ with an arbitrary distribution
3. X and Y are independent

- Then $\mathbf{Z}:=\mathbf{Y} \oplus \mathbf{X}$ is a UNIFORM random variable over $\{0,1\}^{\mathrm{n}}$

Proof: (for $n=1$)
$\operatorname{Pr}[Z=0]=$
$\operatorname{Pr}[(X, Y)=(0,0)$ or $(X, Y)=(1,1)]=$
$\operatorname{Pr}[(X, Y)=(0,0)]+\operatorname{Pr}[(X, Y)=(1,1)]=$
$p_{0} / 2+p_{1} / 2=1 / 2$
Therefore $\operatorname{Pr}[Z=1]=1 / 2$

Y	Pr	X	Y	Pr
$\mathbf{0}$	p_{0}	0	0	$\mathrm{p}_{0} / \mathbf{2}$
$\mathbf{1}$	p_{1}	0	1	$\mathrm{p}_{1} / \mathbf{2}$
\mathbf{X}	Pr	1	0	$\mathrm{p}_{0} / \mathbf{2}$
$\mathbf{0}$	$\mathbf{1 / 2}$	1	1	$\mathrm{p}_{1} / 2$
$\mathbf{1}$	$\mathbf{1 / 2}$			

The birthday paradox

Let $r_{1}, \ldots, r_{n} \in U$ be independent identically distributed random variables
Theorem: when $n=1.2 \times|U|^{1 / 2}$ then $\operatorname{Pr}\left[\exists i \neq j: r_{i}=r_{j}\right] \geq 1 / 2$
Example:

- $U=\{1,2,3, \ldots, 366\}$
- When $\boldsymbol{n}=1.2 \times \sqrt{366} \approx \mathbf{2 3}$, two people have the same birthday with probability $\geq 1 / 2$
Example:
- Let $U=\{0,1\}^{128}$
- After sampling about 2^{64} random messages from U, some two sampled messages will likely be the same

Stream Ciphers

Outline

- One-Time Pad
- Perfect Secrecy
- Pseudorandom Generators (PRGs) and Stream Ciphers
- Attacks
- Security of PRGs
- Semantic Security

Symmetric Ciphers

Definition.
A (symmetric) cipher defined over (K, M, C) is a pair of "efficient" algorithms (E,D) where

- $\mathrm{E}: \mathrm{K} \times \mathrm{M} \rightarrow \mathrm{C}$
- $\mathrm{D}: \mathrm{K} \times \mathrm{C} \rightarrow \mathrm{M}$
such that $\forall m \in M, \forall k \in K: D(k, E(k, m))=m$
- E is often randomized.
- D is always deterministic.

The One-Time Pad
 (Vernam 1917)

First example of a "secure" cipher

- $K=M=C=\{0,1\}^{n}$

$$
\begin{array}{llllllllll}
\mathrm{m}: & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
\mathrm{k}: & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
\mathrm{c}: & 1 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}
$$

- $D(k, c)=k \oplus c$
- k used only once
- k is a random key (i.e., uniform distribution over K)

The One-Time Pad (Vernam 1917)
The one-time pad is a cipher:

- $D(k, E(k, m))=$
- $D(k, k \oplus m)=$
- $k \oplus(k \oplus m)=$
- $(k \oplus k) \oplus m=$
- $0 \oplus \mathrm{~m}=$
- m

One-time pad definition:

- $\mathrm{E}(\mathrm{k}, \mathrm{m})=\mathrm{k} \oplus \mathrm{m}$
- $D(k, c)=k \oplus c$

The One-Time Pad
 (Vernam 1917)

- Pro:
- Very fast encryption and decryption
- Con:
- Long keys (as long as the plaintext), If Alice wants to send a message to Bob, she first has to transmit a key of the same length to Bob in a secure way. If Alice has a secure mechanism to transmit the key, she might use that same mechanism to transmit the message itself!

Is the OTP secure? What is a secure cipher?

What is a secure cipher?
Attacker's abilities: CT only attack (for now)
Possible security requirements:
attempt \#1: attacker cannot recover secret key

$$
E(k, m)=m \quad \text { would be secure }
$$

attempt \#2: attacker cannot recover all of plaintext

$$
E\left(k, m_{0} \| m_{1}\right)=m_{0} \| k \oplus m_{1} \quad \text { would be secure }
$$

Shannon's idea:
CT should reveal no "info" about PT

Information Theoretic Security (Shannon 1949)

Definition.

A cipher (E, D) over (K, M, C) has perfect secrecy if
$\forall m_{0}, m_{1} \in M$ with $\operatorname{len}\left(m_{0}\right)=\operatorname{len}\left(m_{1}\right)$ and $\forall c \in C$

$$
\operatorname{Pr}\left[E\left(k, m_{0}\right)=c\right]=\operatorname{Pr}\left[E\left(k, m_{1}\right)=c\right]
$$

where \mathbf{k} is uniform in $\mathbf{K} \quad(\mathbf{k} \leftarrow K)$

Information Theoretic Security

- Given CT, can't tell if PT is m_{0} or m_{1} (for all m_{0}, m_{1})
- Most powerful adversary learns nothing about PT from CT
- No CT only attack! (but other attacks are possible...)

Is OTP "secure"?

OTP has perfect secrecy.

Proof:

$\forall m, c \quad P_{k} r[E(k, m)=c]=\frac{\# k e y s k \in K \text { s.t. } E(k, m)=c}{|K|}$
So if $\forall m, c \quad \#\{k \in K: E(k, m)=c\}=$ const.
\Rightarrow Cipher has perfect secrecy

Let $\mathbf{m} \in \mathrm{M}$ and $\mathbf{c} \in \mathrm{C}$. How many OTP keys map m to \mathbf{c} ?

- None
$\cdot 1$
- 2
- It depends on m

Is OTP "secure"?

OTP has perfect secrecy.

Proof:

$$
\forall m, c \quad \operatorname{Pr}[E(k, m)=c]=\frac{1}{|K|}
$$

$$
\text { So if } \forall m, c \quad \#\{k \in K: E(k, m)=c\}=\text { const. }
$$

\Rightarrow Cipher has perfect secrecy

The bad news ...

- OTP drawback: key-length=msg-length
- Are there ciphers with perfect secrecy that use shorter keys?

Theorem: perfect secrecy $\Rightarrow|K| \geq|M|$
i.e. perfect secrecy \Rightarrow key-length \geq msg-length

- Hard to use in practice!!!!

Pseudorandom Generators and Stream Ciphers

Review

Cipher over (K, M, C): a pair of "efficient" algorithms (E, D) s.t. $\forall m \in M, \forall k \in K: \quad D(k, E(k, m))=m$
Weak ciphers: substitution cipher, Vigener, ...
A good cipher: OTP $\quad M=C=K=\{0,1\}^{n}$

$$
E(k, m)=k \oplus m, \quad D(k, c)=k \bigoplus c
$$

OTP has perfect secrecy (i.e., no CT only attacks)
Bad news: perfect-secrecy \Rightarrow key-len \geq msg-len

Stream Ciphers: making OTP practical
Idea: replace "random" key by "pseudorandom" key
Pseudorandom Generator (PRG):
PRG is a function $G:\{0,1\}^{s} \rightarrow\{0,1\}^{n} \quad n \gg s$

seed space

(efficiently computable by a deterministic algorithm)

Stream Ciphers: making OTP practical

Can a stream cipher have perfect secrecy?

- Yes, if the PRG is really "secure"
- No, there are no ciphers with perfect secrecy
- Yes, every cipher has perfect secrecy
- No, since the key is shorter than the message

Can a stream cipher have perfect secrecy?

- Yes, if the PRG is really "secure"
- No, there are no ciphers with perfect secrecy
- Yes, every cipher has perfect secrecy
- No, since the key is shorter than the message

Stream Ciphers: making OTP practical

Stream ciphers cannot have perfect secrecy !!

- Need a different definition of security
- Security will depend on specific PRG

Weak PRGs (do not use for crypto)
Linear congruential generator with parameters $\mathrm{a}, \mathrm{b}, \mathrm{p}$:
(a, b are integers, p is a prime)
$r[0]:=$ seed
$r[i] \leftarrow a r[i-1]+b \bmod p$
has some good statistical properties But it's easy to predict
output few bits of $r[i]$
i++
glibc random():
$r[i] \leftarrow(r[i-3]+r[i-31]) \% 2^{32}$ output $\mathrm{r}[\mathrm{i}] \gg 1$

Do not use random() for crypto
(e.g., Kerberos v4)

Attacks on OTP and Stream Ciphers

Review

- One-time pad:
- $E(k, m)=k \bigoplus m$
- $D(k, c)=k \oplus c$
- Stream ciphers
making OTP practical using a PRG G: $\mathrm{K} \longrightarrow\{0,1\}^{\mathrm{n}}$
- $\mathrm{E}(\mathrm{k}, \mathrm{m})=\mathrm{G}(\mathrm{k}) \oplus \mathrm{m}$
- $D(k, c)=G(k) \oplus c$

Attack 1: two time pad is insecure !!

Never use stream cipher key more than once !!

$$
\begin{aligned}
& c_{1} \leftarrow \mathrm{~m}_{1} \oplus \operatorname{PRG}(\mathrm{k}) \\
& \mathrm{c}_{2} \leftarrow \mathrm{~m}_{2} \oplus \operatorname{PRG}(\mathrm{k})
\end{aligned}
$$

Eavesdropper does:

$$
\mathrm{c}_{1} \oplus \mathrm{c}_{2} \quad \rightarrow
$$

Enough redundancy in English and ASCII encoding that:

$$
m_{1} \oplus m_{2} \quad \rightarrow \quad m_{1}, m_{2}
$$

Real-world examples

- Project Venona (1941-1946)

Real-world examples

- Project Venona (1941-1946)
- MS-PPTP (windows NT):

Need different keys for $\mathrm{C} \rightarrow \mathrm{S}$ and $\mathrm{S} \rightarrow \mathrm{C}$

Real-world examples

k: LONG-TERM KEY

802.11b WEP:

Access Point
Length of IV: 24 bits

- Repeated IV after $2^{24} \approx 16 \mathrm{M}$ frames
- On some 802.11 cards: IV resets to 0 after power cycle

Avoid related keys

802.11b WEP:

24 bits 104 bits
key for frame \#1: (1 II k)
key for frame \#2: (2 II k)
Very related keys!! Not random keys!

The PRG used in WEP (called RC4) is not secure for such related keys

- Attack that can recover k after 10^{6} frames (FMS 2001)
- Recent attack => 40.000 frames

A better construction

\Rightarrow now each frame has a pseudorandom key
better solution: use stronger encryption method (as in WPA2)

Yet another example: disk encryption

Encr.

Encr.

Two time pad: summary

Never use stream cipher key more than once !!

- Network traffic: negotiate new key for every session (e.g. TLS)
- One key (or "sub-key") for traffic from Client to Server
- One key (or "sub-key") for traffic from Server to Client
- Disk encryption: typically do not use a stream cipher

Attack 2: no integrity (OTP is malleable)

Modifications to ciphertext are undetected and have predictable impact on plaintext

Attack 2: no integrity (OTP is malleable)

- Alice has to answer yes (1) or no (0) to Bob's invitation. She'll encrypt the answer with OTP.
- The attacker cannot recover Alice's answer from CT.
- Still, can the attacker "flip" Alice's answer?

Yes !! Apply $\oplus 1$ to the intercepted CT

Attack 2: no integrity (OTP is malleable)

Attack 2: no integrity (OTP is malleable)

Attack 2: no integrity (OTP is malleable)

Attacker wants to change Alice into Maria.
Can he do that?

Attack 2: no integrity (OTP is malleable)

Attacker wants to change Alice into Maria.
Can he do that?

Attack 2: no integrity (OTP is malleable)

Attacker wants to change Alice into Maria.
Can he do that?

Attack 2: no integrity (OTP is malleable)

Consider the bank account number in a wire transfer...

Real-world Stream Ciphers

Old example (software): RC4 (1987)

- Used in HTTPS and WEP

RC4 PRG

The RC4 stream cipher key s is a seed for the PRG and is used to initialize the array S to a pseudo-random permutation of the numbers $0::: 255$. Initialization is performed using the following setup algorithm:

```
input: string of bytes }
for }i\leftarrow0\mathrm{ to }255\mathrm{ do: }\quadS[i]\leftarrow
j\leftarrow0
for }i\leftarrow0\mathrm{ to }255\mathrm{ do
    k\leftarrows[i\operatorname{mod}|s|] // extract one byte from seed
    j\leftarrow(j+S[i]+k)\operatorname{mod}256
    swap(S[i],S[j])
```

During the loop the index i runs linearly through the array while the index jumps around. At each iteration the entry at index i is swapped with the entry at index j .

RC4 PRG

Once the array S is initialized, the PRG generates pseudo-random output one byte at a time using the following stream generator:

```
i\leftarrow0,\quadj\leftarrow0
```

repeat
$i \leftarrow(i+1) \bmod 256$
$j \leftarrow(j+S[i]) \bmod 256$
$\operatorname{swap}(S[i], S[j])$
output $S[(S[i]+S[j]) \bmod 256]$
forever

The procedure runs for as long as necessary. Again, the index i runs linearly through the array while the index j jumps around. Swapping $S[i]$ and $S[j]$ continuously shuffles the array S.

