Fondamenti di Cybersecurity – Modulo I

- 20h circa
- Docente: Riccardo Treglia
 - Email: riccardo.treglia@unibo.it

Piattaforma didattica

• Virtuale

e verrà costantemente aggiornato con:

- Informazioni
- Materiale didattico (slides)
- Annunci

Materiale didattico

- Slide caricate su Virtuale del corso
- Testi consigliati:
 - Jean-Philippe Aumasson, Serious Cryptography: A Practical Introduction to Modern Encryption.
 - Bruce Schneier,

Applied Cryptography: Protocols, Algorithms, and Source Code in C.

- Mark Stamp, Information Security: Principles and Practice.
- William Stallings
 Crittografia
- Dan Boneh, Victor Shoup,

A Graduate Course in Applied Cryptography. (approccio matematico)

Esame

• Prova scritta

Voto finale = Scritto + Successo laboratori
 Scritto: 24/25 pt
 Laboratori: max 8 pt
 NO orali

• Date esami: consultare il sito del Dipartimento Due appelli a **Giugno**, uno a **Luglio** e uno a **Settembre**

Roadmap

- 0. What is Cryptography History of Cryptography
- **1. Introduction Mathematics: Modular Arithmetic Discrete Probability**
- 2. One-time pad, Stream Ciphers and Pseudo Random Generators
- **3. Attacks on Stream Ciphers and The One-Time Pad**
- 4. Real-World Stream Ciphers (weak(RC4), eStream,nonce, Salsa20)
- 5. Secret key cryptographic systems;
- 6. Public key cryptographic systems
- 7. DES protocols (just as an introduction), AES

8. Electronic Signatures, Public-key Infrastructure, Certificates and Certificate Authorities

9. Sharing of secrets; User authentication; Passwords

10. Tutor Training

Bonus. Legislation, Ethics and Management

Introduction

Welcome

Course **objectives**:

- Learn how crypto primitives work
- Learn how to use them correctly and reason about security

Che cos'è la Crittografia?

• Crittografia

- Kryptós: nascosto
- Graphía: scrittura
- Metodi che consentano di **memorizzare**, **elaborare** e **trasmettere** informazioni in presenza di agenti ostili

• Crittoanalisi

- Analisi di un testo cifrato nel tentativo di decifrarlo senza possedere la chiave
- Crittologia: Crittografia + Crittoanalisi

Cryptography is everywhere

Secure communication:

- web traffic: HTTPS
- wireless traffic: Wireless Network, GSM, Bluetooth

Encrypting files on disk

Content protection (e.g., DVD, Blu-ray)

User authentication

... and much much more (more "magical" applications later...)

Secure communication

Symmetric Encryption (confidentiality)

- k: secret key (A SHARED SECRET KEY)
- m: plaintext
- c: ciphertext
- E: Encryption algorithm
- D: Decryption algorithm
- E, D: Cipher

- Confidentiality scenario
- Other scenarios are possible, with the secret key used differently...
 - e.g., MACs (for integrity)

Algorithms are **publicly known**, never use a proprietary cipher

Use Cases

- Single-use key: (or one-time key): Key is only used to encrypt one message
 - encrypted email: new key generated for every email
- Multi-use key: (or many-time key): Same key used to encrypt multiple messages
 encrypted files: same key used to encrypt many files
 Need more machinery than for one-time key

Asymmetric Encryption

Things to remember

Cryptography is:

- A tremendous tool
- The basis for many security mechanisms

Cryptography is **not**:

- The solution to all security problems
- Reliable unless implemented and used properly
- Something you should try to invent yourself
 - many many examples of broken ad-hoc designs

Some Applications

But crypto can do much more

• Digital signatures

- Signatures of the same person change over different documents
- Asymmetric Cryptography is used

But crypto can do much more

• Anonymous communication (e.g., mix networks)

But crypto can do much more

- Anonymous **digital** cash
 - Can I spend a "digital coin" without anyone knowing who I am?
 - How to prevent double spending?

Protocols

- Elections
- Private auctions

winner= majority [votes]

(Vickrey Auction) Auction winner = highest bidder pays 2nd highest bid

Election Center must determine the winner without knowing the individual votes!

Protocols

- Elections
- Private auctions

Secure multi-party computation Goal: compute $f(x_1, x_2, x_3, x_4)$

"Thm:" anything that can done with trusted auth. can also be done without

Crypto magic

• Privately outsourcing computation

Crypto magic

• Zero knowledge (proof of knowledge)

I know the password Can you prove it?