Security of RC4

Weaknesses:

1. Bias in initial output: let us assume that the RC4 setup algorithm is perfect and generates a uniform permutation from the set of all 256! permutations.
Mantin and Shamir showed that, even assuming perfect initialization, the output of RC4 is biased: $\operatorname{Pr}\left[2^{\text {nd }}\right.$ byte $\left.=0\right]=2 / 256 \rightarrow$ RC4-drop[n]
2. Fluhrer and McGrew: Prob. of $(0,0)$ is $1 / 256^{2}+1 / 256^{3}$
3. Related key attacks: attack on WEP

Old example (hardware): CSS (badly broken)
 Content Scrambling System

Linear feedback shift register (LFSR):

(Taps not for all cells)
Seed = initial state of the LFSR

DVD encryption (CSS):
GSM encryption (A5/1,2):
Bluetooth (EO):

2 LFSRs
3 LFSRs $\}$ all broken
4 LFSRs

Old example (hardware): CSS (badly broken)

CSS: \quad seed $=5$ bytes $=40$ bits

Easy to break in time $\approx 2^{17}$

Modern stream ciphers: eStream

Nonce: a non-repeating value for a given key, that is a pair (k, r) is never used more than once
=> can re-use the key as long as the nonce changes
$E(k, m, r)=m \oplus P R G(k, r)$
eStream: Salsa 20 (sw+Hw)
Salsa20: $\{0,1\}^{128}$ or $256 \times\{0,1\}^{64} \rightarrow\{0,1\}^{n} \quad$ (max $n=2^{73}$ bits)
Salsa20(k,r) := H(k, (r, O)) II H(k, (r, 1)) II...
(Apply h 10 times)

h: invertible function. designed to be fast on $\times 86$ (SSE2)

Performance: crpptot+ 5.6 .0 [Wei Dail

AMD Opteron, 2.2 GHz (Linux)

	PRG	Speed (MB/sec)
	RC4	126
eStream	Salsa20/12	643
	Sosemanuk	727

When is a PRG "secure"?

When is a PRG "secure"?

1. Unpredictable PRG
2. Secure PRG

We'll see that they are equivalent notions

PRG must be unpredictable
Suppose PRG is predictable:

$$
\exists i:\left.\left.\quad G(k)\right|_{1, \ldots, i} \xrightarrow{A l g} G(k)\right|_{i+1, \ldots, n}
$$

Even

$\left.\left.G(k)\right|_{1, \ldots, i} \xrightarrow{\text { Alg }} G(k)\right|_{i+1}$
is a problem

PRG must be unpredictable

We say that $\mathrm{G}: \mathrm{K} \rightarrow\{0,1\}^{\mathrm{n}}$ is predictable if:
\exists "efficient" algorithm A and $\exists 1 \leq i \leq n-1$ s.t.

$$
\begin{aligned}
& \operatorname{Pr}\left[A\left(\left.G(k)\right|_{1, \ldots, i}\right)=\left.G(k)\right|_{i+1}\right]>\frac{1}{2}+\epsilon \\
& k \leftarrow K \\
& \text { for non-negligible } \epsilon\left(\text { e.g., } \epsilon=\frac{1}{2^{30}}\right)
\end{aligned}
$$

PRG is unpredictable if it is not predictable

$\Rightarrow \forall i:$ no "efficient" adversary can predict bit (i+1) for "non-neg" ε

- Suppose $G: K \rightarrow\{0,1\}^{n}$ is such that for all $\mathbf{k}: \operatorname{XOR}(G(\mathbf{k}))=1$
- Is G predictable ??

1. Yes, given the first bit I can predict the second
2. No, G is unpredictable
3. Yes, given the first ($n-1$) bits I can predict the n-th bit
4. It depends

- Suppose $G: K \rightarrow\{0,1\}^{n}$ is such that for all $\mathbf{k}: \operatorname{XOR}(G(\mathbf{k}))=1$
- Is G predictable ??

1. Yes, given the first bit I can predict the second
2. No, G is unpredictable
3. Yes, given the first ($n-1$) bits I can predict the n-th bit
4. It depends

One more definition of "secure" PRG
Let $\mathbf{G}: K \rightarrow\{0,1\}^{\mathrm{n}}$ be a PRG
$G:\{0,1\}^{10} \rightarrow\{0,1\}^{1000}$
Goal:
define what it means that
$[k \leftarrow K$, output $G(k)] \quad\left[\mathrm{k} \leftarrow\{0,1\}^{10}\right.$, output $\left.\mathrm{G}(\mathrm{k})\right]$
is "indistinguishable" from
$\left[r \leftarrow\{0,1\}^{n}\right.$, ouput $\left.r\right] \quad\left[r \longleftarrow\{0,1\}^{1000}\right.$, output $\left.r\right]$

Note

A minimum security requirement for a PRG is that the length \mathbf{s} of the random seed should be sufficiently large
so that a search over $\mathbf{2}^{\text {s }}$ elements (the total number of possible seeds) is infeasible for the adversary.

Statistical Tests

Statistical test on $\{0,1\}^{\mathrm{n}}$:
An algorithm A s.t. $A(x)$ outputs " 0 " or " 1 ", that is $A:\{0,1\}^{n} \rightarrow\{0,1\}$

Examples:

1. $A(x)=1 \quad$ iff $\quad|\# O(x)-\# 1(x)| \leq 10 \mathrm{Vn}$
2. $A(x)=1$ iff $|\# 00(x)-n / 4| \leq 10 \mathrm{Vn}$
3. $A(x)=1$ iff max-run-of- $0(x)<10 \log _{2}(n)$

Advantage

- Let $\mathrm{G}: \mathrm{K} \rightarrow\{0,1\}^{\mathrm{n}}$ be a PRG
- Let $A:\{0,1\}^{n} \rightarrow\{0,1\}$ be a statistical test on $\{0,1\}^{n}$

- Adv close to 0 => A cannot distinguish G from random
- Adv non-negligible => A can distinguish G from random
- Adv close to 1 => A can distinguish G from random very well

A silly example: $A(x)=0 \Rightarrow A d v_{\text {PRG }}[A, G]=$

Example of Advantage

- Suppose $G: K \rightarrow\{0,1\}^{n}$ satisfies $\operatorname{msb}(G(k))=1 \quad$ for $2 / 3$ of keys in K
- Define statistical test $A(x)$ as:

$$
\text { if [msb(x)=1] output " } 1 \text { " else output " } 0 \text { " }
$$

Then

$$
\begin{gathered}
\operatorname{Adv}_{\text {PRG }}[A, G]=|\operatorname{Pr}[A(G(k))=1]-\operatorname{Pr}[A(r)=1]|= \\
|2 / 3-1 / 2|=1 / 6
\end{gathered}
$$

A breaks G with advantage $1 / 6$ (which is not negligible) hence \mathbf{G} is not a good PRG

Secure PRGs: crypto definition

Definition:

We say that $\mathbf{G}: \mathbf{K} \longrightarrow\{\mathbf{0}, \mathbf{1}\}^{\mathrm{n}}$ is a secure PRG if
for every "efficient" statistical test $\mathbf{A}, \operatorname{Adv}_{\text {PRG }}[A, G]$ is "negligible"

Are there provably secure PRGs? Unknown (=> P = PN)

A secure PRG is unpredictable

We show: PRG predictable \Rightarrow PRG is insecure

Suppose A is an efficient algorithm s.t.

$$
\begin{aligned}
& \operatorname{Pr}_{k \leftarrow K}\left[A\left(\left.G(k)\right|_{1, \ldots, i}\right)=\left.G(k)\right|_{i+1}\right]>\frac{1}{2}+\epsilon \\
& \quad \text { for non-negligible } \varepsilon \quad \text { (e.g. } \varepsilon=1 / 1000 \text {) }
\end{aligned}
$$

A secure PRG is unpredictable

Define statistical test B as:

$$
\begin{aligned}
& B(X)=\left\{\begin{array}{l}
\text { if } A\left(\left.X\right|_{1, \ldots, i}\right)=X_{i+1} \text { output } 1 \\
\text { else output } 0
\end{array}\right. \\
& k \leftarrow K: \operatorname{Pr}[B(G(k))=1]>\frac{1}{2}+\epsilon \\
& r \leftarrow\{0,1\}^{n}: \operatorname{Pr}[B(r)=1]=\frac{1}{2} \\
& \Rightarrow A d v_{P R G}[B, G]=|\operatorname{Pr}[B(G(k))=1]-\operatorname{Pr}[B(r)=1]|>\epsilon
\end{aligned}
$$

Thm (Yao'82): an unpredictable PRG is secure

Let $\mathbf{G}: \mathbf{K} \longrightarrow\{\mathbf{0 , 1}\}^{\mathrm{n}}$ be PRG
"Thm": if $\forall \mathbf{i} \in\{\mathbf{0}, \ldots, \mathbf{n - 1}\} \quad \mathbf{G}$ is unpredictable at position \mathbf{i} then \mathbf{G} is a secure PRG.

If next-bit predictors cannot distinguish G from random then no statistical test can !!

More Generally

Let \mathbf{P}_{1} and $\mathbf{P}_{\mathbf{2}}$ be two distributions over $\{0,1\}^{\text {n }}$

We say that $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$ are computationally indistinguishable (denoted $\mathbf{P}_{1} \approx_{p} \mathbf{P}_{2}$)

$$
\begin{gathered}
\text { if } \forall " \text { efficient"statistical test } A \\
\left|\underset{X \leftarrow P_{1}}{\operatorname{Pr}}[A(X)=1]-\underset{X \leftarrow P_{2}}{\operatorname{Pr}}[A(X)=1]\right|<\text { negligible }
\end{gathered}
$$

Example: a PRG is secure if $\{\mathbf{k} \longleftarrow K: G(k)\} \approx_{p}$ uniform $\left(\{0,1\}^{n}\right)$

Semantic Security

What is a secure cipher?
Attacker's abilities: CT only attack: obtains one ciphertext
Possible security requirements:
attempt \#1: attacker cannot recover secret key

$$
E(k, m)=m \quad \text { would be secure }
$$

attempt \#2: attacker cannot recover all of plaintext

$$
E\left(k, m_{0} \| m_{1}\right)=m_{0} \| k \oplus m_{1} \quad \text { would be secure }
$$

Shannon's idea:
CT should reveal no "info" about PT

Recall Shannon's perfect secrecy

Let (E, D) be a cipher over (K, M, C)

Shannon's perfect secrecy:
(E,D) has perfect secrecy if $\quad \forall m_{0}, m_{1} \in M \quad\left(\left|m_{0}\right|=\left|m_{1}\right|\right)$

$$
\left\{E\left(k, m_{0}\right)\right\}=\left\{E\left(k, m_{1}\right)\right\} \quad \text { where } k \longleftarrow K
$$

Weaker Definition:

(E, D) has perfect secrecy if $\quad \forall m_{0}, m_{1} \in M \quad\left(\left|m_{0}\right|=\left|m_{1}\right|\right)$

$$
\left\{E\left(k, m_{0}\right)\right\} \approx_{p}\left\{E\left(k, m_{1}\right)\right\} \quad \text { where } k \longleftarrow K
$$

- The two distributions must be identical
- Too strong definition
- It requires long keys
- Stream Ciphers can't satisfy it

Rather than requiring the two distributions to be identical, we require them to be
COMPUTATIONALLY INDISTINGUISHABLE
(One more requirement) ... but also need adversary to exhibit $m_{0}, m_{1} \in M$ explicitly

Semantic Security (one-time key)

For a cipher $\mathbf{Q}=(\mathbf{E}, \mathbf{D})$ and an adversary \mathbf{A} define a game as follows. For $b=0,1$ define experiments $\operatorname{EXP}(0)$ and $\operatorname{EXP}(1)$ as:

$\operatorname{Adv}_{\text {ss }}[\mathrm{A}, \mathrm{Q}]:=|\operatorname{Pr}[\operatorname{EXP}(0)=1]-\operatorname{Pr}[\operatorname{EXP}(1)=1]|$

Semantic Security (one-time key)

$\operatorname{Adv}_{5 S}[A, Q]=|\operatorname{Pr}[\operatorname{EXP}(\mathbf{0})=1]-\operatorname{Pr}[\operatorname{EXP}(\mathbf{1})=1]|$ should be "negligible" for all "efficient" A

Semantic Security (one-time key)

Definition:

\mathbf{Q} is semantically secure if for all "efficient" \mathbf{A},

$$
\mathrm{Adv}_{\mathrm{ss}}[\mathrm{~A}, \mathrm{Q}] \text { is "negligible". }
$$

Example

Suppose efficient A can always deduce LSB of PT from CT $\Rightarrow \mathbf{Q}$ is not semantically secure.

Then $\operatorname{Adv}_{s S}[B, Q]=|\operatorname{Pr}[\operatorname{EXP}(\mathbf{0})=1]-\operatorname{Pr}[\operatorname{EXP}(\mathbf{1})=1]|=$

Stream ciphers are semantically secure

Theorem:
\mathbf{G} is a secure $\operatorname{PRG} \Rightarrow$ stream cipher \mathbf{Q} derived from \mathbf{G} is semantically secure

In particular:
\forall semantic security adversary A, \exists a PRG adversary B (i.e., a statistical test) s.t.

$$
\operatorname{Adv}_{S S}[\mathrm{~A}, \mathrm{Q}] \leq 2 \cdot \operatorname{Adv}_{\mathrm{PRG}}[\mathrm{~B}, \mathrm{G}]
$$

Block Ciphers

Outline

- Block Ciphers
- Pseudo Random Functions (PRFs)
- Pseudo Random Permutations (PRPs)
- DES - Data Encryption Standard
- AES - Advanced Encryption Standard
- PRF \Rightarrow PRG
- PRG \Rightarrow PRF

Block Ciphers: crypto work horse

Canonical examples:

- DES: $n=64$ bits, $k=56$ bits
- 3DES: $n=64$ bits, $k=168$ bits
- AES: $\mathrm{n}=128$ bits, $\mathrm{k}=128,192,256$ bits

Block Ciphers Built by Iteration

$R(k, m)$ is called a round function for 3DES $(n=48), \quad$ for AES-128 $(n=10)$

Performance: crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

	Cipher	Block/key size	Speed (MB/sec)
$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{0}{3} \\ & \hline \end{aligned}$	RC4		126
	Salsa20/12		643
	Sosemanuk		727
$\begin{aligned} & \frac{\sigma}{0} \\ & \frac{0}{\lambda} \end{aligned}$	3DES	64/168	13
	AES-128	128/128	109

Abstractly: PRPs and PRFs

- Pseudo Random Function (PRF) defined over (K, X, Y):

$$
\mathrm{F}: \mathrm{K} \times \mathrm{X} \rightarrow \mathrm{Y}
$$

such that there exists "efficient" algorithm to evaluate $F(k, x)$

- Pseudo Random Permutation (PRP) defined over (K, X):

$$
\mathrm{E}: \mathrm{K} \times \mathrm{X} \rightarrow \mathrm{X}
$$

such that:

1. There exists "efficient" deterministic algorithm to evaluate $E(k, x)$
2. The function $E(k, \cdot)$ is one-to-one (for every k)
3. There exists "efficient" inversion algorithm $D(k, y)$

Running example

- Example PRPs: 3DES, AES, ...

AES: $\mathrm{K} \times \mathrm{X} \rightarrow \mathrm{X}$ where $\mathrm{K}=\mathrm{X}=\{0,1\}^{128}$
3DES: $K \times X \rightarrow X$ where $X=\{0,1\}^{64}, K=\{0,1\}^{168}$

- Functionally, any PRP is also a PRF.
- A PRP is a PRF where $X=Y$ and is efficiently invertible.

Secure PRFs

- Let $\mathrm{F}: \mathrm{K} \times \mathrm{X} \rightarrow \mathrm{Y}$ be a PRF. Set some notation:

$$
\left\{\begin{array}{l}
\text { Funs }[X, Y]: \text { the set of all functions from } X \text { to } Y \\
S_{F}=\{F(k, \cdot) \text { s.t. } k \in K\} \subseteq \text { Funs }[X, Y]
\end{array}\right.
$$

- Intuition: a PRF is secure if a random function in Funs $[\mathrm{X}, \mathrm{Y}]$ is "indistinguishable" from a random function in S_{F}

Secure PRF: definition

- Consider a PRFF: $\mathbf{K} \times \mathbf{X} \rightarrow \mathbf{Y}$. For $b=0,1$ define experiment $\operatorname{EXP}(b)$ as:

Definition: \mathbf{F} is a secure PRF if for all "efficient" adversary A:
$\operatorname{Adv}_{\text {PRF }}[A, F]:=|\operatorname{Pr}[\operatorname{EXP}(0)=1]-\operatorname{Pr}[\operatorname{EXP}(1)=1]|$ is "negligible".

Secure PRPs (secure block cipher)

- Let $\mathrm{E}: \mathrm{K} \times \mathrm{X} \rightarrow \mathrm{X}$ be a PRP

$$
\left\{\begin{array}{l}
\operatorname{Perms}[X]: \text { the set of all one-to-one functions from } X \text { to } X \\
\text { (i.e., permutations) } \\
S_{E}=\{E(k, \cdot) \text { s.t. } k \in K\} \subseteq \operatorname{Perms}[X]
\end{array}\right.
$$

- Intuition: a PRP is secure if a random function in Perms $[\mathrm{X}]$ is "indistinguishable" from a random function in S_{E}

Secure PRP (secure block cipher)

- Consider a PRP E: $\mathbf{K} \times \mathbf{X} \rightarrow \mathbf{X}$. For $\mathbf{b = 0 , 1}$ define experiment $\operatorname{EXP}(b)$ as:
Definition. E is a secure PRP if for all "efficient" adversary A:

$$
b^{\prime} \in\{0,1\}
$$

$\operatorname{Adv}_{\text {PRP }}[A, E]=|\operatorname{Pr}[\operatorname{EXP}(0)=1]-\operatorname{Pr}[\operatorname{EXP}(1)=1]|$ is "negligible".

Data Encryption Standard (DES)

The Data Encryption Standard (DES)

- Early 1970s: Horst Feistel designs Lucifer at IBM key-length $=128$ bits ; block-length $=128$ bits
- 1973: NBS (nowadays called NIST) asks for block cipher proposals. IBM submits variant of Lucifer.
- 1976: NBS adopts DES as a federal standard key-length $=56$ bits ; block-length $=64$ bits
- 1997: DES broken by exhaustive search
- 2000: NIST adopts Rijndael as AES to replace DES

DES: core idea - Feistel Network

Given functions $f_{1}, \ldots, f_{d}:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \quad$ (not necessarily invertible)

Goal: build invertible function $F:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n}$

In symbols: $R_{i}=f_{i}\left(R_{i-1}\right) \oplus L_{i-1}$
$L_{i}=R_{i-1}$

Feistel network is invertible

Claim: for all (arbitrary) $f_{1}, \ldots, f_{d}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
Feistel network $\mathrm{F}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{2 \mathrm{n}}$ is invertible
Proof: construct inverse

inverse

$$
R_{i-1}=L_{i}
$$

$$
\mathrm{L}_{\mathrm{i}-1}=
$$

Feistel network is invertible

Claim: for all (arbitrary) $f_{1}, \ldots, f_{d}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
Feistel network $\mathrm{F}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{2 \mathrm{n}}$ is invertible Proof: construct inverse

Decryption circuit

- Inversion is basically the same circuit, with f_{1}, \ldots, f_{d} applied in reverse order
- General method for building invertible functions (block ciphers) from arbitrary functions.
- Used in many block ciphers ... but not AES

Theorem (Luby-Rackoff '85):
f: $K \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ a secure PRF
$\Rightarrow \quad 3$-round Feistel F: $K^{3} \times\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n}$ is a secure PRP (k_{0}, k_{1}, k_{2} three independent keys)

input
output

DES: 16 round Feistel network

$$
f_{1}, \ldots, f_{16}:\{0,1\}^{32} \rightarrow\{0,1\}^{32} \quad, \quad f_{i}(x)=F\left(k_{i}, x\right)
$$

The function $\quad F\left(k_{i}, x\right)$

S-box: function $\{0,1\}^{6} \longrightarrow\{0,1\}^{4}$, implemented as look-up table.

The S-boxes (substitution boxes)

$$
\mathrm{S}_{\mathrm{i}}:\{0,1\}^{6} \longrightarrow\{0,1\}^{4}
$$

S_{5}		Middle 4 bits of input															
		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Outer bits	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

$\mathrm{S}_{5}(011011) \rightarrow 1001$

Choosing the S-boxes and P-box

- Choosing the S-boxes and P-box at random would result in an insecure block cipher (key recovery after $\approx 2^{24}$ outputs)
- Several rules used in choice of S and P boxes:
- No output bit should be close to a linear func. of the input bits
- S-boxes are 4 -to-1 maps (4 pre-images for each output)

Exhaustive Search for block cipher key

Goal: given a few input output pairs $\left(m_{i}, c_{i}=E\left(k, m_{i}\right)\right) i=1, . ., 3$ find key k .

Exhaustive Search for block cipher key

Goal: given a few input output pairs $\left(m_{i}, c_{i}=E\left(k, m_{i}\right)\right) \quad i=1, . ., 3$ find key k .

Lemma: Suppose DES is an ideal cipher
(2^{56} random invertible functions $\pi_{1}, \ldots, \pi_{2^{\wedge 56}}:\{0,1\}^{64} \rightarrow\{0,1\}^{64}$)
Then $\forall \mathrm{m}, \mathrm{c}$ there is at most one key k s.t. $\mathrm{c}=\operatorname{DES}(\mathrm{k}, \mathrm{m})$
with prob. $\geq 1-1 / 256 \approx 99.5 \%$
Proof:

$$
\begin{aligned}
& \operatorname{Pr}\left[\exists k^{\prime} \neq k: c=\operatorname{DES}(k, m)=\operatorname{DES}\left(k^{\prime}, m\right)\right] \leq \sum_{k^{\prime} \in\{0,1\}^{56}} \operatorname{Pr}\left[\operatorname{DES}(k, m)=\operatorname{DES}\left(k^{\prime}, m\right)\right] \leq 2^{56} \times 1 /\left(2^{64}\right)= \\
&=1 /\left(2^{8}\right)=1 / 256
\end{aligned}
$$

Exhaustive Search for block cipher key

For two DES pairs $\left(m_{1}, c_{1}=\operatorname{DES}\left(k, m_{1}\right)\right), \quad\left(m_{2}, c_{2}=\operatorname{DES}\left(k, m_{2}\right)\right)$ unicity prob. $\approx 1-1 / 2^{71}$

For AES-128: given two inp/out pairs, unicity prob. $\approx 1-1 / 2^{128}$
\Rightarrow two input/output pairs are enough for exhaustive key search.

Exhaustive Search Attacks

DES challenge

Goal: find $k \in\{0,1\}^{56}$ s.t. $\operatorname{DES}\left(k, m_{i}\right)=c_{i}$ for $i=1,2,3$ and decrypt $c_{4}, c_{5} .$.
1997: Internet search -- 3 months
1998: EFF machine (deep crack) -- 3 days (250K \$)
1999: combined search -- 22 hours
2006: COPACOBANA (120 FPGAs) -- 7 days (10K \$)
$\Rightarrow 56$-bit ciphers should not be used !!

Strengthening DES against exhaustive search

- Method 1: Triple-DES
- Method 2: DESX
- General construction that can be applied to other block ciphers as well.

Triple DES

- Consider a block cipher

E:K $\times \mathrm{M} \rightarrow \mathrm{M}$
D: $K \times M \rightarrow M$

- Define 3E: $K^{3} \times \mathbf{M} \rightarrow \mathbf{M}$ as

$$
3 E\left(k_{1}, k_{2}, k_{3}, m\right)=E\left(k_{1}, D\left(k_{2}, E\left(k_{3}, m\right)\right)\right)
$$

- For 3DES (or Triple DES)
- key lenght $=3 \times 56=168$ bits.
- $3 \times$ slower than DES.
- $\mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{k}_{3} \Rightarrow$ single DES
- simple attack in time $\approx \mathbf{2}^{118}$ (more on this later ...)

Why not double DES?

- Given a block cipher \mathbf{E}, define $\mathbf{2 E}\left(\mathbf{k}_{1}, \mathbf{k}_{\mathbf{2}}, \mathbf{m}\right)=E\left(\mathbf{k}_{1}, E\left(\mathbf{k}_{2}, m\right)\right)$
- Double DES: 2DES $\left(k_{1}, k_{2}, m\right)=E\left(k_{1}, E\left(k_{2}, m\right)\right)$
key-length $=112$ bits for 2DES
- Attack: Given \mathbf{m} and \mathbf{c} the goal is to
find $\left(k_{1}, k_{2}\right)$ s.t. $\mathbf{E}\left(\mathbf{k}_{1}, \mathbf{E}\left(\mathbf{k}_{2}, \mathbf{m}\right)\right)=\mathbf{c} \quad$ or equivalently
find $\left(k_{1}, k_{2}\right)$ s.t. $E\left(k_{2}, m\right)=D\left(k_{1}, c\right)$

Meet in the middle attack

- Attack: Given \mathbf{m} and \mathbf{c} the goal is to find $\left(k_{1}, k_{2}\right)$ s.t. $\mathbf{E}\left(\mathbf{k}_{1}, \mathbf{E}\left(\mathbf{k}_{2}, \mathbf{m}\right)\right)=\mathbf{c} \quad$ or equivalently find $\left(k_{1}, k_{2}\right)$ s.t. $E\left(\mathbf{k}_{2}, m\right)=D\left(\mathbf{k}_{1}, \mathbf{c}\right)$

- Attack involves TWO STEPS

Meet in the middle attack

Step 1:

- build table.
- sort on $2^{\text {nd }}$ column

$$
\left.\begin{array}{cc}
\hline k^{0}=00 \ldots . .00 & E\left(k^{0}, m\right) \\
k^{1}=00 \ldots . .01 & E\left(k^{1}, m\right) \\
k^{2}=00 \ldots 10 & E\left(k^{2}, m\right) \\
\vdots & \vdots \\
k^{N}=11 \ldots 11 & E\left(k^{N}, m\right)
\end{array}\right\} \quad \begin{gathered}
2^{56} \\
\text { entries }
\end{gathered}
$$

Meet in the middle attack

Step 2:

- for each $k \in\{0,1\}^{56}$ do:
test if $D(k, c)$ is in the $2^{\text {nd }}$ column of the table If so, then $E\left(k^{i}, m\right)=D(k, c) \Rightarrow\left(k^{i}, k\right)=\left(k_{2}, k_{1}\right)$

$k^{0}=00 \ldots 00$	$E\left(k^{0}, m\right)$
$k^{1}=00 \ldots . .01$	$E\left(k^{1}, m\right)$
\vdots	\vdots
$k^{i}=00 \ldots \ldots .$.	$E\left(k^{i}, m\right)$
\vdots	\vdots
$k^{N}=11 \ldots 11$	$E\left(k^{N}, m\right)$

Meet in the middle attack

Space $\approx 2^{56}$

Meet in the middle attack

Same attack on 3DES:

Time $=2^{118}, \quad$ space $\approx 2^{56}$

Time $=\underbrace{2^{56} \log \left(2^{56}\right)}_{\text {build }+ \text { sort table }}+\underbrace{2^{112} \log \left(2^{56}\right)}_{\text {search in table }}<2^{118}$

DESX

- Consider a block cipher

$$
\begin{aligned}
& E: K \times M \rightarrow M \\
& D: K \times M \rightarrow M
\end{aligned}
$$

- Define EX as

$$
E X\left(k_{1}, k_{2}, k_{3}, m\right)=k_{1} \oplus E\left(k_{2}, m \oplus k_{3}\right)
$$

- For DESX
- key-len $=64+56+64=184$ bits $\quad k_{1} \oplus E\left(k_{2}, m \oplus k_{3}\right)$
- ... but easy attack in time $2^{64+56}=2^{120}$
- Note: $\mathrm{k}_{1} \oplus \mathrm{E}\left(\mathrm{k}_{2}, \mathrm{~m}\right)$ and $\mathrm{E}\left(\mathrm{k}_{2}, \mathrm{~m} \oplus \mathrm{k}_{1}\right)$ insecure !!
(XOR outside) or \quad (XOR inside) \Rightarrow As weak as E w.r.t. exhaustive search

Few others attacks on block ciphers

Linear attacks on DES

A tiny bit of linearly in S_{5} lead to a 2^{43} time attack.

Total attack time $\approx 2^{43}\left(\ll 2^{56}\right)$ with 2^{42} random inp/out pairs

Quantum attacks

Generic search problem:
Let $\mathrm{f}: \mathrm{X} \rightarrow\{0,1\}$ be a function.
Goal: find $x^{*} \in X$ s.t. $f\left(x^{*}\right)=1$.

Classical computer: best generic algorithm time $=\mathbf{O}(|X|)$

Quantum computer [Grover'96]: time $\mathbf{=} \mathbf{O}\left(|\mathbf{X}|^{1 / 2}\right)$

Quantum exhaustive search

Given \mathbf{m} and $\mathbf{c}=\mathbf{E}(\mathbf{k}, \mathbf{m})$ define
For $k \in K, f(k)= \begin{cases}1 & \text { if } E(k, m)=c \\ 0 & \text { otherwise }\end{cases}$

Grover \Rightarrow quantum computer can find k in time $\mathrm{O}\left(|\mathrm{K}|^{1 / 2}\right)$

DES: time $\approx 2^{28}$, AES-128: time $\approx 2^{64}$
Quantum computer \Rightarrow 256-bits key ciphers (e.g., AES-256)

Advanced Encryption Standard (AES)

The AES process

- 1997: NIST publishes request for proposal
- 1998: 15 submissions. Five claimed attacks.
- 1999: NIST chooses 5 finalists
- 2000: NIST chooses Rijndael as AES (designed in Belgium)

Key sizes: 128, 192, 256 bits. Block size: 128 bits

AES is a Substitution-permutation Network (not Feistel)

AES-128 schematic

10 rounds

The round function

- ByteSub: a 1 byte S-box. 256 byte table (easily computable)
- Apply S-box to each byte of the $4 x 4$ input A, i.e., $A[i, j]=S[A[i, j]]$, for $1 \leq i, j \leq 4$
- ShiftRows:

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$		$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$
$s_{1,0}$	$s_{1,1}$	$S_{1,2}$	$s_{1,3}$		$S_{1,1}$	$S_{1,2}$	$s_{1,3}$	$s_{1,0}$
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$		$s_{2,2}$	$s_{2,3}$	$s_{2,0}$	$s_{2,1}$
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$		$s_{3,3}$	$s_{3,0}$	$s_{3,1}$	$s_{3,2}$

- MixColumns:

AES in hardware

AES instructions in Intel Westmere:

- aesenc, aesenclast: do one round of AES

128-bit registers: xmm1=state, xmm2=round key aesenc xmm1, xmm2 ; puts result in xmm1

- aeskeygenassist: performs AES key expansion
- Claim 14 x speed-up over OpenSSL on same hardware

Similar instructions on AMD Bulldozer

Attacks

- Best key recovery attack:
four times better than ex. search [BKR'11]
- Related key attack on AES-256: [BK’09]

Given $2{ }^{99}$ inp/out pairs from four related keys in AES-256
can recover keys in time $\approx 2^{99}$

PRF \Rightarrow PRG PRG \Rightarrow PRF

An easy application: PRF $\Rightarrow P R G_{\text {(counter mode) }}$

- Let $\mathrm{F}: \mathbf{K} \times\{\mathbf{0}, \mathbf{1}\}^{\mathrm{n}} \rightarrow\{\mathbf{0 , 1}\}^{\mathrm{n}}$ be a PRF.
- We define the PRG $\mathbf{G}: \mathbf{K} \rightarrow\{\mathbf{0 , 1}\}^{\mathrm{nt}}$ as follows:
(\mathbf{t} is a parameter that we can choose)

$$
G(k)=F(k,\langle 0\rangle n)\|F(k,\langle 1\rangle n)\| \cdots \| F(k,\langle t-1\rangle n)
$$

- Properties:
- Theorem: If \mathbf{F} is a secure PRF then \mathbf{G} is a secure PRG
- Key property: parallelizable

Can we build a PRF from a PRG?

Let $\mathrm{G}: \mathrm{K} \rightarrow \mathrm{K}^{2}$ be a PRG

Define a 1-bit PRF F: $\mathrm{K} \times\{0,1\} \rightarrow \mathrm{K}$ as

$$
F(k, x \in\{0,1\})=G(k)[x]
$$

Theorem. If \mathbf{G} is a secure PRG then \mathbf{F} is a secure PRF
Can we build a PRF with a larger domain? (e.g., 128 bits)

Extending a PRG

Let

$$
\mathrm{G}: \mathrm{K} \rightarrow \mathrm{~K}^{2} \text { be a PRG }
$$

Define

$$
\mathrm{G}_{1}: \mathrm{K} \rightarrow \mathrm{~K}^{4} \text { as }
$$

$$
\mathrm{G}_{1}(\mathrm{k})=\mathrm{G}(\mathrm{G}(\mathrm{k})[0]) \| \mathrm{G}(\mathrm{G}(\mathrm{k})[1])
$$

Then define a 2-bit PRF F: $K \times\{0,1\}^{2} \rightarrow K$ as

$$
F\left(k, x \in\{0,1\}^{2}\right)=G_{1}(k)[x]
$$

$\mathrm{G}_{1}(\mathrm{k})$

Extending more

Let $\quad G: K \longrightarrow K^{2}$.
Define $G_{2}: K \longrightarrow K^{8}$ as \square eval $F(k, 101)$ as follows:
Then define a 3-bit PRF
$\mathrm{F}: \mathrm{K} \times\{0,1\}^{3} \rightarrow K$ as
$F\left(k, x \in\{0,1\}^{3}\right)=G_{2}(k)[x]$

Extending even more: the GGM PRF

Let $G: K \rightarrow K^{2}$. define PRF $F: K \times\{0,1\}^{n} \rightarrow K$ as
For input $x=x_{0} x_{1} \ldots x_{n-1} \in\{0,1\}^{n}$ do:

Security: \mathbf{G} a secure PRG $\Rightarrow \mathbf{F}$ is a secure PRF on $\{0,1\}^{n}$.
Not used in practice due to slow performance.

Secure block cipher from a PRG?

Can we build a secure PRP from a secure PRG?

- No, it cannot be done
- Yes, just plug the GGM PRF into the Luby-Rackoff theorem
- It depends on the underlying PRG

Theorem (Luby-Rackoff '85):
f: $K \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ a secure PRF
$\Rightarrow \quad 3$-round Feistel F: $K^{3} \times\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n}$ is a secure PRP (k_{0}, k_{1}, k_{2} three independent keys)

Modes of Operation (using block ciphers)

Outline

- One-Time Key

- Semantic Security
- Electronic Code Book (ECB)
- Deterministic Counter Mode (DETCTR)
- Many-Time Key
- Semantic Security for Many-Time Key: Semantic Security under Chosen-Plaintext Attack (CPA)
- Cipher Block Chaining (CBC)
- Randomized
- Nonce-based

Review: PRPs and PRFs

Block Ciphers

Canonical examples:

- DES: $\mathrm{n}=64$ bits, $\mathrm{k}=56$ bits
- 3DES
$\mathrm{n}=64$ bits, $\mathrm{k}=168$ bits
- AES: $\mathrm{n}=128$ bits, $\mathrm{k}=128,192,256$ bits

Abstractly: PRPs and PRFs

- Pseudo Random Function (PRF) defined over (K, X, Y):

$$
\mathrm{F}: \mathrm{K} \times \mathrm{X} \rightarrow \mathrm{Y}
$$

such that there exists "efficient" algorithm to evaluate $F(k, x)$

- Pseudo Random Permutation (PRP) defined over (K, X):

$$
\mathrm{E}: \mathrm{K} \times \mathrm{X} \rightarrow \mathrm{X}
$$

such that:

1. There exists "efficient" deterministic algorithm to evaluate $E(k, x)$
2. The function $E(k, \cdot)$ is one-to-one, for every k
3. There exists "efficient" inversion algorithm $\quad D(k, y)$

Using block ciphers

- Don't think about the inner-workings of AES and 3DES.
- We assume both are secure PRPs and will see how to use them

Modes of Operation

How to use a block cipher on messages consisting of more than one block

- One-Time Key
- Electronic Code Book
- Deterministic Counter Mode
- Many-Time Key
- Cipher Block Chaining
- Counter Mode

Modes of Operation One-Time Key

(example: encrypted email, new key for every message)

Using PRPs and PRFs

Goal: build "secure" encryption from a secure PRP (e.g., AES).
This segment: one-time key

1. Adversary's power: Adversary sees only one ciphertext (one-time key)
2. Adversary's goal: Learn info about PT from CT (semantic security)

Next segment: many-time keys (a.k.a. chosen-plaintext security)

Incorrect use of a PRP

Electronic Code Book (ECB):

Problem: if $b_{1}=b_{2}$ then $c_{1}=c_{2}$

In pictures

Plain text

Cipher text with ECB

Cipher text with other modes of operation

Semantic Security (one-time key)

one time key \Rightarrow adversary sees only one ciphertext

Adv $_{\text {ss }}[A, C i p h e r]=|\operatorname{Pr}[\operatorname{EXP}(\mathbf{0})=1]-\operatorname{Pr}[\operatorname{EXP}(1)=1]|$ should be "negligible" for all "efficient" A

ECB is not Semantically Secure

ECB is not semantically secure for messages that contain more than one block. (known-plaintext attack)
$b \in\{0,1\}$

Then $\operatorname{Adv}_{S S}[A, E C B]=$ \square If $c_{1}=c_{2}$ output 1 , else output 0

Deterministic Counter Mode (Secure Construction)

- PRF F: $K \times\{0,1\}^{n} \rightarrow\{0,1\}^{n} \quad$ (e.g., $n=128$ with AES)
- $\mathrm{E}_{\text {DETCTR }}(\mathrm{k}, \mathrm{m})=$ (Encryption)

\Rightarrow Stream cipher built from a PRF (e.g., AES, 3DES)

Deterministic Counter Mode (Secure Construction)

- PRF F: $K \times\{0,1\}^{n} \rightarrow\{0,1\}^{n} \quad$ (e.g., $n=128$ with AES)
- $\mathrm{D}_{\text {DETCTR }}(\mathrm{k}, \mathrm{c})=$ (Decryption)

$m[0]$	$m[1]$	\ldots	$m[L]$

No need to invert F when decrypting

Deterministic Counter Mode Security

Theorem: For any L>0,
If F is a secure PRF over (K, X, X) then
DETCTR is semantically secure over (K, X^{L}, X^{L}).

In particular, for every efficient adversary A attacking DETCTR
there exists an efficient adversary B attacking F s.t.:

$$
A d v_{S S}[A, D E T C T R]=2 \cdot \operatorname{Adv}_{\text {PRF }}[B, F]
$$

$\operatorname{Adv}_{\text {PRF }}[B, F]$ is negligible (since F is a secure PRF)
Hence, $\operatorname{Adv}_{s S}[A, D E T C T R]$ must be negligible.

Modes of Operation Many-Time Key

Examples:

- File systems: Same AES key used to encrypt many files.
- IPsec: Same AES key used to encrypt many packets.

Semantic Security for Many-Time Key

Key used more than once \Rightarrow adversary sees many CTs with same key (i.e., used for multiple messages)

Adversary's power: Chosen-Plaintext Attack (CPA)

- Adversary can obtain the encryption of arbitrary messages of his choice (conservative modeling of real life)

Adversary's goal: Break semantic security

Semantic Security for Many-Time Key (CPA Security)

$Q=(E, D)$ a cipher defined over (K, M, C). For $b=0,1$ define $\operatorname{EXP}(b)$ as:

Semantic Security for Many-Time Key (CPA Security)

$Q=(E, D)$ a cipher defined over (K, M, C). For $b=0,1$ define $\operatorname{EXP}(b)$ as:

Semantic Security for Many-Time Key (CPA Security)

$Q=(E, D)$ a cipher defined over (K, M, C). For $b=0,1$ define $\operatorname{EXP}(b)$ as:

$\mathrm{CPA} \Rightarrow$ if adversary wants $\mathrm{c}=\mathrm{E}(\mathrm{k}, \mathrm{m})$ it queries with $\mathrm{m}_{\mathrm{j}, 0}=\mathrm{m}_{\mathrm{j}, 1}=\mathrm{m}$ Definition: Q is semantically secure under CPA if for all "efficient" adversary A :

$$
\operatorname{Adv}_{\text {CPA }}[\mathrm{A}, \mathrm{Q}]=|\operatorname{Pr}[\operatorname{EXP}(0)=1]-\operatorname{Pr}[\operatorname{EXP}(1)=1]| \text { is "negligible". }
$$

Ciphers Insecure under CPA

Suppose $E(k, m)$ always outputs same ciphertext for msg m and key k. Then:

So what? an attacker can learn that two encrypted files are the same, two encrypted packets are the same, etc.

- Leads to significant attacks when the message space M is small

Ciphers Insecure under CPA

Suppose $E(k, m)$ always outputs same ciphertext for msg m and key k. Then:

Challenger$\mathrm{k} \leftarrow \mathrm{~K}$	$\mathrm{m}_{0}, \mathrm{~m}_{0} \in \mathrm{M}$	Adversary
	$\mathrm{c}_{0} \leftarrow \mathrm{E}\left(\mathrm{k}, \mathrm{m}_{0}\right)$	
	$\mathrm{m}_{0}, \mathrm{~m}_{1} \in \mathrm{M}$	if $\mathrm{c}=\mathrm{c}_{0}$ output 0 else output 1
	$\mathrm{c} \leftarrow \mathrm{E}\left(\mathrm{k}, \mathrm{m}_{\mathrm{b}}\right)$	

If secret key is to be used multiple times \Rightarrow
given the same plaintext message twice, encryption must produce different outputs.

Solution 1: Randomized Encryption

- $E(k, m)$ is a randomized algorithm:

\Rightarrow encrypting same msg twice gives different ciphertexts (w.h.p.)
\Rightarrow ciphertext must be longer than plaintext
Roughly speaking: CT-size = PT-size + "\# random bits"

Solution 2: Nonce-based Encryption

Nonce n :

- a value that changes from msg to msg
- (k, n) pair never used more than once
- n does not need to be secret and does not need to be random

Solution 2: Nonce-based Encryption

Nonce

- Method 1: nonce is a counter (e.g., packet counter)
- used when encryptor keeps state from msg to msg
- if decryptor has same state, need not send nonce with CT
- Method 2: encryptor chooses a random nonce, $\mathrm{n} \leftarrow \mathcal{N}$ (It's like randomized encryption) (ex. Multiple devices encrypting with the same key)
- \mathcal{N} must be large enough to ensure that the same nonce is not chosen twice with high probability

CPA Security for Nonce-based Encryption

System should be secure when nonces are chosen adversarially.

All nonces $\left\{\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{q}}\right\}$ must be distinct.
Definition. Nonce-based \mathbf{Q} is semantically secure under CPA if for all "efficient" adversary A:

$$
\mathrm{Adv}_{\mathrm{nCPA}}[\mathrm{~A}, \mathrm{Q}]=|\operatorname{Pr}[\operatorname{EXP}(0)=1]-\operatorname{Pr}[\operatorname{EXP}(1)=1]| \text { is "negligible". }
$$

Many-time Key Mode of Operation: Cipher Block Chaining (CBC)

Construction 1: CBC with random IV

- PRP E : $\mathrm{K} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$
- (Encryption) $\mathrm{E}_{\mathrm{CBC}}(\mathrm{k}, \mathrm{m})$: choose random $\mathrm{IV} \in\{0,1\}^{\mathrm{n}}$ and do:

ciphertext

Construction 1: CBC with random IV

- $D: K \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ inversion algorithm of E
- (Decryption) $\mathrm{D}_{\mathrm{CBC}}(\mathrm{k}, \mathrm{c})$:

(Randomized) CBC Security

Theorem: For any $L>0$ (length of the message we are encrypting), If E is a secure PRP over (K, X) then CBC is semantically secure under CPA over ($K, X^{\llcorner }, X^{L+1}$).

In particular, for every efficient q-query adversary \mathbf{A} attacking CBC there exists an efficient PRP adversary \mathbf{B} attacking \mathbf{E} s.t.

$$
\operatorname{Adv}_{\mathrm{CPA}}[\mathrm{~A}, \mathrm{CBC}] \leq 2 \cdot \operatorname{Adv}_{\text {PRP }}[\mathrm{B}, \mathrm{E}]+2 \mathrm{q}^{2} \mathrm{~L}^{2} /|\mathrm{X}|
$$

Note: $\quad C B C$ is only secure as long as $q^{2} L^{2} \ll|X|$
(the error term should be negligible)

An example

$A \operatorname{Adv}_{\mathrm{CPA}}[\mathrm{A}, \mathrm{CBC}] \leq 2 \cdot \operatorname{Adv}_{\mathrm{PRP}}[\mathrm{B}, \mathrm{E}]+2 \mathrm{q}^{2} \mathrm{~L}^{2} /|\mathrm{X}|$

$q=\#$ messages encrypted with $k, \quad L=$ length of max message

Suppose we want $\operatorname{Adv}_{\mathrm{CPA}}[\mathrm{A}, \mathrm{CBC}] \leq 1 / 2^{32} \Leftarrow \mathrm{q}^{2} \mathrm{~L}^{2} /|\mathrm{X}|<1 / 2^{32}$

- AES: $|X|=2^{128} \Rightarrow q L<2^{48}$

So, after 2^{48} AES blocks, must change key

- 3DES: $|X|=2^{64} \Rightarrow q L<2^{16}$

So, after 2^{16} DES blocks, must change key
\Rightarrow after 2^{16} blocks (each of 8 bytes) need to change key $\Rightarrow 2^{16} \times 8=1 / 2 \mathrm{MB}!!!$

Warning: an attack on CBC with rand. IV

CBC where adversary can predict the IV is not CPA-secure !!
Suppose given $\mathrm{c} \leftarrow \mathrm{E}_{\mathrm{CBC}}(\mathrm{k}, \mathrm{m})$ adversary can predict IV for next message

Challenger$k \leftarrow K$	$\mathrm{c}_{0} \leftarrow[\mathrm{IV}, \mathrm{E}(\mathrm{k}, 0 \oplus \mathrm{IV})]$	Adversary
	$\mathrm{m}_{0}=\mathrm{IV} * \oplus \mathrm{IV}, \mathrm{m}_{1} \neq \mathrm{m}_{0}$	
	$\mathrm{c} \leftarrow[\mathrm{IV}$, $\mathrm{E}(\mathrm{k}, \mathrm{IV})]$ or	$]=c_{0}[1]$ output 0
	$c \leftarrow\left[I V^{*}, \mathrm{E}\left(\mathrm{k}, \mathrm{m}_{1} \oplus \mathrm{I} \mathrm{V}^{*}\right)\right]$	

Bug in SSL/TLS 1.0: IV for record \#i is last CT block of record \#(i-1)

Construction 2: Nonce-based CBC

- key = (k, \mathbf{k}_{1})
- (key, nonce) pair is used for only one message
- Encryption:

Construction 2: Nonce-based CBC

- Decryption:

An example Crypto API (OpenSSL)

```
void AES_cbc_encrypt(
    const unsigned char *in,
    unsigned char *out,
    size_t length,
    const AES_KEY *key,
    unsigned char *ivec, }\quad user supplies IV
    AES_ENCRYPT or AES_DECRYPT);
```

When it is non-random need to encrypt it before use (Otherwise, no CPA security!!)

A CBC technicality: padding

TLS: for $n>0, n$ byte pad is $n|n| \cdots n$
if no pad needed, add a dummy block 16 16|16... 16

removed
during
decryption

Key Exchange

Outline

- Trusted $3^{\text {rd }}$ Parties
- Merkle Puzzles
- The Diffie-Hellman Protocol

Trusted $3^{\text {rd }}$ Parties

Key Management

Problem: \mathbf{n} users. Storing mutual secret keys is difficult

$\mathbf{O}(\mathrm{n})$ keys per user $\mathbf{O}\left(\mathrm{n}^{2}\right)$ keys in total

A Better Solution

Online Trusted 3 ${ }^{\text {rd }}$ Party (TTP)

Every user only remembers ONE key

Generating keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Bob (k_{B})

Alice $\left(k_{A}\right) \quad$ TTP
"Alice wants key with Bob"

Generating keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: $E\left(k_{A}, \quad " A, B " \| k_{A B}\right)$; $E\left(k_{B}, \quad " A, B " \| k_{A B}\right)$
(E, D) is CPA-secure \Rightarrow eavesdropper learns nothing about $k_{A B}$

Note: TTP needed for every key exchange, knows all session keys.
(basis of Kerberos system)

Key Question

Can we generate shared keys without an online trusted $3^{\text {rd }}$ party?

Answer: yes!
Starting point of public-key cryptography:

- Merkle (1974),
- Diffie-Hellman (1976),
- RSA (1977)
- ...

Merkle Puzzles

Key exchange without an online TTP?

- Goal: Alice and Bob want a shared key, unknown to eavesdropper
- Security against eavesdropping only (no tampering)

- Can this be done using generic symmetric crypto?

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: "puzzles"

- Puzzles: Problems that can be solved with "some effort"
- Example:
- $\mathrm{E}(\mathrm{k}, \mathrm{m})$ a symmetric cipher with $\mathrm{k} \in\{0,1\}^{128}$
- puzzle $=E\left(P\right.$, "message") where $P=0^{96} \| b_{1} \ldots b_{32}$
- To "solve" a puzzle, find \mathbf{P} by trying all $\mathbf{2}^{32}$ possibilities

Merkle Puzzles

Alice:

- Prepare $\mathbf{2}^{32}$ puzzles:
- For $i=1, \ldots, 2^{32}$ choose random $P_{i} \in\{0,1\}^{32}$ and random $x_{i}, k_{i} \in\{0,1\}^{128} \quad x_{i} \neq x_{j}$

Set puzzle $\mathrm{i}_{\mathrm{i}} \leftarrow E\left(0^{96} \| P_{\mathrm{i}}\right.$, "Puzzle \#" II $\left.\mathrm{x}_{\mathrm{i}} \| \mathrm{k}_{\mathrm{i}}\right)$

- Send puzzle ${ }_{1}, \ldots$, puzzle $_{232}$ to Bob.

Bob:

- Choose a random puzzle e_{j} and solve it. Obtain ($\mathrm{x}_{\mathrm{j}}, \mathrm{k}_{\mathrm{j}}$) and use k_{j} as shared secret.
- Send x_{j} to Alice.

Alice:

- Lookup puzzle with number x_{j}.
- Use k_{j} as shared secret.

In a figure

Alice's work: $\mathbf{O}\left(\mathbf{2}^{\mathbf{3 2}}\right)$ (prepare 2^{32} puzzles)
Bob's work: $\mathbf{O}\left(\mathbf{2}^{32}\right)$ (solve one puzzle)
Eavesdropper's work: $\mathbf{O}\left(\mathbf{2}^{64}\right)$ (solve $\mathbf{2}^{32}$ puzzles)
in general $\mathbf{O}(\mathrm{n})$ in general $\mathbf{O}(\mathrm{n})$ in general $O\left(n^{2}\right)$

Impossibility Result

Can we achieve a better gap using a general symmetric cipher?
Answer: unknown

The Diffie-Hellman Protocol

Key exchange without an online TTP?

- Goal: Alice and Bob want a shared key, unknown to eavesdropper
- Security against eavesdropping only (no tampering)

- Can this be done with an exponential gap?

The Diffie-Hellman Protocol

High-level idea:

- Alice and Bob do NOT share any secret information beforehand
- Alice and Bob exchange messages
- After that, Alice and Bob have agreed on a shared secret key \mathbf{k}
- k unknown to eavesdropper

The Diffie-Hellman Protocol
(Security) Based on the Discrete Logarithm Problem: Given
-g

- p
- $g^{k} \bmod p$

Find k

The Diffie-Hellman Protocol

Fix a large prime p (e.g., 600 digits)
Fix an integer \mathbf{g} in $\{2, \ldots, p-2\}$

Alice

Choose random a in $\{1, \ldots, p-2\}$

$$
\mathbf{g}^{\mathbf{a}(\bmod \mathrm{p}) \quad \text { Choose random } \mathbf{b} \text { in }\{1, \ldots, \mathrm{p}}
$$

$g^{b}(\bmod p)$

Alice computes $\left(g^{b}\right)^{a}(\bmod p)$	$g^{a b}(\bmod p)$	Bob computes $\left(g^{a}\right)^{b}(\bmod p)$
	SECRET KEY	

Security

Eavesdropper sees: $\mathbf{p}, \mathbf{g}, \mathbf{g}^{\mathbf{a}}(\bmod \mathbf{p})$, and $\mathbf{g}^{\mathbf{b}}(\bmod \mathbf{p})$
Can she compute $\mathbf{g}^{\text {ab }}(\bmod \mathbf{p})$??

How hard is the DH function mod p ?

Suppose prime \mathbf{p} is \mathbf{n} bits long.
Best known algorithm (GNFS): run time $\exp (\tilde{O}(\sqrt[3]{n}))$

Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

Alice

MiTM

Bob

$$
A=g^{a}(\bmod p) \longrightarrow a^{\prime} \xrightarrow{A^{\prime}=g^{a^{\prime}}(\bmod p)}
$$

$$
\begin{array}{ccc}
B^{\prime}=g^{b^{\prime}}(\bmod p) & B=g^{b}(\bmod p) \\
g^{a b^{\prime}(\bmod p)} g^{a b^{\prime}}, g^{a^{\prime} b}(\bmod p) & g^{a^{\prime} b}(\bmod p)
\end{array}
$$

Introduction Number Theory

Background

We will use a bit of number theory to construct:

- Key exchange protocols
- Digital signatures
- Public-key encryption

Notation

From here on:

- N denotes a positive integer.
- p denote a prime.

Notation: $\mathbb{Z}_{N}=\{0,1, \ldots, N-1\}$

Can do addition and multiplication modulo N

Modular arithmetic

Examples: let $N=12$

$$
\begin{array}{ll}
9+8=5 & \text { in } \mathbb{Z}_{12} \\
5 \times 7=\square & \text { in } \mathbb{Z}_{12} \\
5-7=\square & \text { in } \mathbb{Z}_{12}
\end{array}
$$

Arithmetic in \mathbb{Z}_{N} works as you expect, e.g $\quad x \cdot(y+z)=x \cdot y+x \cdot z$ in \mathbb{Z}_{N}

Modular arithmetic

Examples: let $N=12$

$$
\begin{array}{ll}
9+8=5 & \text { in } \mathbb{Z}_{12} \\
5 \times 7=11 & \text { in } \mathbb{Z}_{12} \\
5-7=10 & \text { in } \mathbb{Z}_{12}
\end{array}
$$

Arithmetic in \mathbb{Z}_{N} works as you expect, e.g $\quad x \cdot(y+z)=x \cdot y+x \cdot z$ in \mathbb{Z}_{N}

Greatest common divisor

Def: For ints. $x, y: \operatorname{gcd}(x, y)$ is the greatest common divisor of x, y
Example: $\quad \operatorname{gcd}(12,18)=6$

Fact: for all ints. x, y there exist ints. a, b such that

$$
a \cdot x+b \cdot y=\operatorname{gcd}(x, y)
$$

a, b can be found efficiently using the extended Euclid alg.

If $\operatorname{gcd}(x, y)=1$ we say that x and y are relatively prime

Example: $2 \times 12-1 \times 18=6$

Modular inversion

Over the rationals, inverse w.r.t. the moltiplication of 2 is $1 / 2$. What about \mathbb{Z}_{N} ?

Def: The inverse of x in \mathbb{Z}_{N} is an element y in \mathbb{Z}_{N} s.t. $x \cdot y=1$ y is denoted x^{-1}.

Example: let N be an odd integer.
The inverse of 2 in \mathbb{Z}_{N} is $\frac{N+1}{2}$ since $2 \cdot \frac{N+1}{2}=N+1=1$

Modular inversion

Which elements have an inverse in \mathbb{Z}_{N} ?

Lemma: $\quad x$ in \mathbb{Z}_{N} has an inverse if and only if $\operatorname{gcd}(x, N)=1$
Proof:

$$
\begin{aligned}
\operatorname{gcd}(x, N)=1 & \Rightarrow \exists a, b: a \cdot x+b \cdot N=1 \Rightarrow a \cdot x=1 \text { in } \mathbb{Z}_{N} \\
& \Rightarrow x^{-1}=a \text { in } \mathbb{Z}_{N} \\
\operatorname{gcd}(x, N)>1 & \Rightarrow \forall a: \operatorname{gcd}(a \cdot x, N)>1 \Rightarrow a \cdot x \neq 1 \text { in } \mathbb{Z}_{N}
\end{aligned}
$$

More notation

Def: $\quad \mathbb{Z}_{N}^{*}=\left(\right.$ set of invertible elements in $\left.\mathbb{Z}_{N}\right)=$

$$
=\left\{x \in \mathbb{Z}_{N}: \operatorname{gcd}(x, N)=1\right\}
$$

Examples:

1. for prime $\mathrm{p}, \mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}=\{1,2, \ldots, p-1\}$
2. $\mathbb{Z}_{12}^{*}=\square$

For x in \mathbb{Z}_{N}^{*}, can find x^{-1} using extended Euclid algorithm.

More notation

Def: $\quad \mathbb{Z}_{N}^{*}=\left(\right.$ set of invertible elements in $\left.\mathbb{Z}_{N}\right)=$

$$
=\left\{x \in \mathbb{Z}_{N}: \operatorname{gcd}(x, N)=1\right\}
$$

Examples:

1. for prime $\mathrm{p}, \mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}=\{1,2, \ldots, p-1\}$
2. $\mathbb{Z}_{12}^{*}=\{1,5,7,11\}$

For x in \mathbb{Z}_{N}^{*}, can find x^{-1} using extended Euclid algorithm.

Solving modular linear equations

Solve:

$$
a \cdot x+b=0 \quad \text { in } \quad \mathbb{Z}_{N}
$$

Solution: $\quad \mathbf{x}=-\mathrm{b} \cdot \mathrm{a}^{-1}$ in \mathbb{Z}_{N}

Find a^{-1} in \mathbb{Z}_{N} using extended Euclid. Run time: $\mathrm{O}\left(\log ^{2} \mathrm{~N}\right)$

What about modular quadratic equations? next segments

Fermat's theorem

Thm: Let p be a prime

$$
\forall x \in\left(Z_{p}\right)^{*}: \quad x^{p-1}=1 \text { in } Z_{p}
$$

Example: $p=5 . \quad 3^{4}=81=1$ in Z_{5}

Example of application:
So: $x \in\left(Z_{p}\right)^{*} \Rightarrow x \cdot x^{p-2}=1 \Rightarrow x^{-1}=x^{p-2}$ in Z_{p}
another way to compute inverses, but less efficient than Euclid

Application: generating random primes

Suppose we want to generate a large random prime
say, prime p of length 1024 bits (i.e. $p \approx 2^{1024}$)

Step 1: choose a random integer $p \in\left[2^{1024}, 2^{1025}-1\right]$
Step 2: test if $2^{p-1}=1$ in Z_{p}
If so, output p and stop. If not, goto step 1 .

Simple algorithm (not the best). $\operatorname{Pr}[p$ not prime $]<\mathbf{2}^{-60}$

The structure of $\left(Z_{p}\right)^{*}$

Thm (Euler): $\quad\left(Z_{p}\right)^{*}$ is a cyclic group, that is

$$
\exists g \in\left(Z_{p}\right)^{*} \text { such that }\left\{1, g, g^{2}, g^{3}, \ldots, g^{p-2}\right\}=\left(Z_{p}\right)^{*}
$$

g is called a generator of $\left(Z_{p}\right)^{*}$

Example: $\quad p=7 . \quad\left\{1,3,3^{2}, 3^{3}, 3^{4}, 3^{5}\right\}=\{1,3,2,6,4,5\}=\left(Z_{7}\right)^{*}$

Not every elem. is a generator: $\quad\left\{1,2,2^{2}, 2^{3}, 2^{4}, 2^{5}\right\}=\{1,2,4\}$

Order

For $g \in\left(Z_{p}\right)^{*}$ the set $\left\{1, g, g^{2}, g^{3}, \ldots\right\}$ is called the group generated by g, denoted <g>

Def: the order of $g \in\left(Z_{p}\right)^{*}$ is the size of $<g>$

$$
\operatorname{ord}_{p}(g)=|\langle g\rangle|=\left(\text { smallest } a>0 \text { s.t. } g^{a}=1 \text { in } Z_{p}\right)
$$

Examples: $\quad \operatorname{ord}_{7}(3)=6 ; \operatorname{ord}_{7}(2)=3 ; \operatorname{ord}_{7}(1)=1$

Thm (Lagrange): $\forall g \in\left(Z_{p}\right)^{*}: \quad \operatorname{ord}_{\mathrm{p}}(\mathrm{g})$ divides $\mathrm{p}-1$

Euler's generalization of Fermat

Def: For an integer N define $\varphi(N)=\left|\left(Z_{N}\right)^{*}\right| \quad$ (Euler's φ func.)

Examples:

$$
\begin{aligned}
& \varphi(12)=|\{1,5,7,11\}|=4 \quad ; \quad \varphi(p)=p-1 \\
& \text { For } N=p \cdot q: \quad \varphi(N)=N-p-q+1=(p-1)(q-1)
\end{aligned}
$$

Thm (Euler): $\forall x \in\left(Z_{N}\right)^{*}: \quad x^{\varphi(N)}=1$ in Z_{N}
Example: $5^{\varphi(12)}=5^{4}=625=1$ in Z_{12}
Generalization of Fermat. Basis of the RSA cryptosystem

Modular e'th roots

We know how to solve modular linear equations:

$$
a \cdot x+b=0 \text { in } Z_{N} \quad \text { Solution: } \quad x=-b \cdot a^{-1} \text { in } Z_{N}
$$

What about higher degree polynomials?

Example: let p be a prime and $c \in Z_{p}$. Can we solve:

$$
x^{2}-c=0, \quad y^{3}-c=0, \quad z^{37}-c=0 \quad \text { in } z_{p}
$$

Modular eth roots

Let p be a prime and $c \in Z_{p}$.
Def: $\quad x \in Z_{p}$ s.t. $x^{e}=c$ in Z_{p} is called an esth root of c.
Examples: $\quad 7^{1 / 3}=6^{3}$ in $\mathbb{Z}_{11}=216=7$ in \mathbb{Z}_{11}

$$
3^{1 / 2}=5 \text { in } \mathbb{Z}_{11} \quad 2^{1 / 2} \text { does not exist in } \mathbb{Z}_{11}
$$

$$
1^{1 / 3}=1 \text { in } \mathbb{Z}_{11}
$$

The easy case

When does $\mathbf{c}^{1 / e}$ in \mathbf{Z}_{p} exist? Can we compute it efficiently?

The easy case: suppose $\operatorname{gcd}(e, p-1)=1$
Then for all c in $\left(Z_{p}\right)^{*}: \quad c^{1 / e}$ exists in Z_{p} and is easy to find.

The case $\mathrm{e}=2$: square roots

If p is an odd prime then $\operatorname{gcd}(2, p-1) \neq 1$

Fact: in $\mathbb{Z}_{p}^{*}, x \rightarrow \mathrm{x}^{2}$ is a 2-to-1 function

Def: x in \mathbb{Z}_{p} is a quadratic residue (Q.R.) if it has a square root in \mathbb{Z}_{p} p odd prime \Rightarrow the \# of Q.R. in \mathbb{Z}_{p} is $(p-1) / 2+1$

Euler's theorem

Thm: $\quad x$ in $\left(Z_{p}\right)^{*}$ is a Q.R. $\quad \Leftrightarrow \quad x^{(p-1) / 2}=1$ in $Z_{p} \quad$ (p odd prime)

Example:

$$
\begin{aligned}
& \text { in } \mathbb{Z}_{11}: \\
& 1^{5}, 2^{5}, 3^{5}, 4^{5}, 5^{5}, 6^{5}, 7^{5}, 8^{5}, 9^{5}, 10^{5} \\
&=1-1
\end{aligned}
$$

Note: $x \neq 0 \Rightarrow x^{(p-1) / 2}=\left(x^{p-1}\right)^{1 / 2}=1^{1 / 2} \in\{1,-1\}$ in Z_{p}

Def: $x^{(p-1) / 2}$ is called the Legendre Symbol of x over p

Computing square roots mod p

Suppose $p=3(\bmod 4)$

Lemma: if $c \in\left(Z_{p}\right)^{*}$ is $Q . R$. then $V_{c}^{-}=c^{(p+1) / 4}$ in Z_{p}

Solving quadratic equations mod p

Solve:

$$
a \cdot x^{2}+b \cdot x+c=0 \quad \text { in } \quad Z_{p}
$$

Solution: $\quad x=\left(-b \pm \sqrt{b^{2}-4 \cdot a \cdot c}\right) / 2 a$ in Z_{p}

- Find $(2 a)^{-1}$ in Z_{p} using extended Euclid.
- Find square root of $b^{2}-4 \cdot a \cdot c$ in Z_{p} (if one exists)
using a square root algorithm

Computing e'th roots mod N ??

Let N be a composite number and $e>1$

When does $c^{1 / e}$ in Z_{N} exist? Can we compute it efficiently?

Answering these questions requires the factorization of N (as far as we know)

Easy problems

- Given composite N and x in Z_{N} find x^{-1} in Z_{N}
- Given prime p and polynomial $f(x)$ in $Z_{p}[x]$ find x in Z_{p} s.t. $f(x)=0$ in $Z_{p} \quad$ (if one exists) Running time is linear in $\operatorname{deg}(f)$.
... but many problems are difficult

Intractable problems with primes

Fix a prime $p>2$ and g in $\left(Z_{p}\right)^{*}$ of order q.
Consider the function: $\quad \mathrm{x} \mapsto \mathrm{g}^{\mathrm{x}} \quad$ in Z_{p}
Now, consider the inverse function:

$$
\operatorname{Dlog}_{g}\left(\mathrm{~g}^{\mathrm{x}}\right)=\mathrm{x} \quad \text { where } \mathrm{x} \text { in }\{0, \ldots, q-2\}
$$

Example: in $\mathbb{Z}_{11}: 1,2,3,4,5,6,7,8,9,10$
$\operatorname{Dlog}_{2}(\cdot): \quad 0,1,8,2,4,9,7,3,6,5$

Intractable problems with composites

Consider the set of integers: (e.g. for $n=1024$)

$$
\mathbb{Z}_{(2)}(n):=\{N=p \cdot q \text { where } p, q \text { are } n \text {-bit primes }\}
$$

Problem 1: Factor a random N in $\mathbb{Z}_{(2)}(n) \quad$ (e.g. for $\mathrm{n}=1024$)

Problem 2: Given a polynomial $\mathbf{f}(\mathbf{x})$ where degree(f) >1 and a random N in $\mathbb{Z}_{(2)}(n)$
find x in $\mathbb{Z}_{N} \quad$ s.t. $\mathrm{f}(\mathrm{x})=0$ in \mathbb{Z}_{N}

The factoring problem

Gauss (1805):
"The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic."

Best known alg. (NFS): run time $\exp (\tilde{O}(\sqrt[3]{n}))$ for n-bit integer
Current world record: RSA-768 (232 digits)

- Work: two years on hundreds of machines
- Factoring a 1024-bit integer: about 1000 times harder
\Rightarrow likely possible this decade

Asymmetric Cryptography Public key encryption: definitions and security

Symmetric Cipher

Problems with Symmetric Ciphers

- In order for Alice \& Bob to be able to communicate securely using a symmetric cipher, such as AES, they have to have a shared key in the first place.
- What if they have never met before?
- Alice needs to keep 100 different keys if she wishes to communicate with 100 different people

Motivation of Asymmetric Cryptography

- Is it possible for Alice \& Bob, who have no shared secret key, to communicate securely?
- This led to Asymmetric Cryptography

Asymmetric Cryptography

Asymmetric Cryptography

Laura

Public and private keys

Public and private keys

Public and private keys

Asymmetric Cryptography

- Public key
- Private key
- E(private-key Alice,, m$)=\mathbf{c}$
- $D($ public-key Alice, $\mathbf{c})=m$
- $E\left(\right.$ public-key $\left._{\text {Alice, }}, m\right)=c$
- $D\left(\right.$ private-key $\left._{\text {Alice, }} \mathbf{c}\right)=m$

Main ideas

- Bob:
- publishes, say in Yellow/White pages, his public key, and
- keeps to himself the matching private key.

Main ideas (Confidentiality)

- Alice:
- Looks up the phone book, and finds out Bob's public key
- Encrypts a message using Bob's public key and the encryption algorithm.
- Sends the ciphertext to Bob.

Main ideas (Confidentiality)

- Bob:
- Receives the ciphertext from Alice.
- Decrypts the ciphertext using his private key, together with the decryption algorithm

Asymmetric Encryption

- Confidentiality scenario
- Other scenarios are possible, with keys used differently...
- e.g., Digital signatures

Bob's PRIVATE KEY

Main differences with Symmetric Crypto

- The public key is different from the private key.
- Infeasible for an attacker to find out the private key from the public key.
- No need for Alice \& Bob to distribute a shared secret key beforehand!
- Only one pair of public and private keys is required for each user!

Let's start seriously

- define what is public key encryption
- what it means for public key encryption to be secure

Public key encryption

Bob: generates (PK, SK) and gives PK to Alice

Applications

Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)

- Bob sends email to Alice encrypted using $\mathrm{pk}_{\text {alice }}$
- Note: Bob needs $\mathrm{pk}_{\text {alice }}$ (public key management)

Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)

- G() : randomized alg. outputs a key pair (pk, sk)
- $E(p k, m)$: randomized alg. that takes $m \in M$ and outputs $c \in C$
- $D(s k, c)$: det. alg. that takes $c \in C$ and outputs $m \in M$ or \perp

Consistency: $\forall(\mathrm{pk}$, sk) output by G :
$\forall m \in M: \quad D(s k, E(p k, m))=m$

Security: eavesdropping

For $b=0,1$ define experiments $\operatorname{EXP}(0)$ and $\operatorname{EXP}(1)$ as:

Def: $E=(G, E, D)$ is sem. secure (a.k.a IND-CPA) if for all efficient A :

$$
\operatorname{Adv}_{\mathrm{SS}}[\mathrm{~A}, \mathrm{E}]=|\operatorname{Pr}[\operatorname{EXP}(0)=1]-\operatorname{Pr}[\operatorname{EXP}(1)=1]|<\text { negligible }
$$

Relation to symmetric cipher security

Recall: for symmetric ciphers we had two security notions:

- One-time security and many-time security (CPA)
- We showed that one-time security \nRightarrow many-time security

For public key encryption:

- One-time security \Rightarrow many-time security (CPA)
(follows from the fact that attacker can encrypt by himself)
- Public key encryption must be randomized

Security against active attacks

What if attacker can tamper with ciphertext?

(pub-key) Chosen Ciphertext Security: definition

$E=(G, E, D)$ public-key enc. over (M, C). For $b=0,1$ define $\operatorname{EXP}(b)$:

Chosen ciphertext security: definition

Def: E is CCA secure (a.k.a IND-CCA) if for all efficient A:
$A d v_{C C A}[A, E]=\| \operatorname{Pr}[\operatorname{EXP}(0)=1]-\operatorname{Pr}[\operatorname{EXP}(1)=1] \mid$ is negligible.
Example: Suppose (to: alice, body) $\rightarrow \quad$ (to: david, body)

Active attacks: symmetric vs. pub-key

Recall: secure symmetric cipher provides authenticated encryption [chosen plaintext security \& ciphertext integrity]

- Roughly speaking: attacker cannot create new ciphertexts
- Implies security against chosen ciphertext attacks

In public-key settings:

- Attacker can create new ciphertexts using pk !!
- So instead: we directly require chosen ciphertext security

Trapdoor Permutations

Trapdoor functions (TDF)

Def: a trapdoor func. $X \rightarrow Y$ is a triple of efficient algs. (G, F, F^{-1})

- G() : randomized alg. outputs a key pair (pk, sk)
- $F(p k, \cdot):$ det. alg. that defines a function $\quad X \longrightarrow Y$
- $\mathrm{F}^{-1}(\mathrm{sk}, \cdot)$: defines a function $\mathrm{Y} \longrightarrow \mathrm{X}$ that inverts $\mathrm{F}(\mathrm{pk}, \cdot)$

More precisely: $\quad \forall(\mathrm{pk}, \mathrm{sk})$ output by G

$$
\forall x \in X: \quad F^{-1}(s k, F(p k, x))=x
$$

Secure Trapdoor Functions (TDFs)

$\left(G, F, F^{-1}\right)$ is secure if $F(p k, \cdot)$ is a "one-way" function:
can be evaluated, but cannot be inverted without sk

Def: $\left(G, F, F^{-1}\right)$ is a secure TDF if for all efficient A :

$$
\operatorname{Adv}_{\text {ow }}[A, F]=\operatorname{Pr}\left[x=x^{\prime}\right]<\text { negligible }
$$

Hash Functions

- Hash functions:
- Input: arbitrary length
- Output: fixed length (generally much shortern than the input)

One-Way Hash Algorithm

- A one-way hash algorithm hashes an input document into a condensed short output (say of 256 bits)
- Denoting a one-way hash algorithm by $\mathrm{H}($.$) , we have:$
- Input: m-a binary string of any length
- Output: $\mathrm{H}(\mathrm{m})$ - a binary string of L bits, called the "hash of m under H".
- The output length parameter L is fixed for a given one-way hash function H ,
- Examples:
- The one-way hash function "MD5" has L=128 bits
- The one-way hash function "SHA-1" has $L=160$ bits

Properties of One-Way Hash Algorithm

- A good one-way hash algorithm H needs to have these properties:
- 1. Easy to Evaluate:
- The hashing algorithm should be fast
- 2. Hard to Reverse:
- There is no feasible algorithm to "reverse" a hash value,
- That is, given any hash value \mathbf{h}, it is computationally infeasible to find any document \mathbf{m} such that $\mathbf{H}(\mathbf{m})=\mathbf{h}$.
- 3. Hard to find Collisions:
- There is no feasible algorithm to find two or more input documents which are hashed into the same condensed output,
- That is, it is computationally infeasible to find any two documents m1, $\mathbf{m 2}$ such that $\mathbf{H}(\mathrm{m} 1)=\mathbf{H}(\mathrm{m} 2)$.
- 4. A small change to a message should change the hash value so extensively that the new hash value appears uncorrelated with the old hash value

Public-key encryption from TDFs

- $\left(G, F, F^{-1}\right)$: secure TDF $X \longrightarrow Y$
- $\left(E_{s}, D_{s}\right)$: symmetric auth. encryption defined over (K,M,C)
- $\mathrm{H}: \mathrm{X} \rightarrow \mathrm{K}$ a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

- $\left(G, F, F^{-1}\right)$: secure TDF $X \longrightarrow Y$
- $\left(E_{s}, D_{s}\right)$: symmetric auth. encryption defined over (K,M,C)
- $\mathrm{H}: \mathrm{X} \rightarrow \mathrm{K}$ a hash function

$$
\begin{aligned}
& E(\text { pk, m) : } \\
& \qquad \begin{array}{l}
x \leftarrow x, \quad y \leftarrow F(p k, x) \\
k \leftarrow H(x), \quad c \leftarrow E_{s}(k, m) \\
\quad \text { output } \quad(y, c)
\end{array}
\end{aligned}
$$

In pictures:

$$
F(p k, x) \quad E_{s}(H(x), m)
$$

header
body

Security Theorem:

If (G, F, F^{-1}) is a secure TDF, $\quad\left(E_{s}, D_{s}\right)$ provides auth. enc.
and $\mathrm{H}: \mathrm{X} \longrightarrow \mathrm{K}$ is a "random oracle"
then ($\mathbf{G}, \mathbf{E}, \mathbf{D}$) is CCA $^{\text {ro }}$ secure.

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

```
E(pk,m):
    output c c FF(pk,m)
```

```
D( sk, c) :
    output F-1}(sk, c
```

Problems:

- Deterministic: cannot be semantically secure !!
- Many attacks exist (next segment)

The RSA trapdoor permutation

- One of the first practical responses to the challenge posed by Diffie-Hellman was developed by Ron Rivest, Adi Shamir, and Len Adleman of MIT in 1977
- Resulting algorithm is known as RSA
- Based on properties of prime numbers and results from number theory

Review: trapdoor permutations

Three algorithms: (G, F, F^{-1})

- G: outputs pk, sk. pk defines a function $\mathrm{F}(\mathrm{pk}, \cdot): \mathrm{X} \rightarrow \mathrm{X}$
- $F(p k, x)$: evaluates the function at x
- $F^{-1}(s k, y)$: inverts the function at y using sk

Secure trapdoor permutation:
The function $\mathrm{F}(\mathrm{pk}, \cdot \cdot)$ is one-way without the trapdoor sk

Review: arithmetic mod composites

Let $N=p \cdot q$ where p, q are prime where $p, q \approx N^{1 / 2}$

$$
Z_{N}=\{0,1,2, \ldots, N-1\} \quad ; \quad\left(Z_{N}\right)^{*}=\left\{\text { invertible elements in } Z_{N}\right\}
$$

Facts: $\quad x \in Z_{N}$ is invertible $\Leftrightarrow \operatorname{gcd}(x, N)=1$

- Number of elements in $\left(Z_{N}\right)^{*}$ is $\varphi(N)=(p-1)(q-1)=N-p-q+1$

Euler's the:

$$
\forall x \in\left(Z_{N}\right)^{*}: x^{\varphi(N)}=1
$$

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:

- SSL/TLS: certificates and key-exchange
- Secure e-mail and file systems
... many others

The RSA trapdoor permutation

$\mathbf{G}()$: choose random primes $p, q \approx 1024$ bits. Set $\mathbf{N}=\mathbf{p q}$. choose integers \mathbf{e}, \mathbf{d} s.t. $\mathbf{e} \cdot \mathbf{d}=\mathbf{1}(\bmod \varphi(\mathbf{N}))$ output $\mathrm{pk}=(\mathrm{N}, \mathrm{e}) \quad, \quad \mathrm{sk}=(\mathrm{N}, \mathrm{d})$

$$
\mathbf{F}(\mathbf{p k}, \mathbf{x}): \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*} \quad ; \quad \mathbf{R S A}(\mathbf{x})=\mathbf{x}^{\mathrm{e}} \quad\left(\text { in } \mathrm{Z}_{N}\right)
$$

$$
F^{-1}(\text { sk, } y)=y^{d} ; \quad y^{d}=\operatorname{RSA}(x)^{d}=x^{e d}=x^{k \varphi(N)+1}=\left(x^{\varphi(N)}\right)^{k} \cdot x=x
$$

RSA - small example

- Bob (keys generation):
- chooses 2 primes: $\quad p=5, q=11$
- multiplies p and $\mathrm{q}: \quad \mathrm{n}=\mathbf{p} \times \mathbf{q}=55$
- chooses a number $\mathbf{e}=3$ s.t. $\operatorname{gcd}(\mathbf{e}, 40)=1$
- compute $d=27$ that satisfy $(3 \times d) \bmod 40=1$
- Bob's public key: $(3,55)$
- Bob's private key: 27

RSA - small example

- Alice (encryption):
- has a message $m=13$ to be sent to Bob
- finds out Bob's public encryption key $(3,55)$
- calculates c as follows:

$$
\begin{aligned}
\mathrm{c} & =\mathrm{m}^{\mathrm{e}} \bmod \mathrm{n} \\
& =13^{3} \bmod 55 \\
& =2197 \bmod 55 \\
& =52
\end{aligned}
$$

- sends the ciphertext c=52 to Bob

RSA - small example

- Bob (decryption):
- receives the ciphertext c=52 from Alice
- uses his matching private decryption key 27 to calculate m:

$$
\begin{aligned}
\mathrm{m} & =52^{27} \bmod 55 \\
& =13(\text { Alice' } \mathrm{s} \text { message })
\end{aligned}
$$

The RSA assumption

RSA assumption: RSA is one-way permutation

For all efficient algs. A:

$$
\operatorname{Pr}\left[A(N, e, y)=y^{1 / e}\right]<\text { negligible }
$$

where
$p, q \leftarrow_{\leftarrow}^{R} n$-bit primes, $\quad N \leftarrow p q, \quad y \leftarrow^{R} Z_{N}{ }^{*}$

Review: RSA pub-key encryption (ISO std)

$\left(E_{s}, D_{s}\right)$: symmetric enc. scheme providing auth. encryption. $H: Z_{N} \rightarrow K$ where K is key space of $\left(E_{s}, D_{s}\right)$

- $\mathbf{G}()$: generate RSA params: $\mathrm{pk}=(\mathrm{N}, \mathrm{e}), \quad \mathrm{sk}=(\mathrm{N}, \mathrm{d})$
- $E(p k, m)$:
(1) choose random x in Z_{N}
(2) $y \leftarrow R S A(x)=x^{e}, k \leftarrow H(x)$
(3) output (y, $\left.E_{s}(k, m)\right)$
- D(sk, $(\mathrm{y}, \mathrm{c}))$: output $\mathrm{D}_{\mathrm{s}}\left(\mathrm{H}\left(\mathrm{RSA}^{-1}(\mathrm{y})\right), \mathrm{c}\right)$-> m

Textbook RSA is insecure

Textbook RSA encryption:

- public key: (N,e)
- secret key: (N,d)

Encrypt: $\mathbf{c} \longleftarrow \mathbf{m}^{\mathbf{e}} \quad\left(\right.$ in $\left.Z_{N}\right)$
Decrypt: $\mathbf{c}^{\mathbf{d}} \rightarrow \mathbf{m}$

Insecure cryptosystem !!

- Is not semantically secure and many attacks exist
$\Rightarrow \quad$ The RSA trapdoor permutation is not an encryption scheme!

A simple attack on textbook RSA

Suppose k is 64 bits: $k \in\left\{0, \ldots, 2^{64}\right\}$. Eve sees: $c=k^{e}$ in Z_{N}
If $\mathbf{k}=\mathbf{k}_{\mathbf{1}} \cdot \mathbf{k}_{\mathbf{2}}$ where $\mathbf{k}_{1}, \mathbf{k}_{2}<2^{34}$ (prob. $\approx 20 \%$) then $\mathbf{c} / \mathbf{k}_{\mathbf{1}}{ }^{\mathbf{e}}=\mathbf{k}_{\mathbf{2}}{ }^{\mathbf{e}}$ in Z_{N}
Meet-in-the-middle attack:
Step 1: build table: $c / 1^{e}, c / 2^{e}, c / 3^{e}, \ldots, c / 2^{34 e}$. time: 2^{34}
Step 2: for $k_{2}=0, \ldots, 2^{34}$ test if $k_{2}{ }^{e}$ is in table. time: 2^{34}
Output matching $\left(k_{1}, k_{2}\right) . \quad$ Total attack time: $\approx 2^{40} \ll 2^{64}$

Is RSA a one-way function?

Is it really hard to invert RSA without knowing the trapdoor?

Is RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute: x from $c=x^{e}(\bmod N)$.

How hard is computing e'th roots modulo N ??
Best known algorithm:

- Step 1: factor N (hard)
- Step 2: compute e'th roots modulo p and q (easy)

Shortcuts?

Must one factor N in order to compute e'th roots?

To prove no shortcut exists show a reduction:

- Efficient algorithm for e^{\prime} th roots mod N
\Rightarrow efficient algorithm for factoring N .
- Oldest problem in public key cryptography.

Some evidence no reduction exists:

- "Algebraic" reduction \Rightarrow factoring is easy.

How not to improve RSA's performance

To speed up RSA decryption use small private key $d \quad\left(d \approx 2^{128}\right)$

$$
c^{d}=m(\bmod N)
$$

Wiener'87: if $\mathrm{d}<\mathrm{N}^{0.25}$ then RSA is insecure.
BD'98: if $d<N^{0.292}$ then RSA is insecure (open: $d<N^{0.5}$)

Insecure: priv. key d can be found from (N, e)

Wiener's attack

(N, e) $=>\mathrm{d}$ and $\mathrm{d}<\mathrm{N}^{0.25} / 3$
Recall: $\quad e \cdot d=1(\bmod \varphi(N)) \quad \Rightarrow \quad \exists k \in Z: \quad e \cdot d=k \cdot \varphi(N)+1$

$$
\left|\frac{e}{\psi(N)}-\frac{k}{d}\right|=\frac{1}{d \cdot \varphi(N)} \leq \frac{1}{\sqrt{N}}
$$

$\varphi(\mathrm{N})=\mathrm{N}-\mathrm{p}-\mathrm{q}+1 \Rightarrow|\mathrm{~N}-\varphi(\mathrm{N})| \leq \mathrm{p}+\mathrm{q} \leq 3 \sqrt{N}$

$$
\mathrm{d} \leq \mathrm{N}^{0.25} / 3 \Rightarrow \frac{1}{2 d^{2}}-\frac{1}{\sqrt{N}} \geq \frac{3}{\sqrt{N}} \quad\left|\frac{\mathrm{e}}{N}-\frac{k}{d}\right| \leq\left|\frac{\mathrm{e}}{N}-\frac{\mathrm{e}}{\varphi(N)}\right|+\left|\frac{\mathrm{e}}{\varphi(N)}-\frac{k}{d}\right| \leq \frac{1}{2 d^{2}}
$$

Continued fraction expansion of e/N gives k/d.

$$
e \cdot d=1(\bmod k) \Rightarrow \operatorname{gcd}(d, k)=1 \Rightarrow \text { can find } d \text { from } k / d
$$

RSA in Practice

RSA With Low public exponent

To speed up RSA encryption use a small $e: c=m^{e}(\bmod N)$

- Minimum value: $e=3(\operatorname{gcd}(e, \varphi(N))=1) \quad(Q:$ why not 2 ?)
- Recommended value: $\mathbf{e}=65537=\mathbf{2}^{\mathbf{1 6}} \mathbf{+ 1}$

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.

- ElGamal (next week): approx. same time for both.

Key lengths

Security of public key system should be comparable to security of symmetric cipher:

Cipher key-size	
	Modulus size
80 bits	1024 bits
128 bits	3072 bits
256 bits (AES)	$\underline{15360}$ bits

Implementation attacks

Timing attack: [Kocher et al. 1997] , [BB’04]
The time it takes to compute $c^{d}(\bmod N)$ can expose d

Power attack: [Kocher et al. 1999)
The power consumption of a smartcard while it is computing $c^{d}(\bmod N)$ can expose d.

Faults attack: [BDL'97]
A computer error during $c^{d}(\bmod N)$ can expose d.
A common defense: check output. 10\% slowdown.

An Example Fault Attack on RSA (CRT)

A common implementation of RSA decryption: $\quad x=c^{d}$ in Z_{N}

$$
\left.\begin{array}{lll}
\text { decrypt } \bmod p: & x_{p}=c^{d} & \text { in } Z_{p} \\
\text { decrypt } \bmod q: & x_{q}=c^{d} & \text { in } Z_{q}
\end{array}\right\} \text { combine to get } x=c^{d} \text { in } Z_{N}
$$

Suppose error occurs when computing x_{q}, but no error in x_{p}

Then: output is x^{\prime} where $x^{\prime}=c^{d}$ in Z_{p} but $x^{\prime} \neq c^{d}$ in Z_{q}
$\Rightarrow\left(x^{\prime}\right)^{\mathrm{e}}=\mathrm{c}$ in Z_{p} but $\left(\mathrm{x}^{\prime}\right)^{\mathrm{e}} \neq \mathrm{c}$ in $\mathrm{Z}_{\mathrm{q}} \Rightarrow \operatorname{gcd}\left(\left(\mathrm{x}^{\prime}\right)^{\mathrm{e}}-\mathrm{c}, \mathrm{N}\right)=\square$

RSA Key Generation Trouble [Heninger e al./Lenstra et al.]

OpenSSL RSA key generation (abstract):

$$
\begin{aligned}
& \text { prng.seed(seed) } \\
& p=\text { prng.generate_random_prime() } \\
& \text { prng.add_randomness(bits) } \\
& q=\text { prng.generate_random_prime() } \\
& N=p^{*} q
\end{aligned}
$$

Suppose poor entropy at startup:

- Same p will be generated by multiple devices, but different q
- N_{1}, N_{2} : RSA keys from different devices $\Rightarrow \operatorname{gcd}\left(N_{1}, N_{2}\right)=p$

RSA Key Generation Trouble [Heninger e ta./Lenstra et al.]

Experiment: factors 0.4% of public HTTPS keys !!

Lesson:

- Make sure random number generator is properly seeded when generating keys

Digital Signatures

Digital Signature

Digital Signature (based on RSA)

Public Key Directory (Yellow/White Pages)

Plain Text m

RSA Signature - small example

- Bob (keys generation):
- chooses 2 primes: $\quad p=5, q=11$
- multiplies p and $q: \quad n=p \times q=55$
- chooses a number $\mathbf{e}=3$ s.t. $\operatorname{gcd}(\mathbf{e}, 40)=1$
- compute $d=27$ that satisfy $(3 \times d) \bmod 40=1$
- Bob's public key: $(3,55)$
- Bob's private key: 27

RSA Signature - small example

- Bob:
- has a document $m=19$ to sign:
- uses his private key $\mathbf{d = 2 7}$ to calculate the digital signature of $m=19$:

$$
\begin{aligned}
\mathrm{s} & =\mathrm{m}^{\mathrm{d}} \bmod \mathrm{n} \\
& =19^{27} \bmod 55 \\
& =24
\end{aligned}
$$

- appends 24 to 19.

Now $(m, s)=(19,24)$ indicates that the doc is 19, and Bob's signature on the doc is 24.

RSA Signature - small example

- Cathy, a verifier:
- receives a pair $(\mathrm{m}, \mathrm{s})=(19,24)$
- looks up the phone book and finds out Bob's public key (e, n) $=(3,55)$
- calculates

$$
\begin{aligned}
\mathrm{t} & =\mathrm{s}^{\mathrm{e}} \bmod \mathrm{n} \\
& =24^{3} \bmod 55 \\
& =19
\end{aligned}
$$

- checks whether $\mathrm{t}=\mathrm{m}$
- confirms that $(19,24)$ is a genuinely signed document of Bob if $t=m$.

How about Long Documents ?

- In the previous example, a document has to be an integer in [0,...,n)
- To sign a very long document, we need a so called one-way hash algorithm
- Instead of signing directly on a doc,
- we hash the doc first,
- and sign the hashed data which is normally short.

Hash Functions

- Hash functions:
- Input: arbitrary length
- Output: fixed length (generally much shortern than the input)

Hash value for the document (fixed length, e.g. 256 bit)

Digital Signature (for long docs)

Public Key Directory (Yellow/White Pages)

Plain Text

Bob

Why Digital Signature?

- Unforgeable
- takes 1 billion years to forge!
- Un-deniable by the signatory
- Universally verifiable
- Differs from doc to doc

Digital Signature - summary

- Three (3) steps are involved in digital signature
- Setting up public and private keys
- Signing a document
- Verifying a signature

Setting up Public \& Private Keys

- Bob does the following
- prepares a pair of public and private keys
- Publishes his public key in the public key file (such as an on-line phone book)
- Keeps the private key to himself
- Note:
- Setting up needs only to be done once!

Signing a Document

- Once setting up is completed, Bob can sign a document (such as a contract, a cheque, a certificate, ...) using the private key
- The pair of document $\&$ signature is a proof that Bob has signed the document.

Verifying a Signature

- Any party, say Cathy, can verify the pair of document and signature, by using Bob's public key in the public key file.
- Important!
- Cathy does NOT have to have public or private key !

(Other) Asymmetric Cryptosystems

ElGamal Cryptosystem

Encryption schemes built from the Diffie-Hellman protocol

- Key Generation (for Bob)
- chooses a prime p and a number g primitive root modulo p
- i.e., for every integer a coprime to \mathbf{p}, there is an interger \mathbf{k} such that $\mathbf{g}^{\mathbf{k}}=\mathbf{a} \bmod \mathbf{p}$
- Two integers are coprime if their gcd is 1
- chooses a random exponent a in [0, p-2]
- computes A = ga mod p
- public key (published in the phone book): ($\mathrm{p}, \mathrm{g}, \mathrm{A}$)
- private key: a

ElGamal Cryptosystem

- Encryption: Alice has a message $m(0<=m<n)$ to be sent to Bob:
- finds out Bob's public key (p,g,A).
- chooses a random exponent b in [0,p-2]
- computes B = $g^{b} \bmod p$
- computes $c=A^{b} m \bmod p$.
- The complete ciphertex is (B, c)
- sends the ciphertext (B, C) to Bob.

ElGamal Cryptosystem

- Decryption: Bob
- receives the ciphertext (B, C) from Alice.
- uses his matching private decryption key a to calculate m as follows.
- Compute $x=p-1-a$
- Compute $m=B^{x} c \bmod p$

ElGamal Cryptosystem

- Randomized cryptosystem
- Based on the Diffie-Hellman key exchange
- Efficiency
- The ciphertext is twice as long as the plaintext. This is called message expansion and is a disadvantage of this cryptosystem.
- Security
- Its security depends upon the difficulty of a certain problem related to computing discrete logarithms.

Rabin Cryptosystem

Key Generation (for Bob)

- generates 2 large random and distinct primes p, q s.t.

$$
p(\bmod 4)=q(\bmod 4)=3
$$

- multiplies p and $q: n=p \times q$
- public key (published in the phone book): n
- private key: (p, q)

Rabin Cryptosystem

- Encryption: Alice has a message $m(0<=m<n)$ to be sent to Bob:
- finds out Bob's public key n .
- calculates the ciphertext $\mathrm{c}=\mathrm{m}^{2} \bmod \mathrm{n}$.
- sends the ciphertext cto Bob.

Rabin Cryptosystem

- Decryption: Bob
- receives the ciphertext c from Alice.
- uses his matching private decryption key (p, q) to calculate m as follows.
- Compute $m_{p}=c^{(p+1) / 4} \bmod p$
- Compute $m_{q}=c^{(q+1) / 4} \operatorname{modq}$
- Find y_{p} and y_{q} such that $y_{p} p+y_{q} q=1$ (Euclidean algorithm)
- Compute $r=\left(y_{p} p m_{q}+y_{q} q m_{p}\right) \bmod n$
- Compute $s=\left(y_{p} p m_{q}-y_{q} q m_{p}\right) \bmod n$
- One of $r,-r, s,-s$ must be the original message m

Rabin Cryptosystem

- Efficiency
- Encryption more efficient than RSA encryption
- Security
- The Rabin cryptosystem has the advantage that the problem on which it relies has been proved to be as hard as integer factorization
- Recovering the plaintext \boldsymbol{m} from the ciphertext \boldsymbol{c} and the public key \boldsymbol{n} is computationally equivalent to factoring
- Not currently known to be true for the RSA problem.