A rigorous science

The three steps in cryptography:

- Precisely specify threat model
- Propose a construction
- Prove that breaking construction under threat model will solve an underlying hard problem

Brief History of Crypto

Che cos'è la Crittografia?

- Metodi per **memorizzare**, **elaborare** e **trasmettere** informazioni in maniera **sicura** in presenza di agenti ostili
- Crittografia: Kryptós: nascosto + Graphía: scrittura

History

David Kahn, "The code breakers" (1996)

•

Un classico scenario

Algoritmi di cifratura e decifratura: **pubblici**

Crittografia simmetrica e asimmetrica

Cifratura

Cifrario di Cesare

Few Historic Examples (all badly broken)

1. Substitution cipher

Caesar Cipher (no key)

Shift by 3

What is the size of key space in the substitution cipher assuming 26 letters?

$$|\mathcal{K}| = 26$$

$$|\mathcal{K}| = 2^{26}$$

$$|\mathcal{K}| = 26^2$$

How to break a substitution cipher?

What is the most common letter in English text?

How to break a substitution cipher?

- (1) Use frequency of English letters
 e: 12,7%
 t: 9,1%
 a: 8,1%
- (2) Use frequency of pairs of letters (digrams)he, an, in, th

An Example

UKBYBIPOUZBCUFEEBORUKBYBHOBBRFESPVKBWFOFERVNBCVBZPRUBOFERVNBCVBPCYYFVU FOFEIKNWFRFIKJNUPWRFIPOUNVNIPUBRNCUKBEFWWFDNCHXCYBOHOPYXPUBNCUBOYNRV NIWNCPOJIOFHOPZRVFZIXUBORJRUBZRBCHNCBBONCHRJZSFWNVRJRUBZRPCYZPUKBZPUNV PWPCYVFZIXUPUNFCPWRVNBCVBRPYYNUNFCPWWJUKBYBIPOUZBCUIPOUNVNIPUBRNCHOP YXPUBNCUBOYNRVNIWNCPOJIOFHOPZRNCRVNBCUNENVVFZIXUNCHPCYVFZIXUPUNFCPWZP UKBZPUNVR

В	36	→ E	NC	11	→ IN	UKB	6	→ THE
Ν	34		PU	10	→ AT	RVN	6	
U	33	→ T	UB	10		FZI	4	
Ρ	32	→ A	UN	9	trigrams			
С	26		•					
2. Vigenère cipher (16'th century, Rome)

k = C R Y P T O C R Y P T O C R Y P T (+ mod 26) m = W H A T A N I C E D A Y T O D A Y

C = YYYITBKTCSTMVFBPR

Α	В	С	D	E	F	G	Н	I	J	К	L	Μ	N	0	Ρ	Q	R	S	т	U	v	W	х	Y	z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

2. Vigenère cipher (16'th century, Rome)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

	A A B C D E F G H I J K L M N O P Q R S T U V W X Y	Z
	B B C D E F G H I J K L M N O P Q R S T U V W X Y Z	: A
	C C D E F G H I J K L M N O P Q R S T U V W X Y Z A	В
	D D E F G H I J K L M N O P Q R S T U V W X Y Z A E	С
	E E F G H I J K L M N O P Q R S T U V W X Y Z A B C	D
	F F G H I J K L M N O P Q R S T U V W X Y Z A B C D	E
	G G H I J K L M N O P Q R S T U V W X Y Z A B C D E	F
	H H I J K L M N O P Q R S T U V W X Y Z A B C D E F	G
	I I J K L M N O P Q R S T U V W X Y Z A B C D E F G	i H
Dolyalababatic ayabar	J J K L M N O P Q R S T U V W X Y Z A B C D E F G H	I T
Polyalphabetic cypiter	K K L M N O P Q R S T U V W X Y Z A B C D E F G H I	J
	LLMNOPQRSTUVWXYZABCDEFGHIJ	K
	M M N O P Q R S T U V W X Y Z A B C D E F G H I J K	L
	N N O P Q R S T U V W X Y Z A B C D E F G H I J K L	M
	O O P Q R S T U V W X Y Z A B C D E F G H I J K L M	I N
	P P Q R S T U V W X Y Z A B C D E F G H I J K L M N	0
	Q Q R S T U V W X Y Z A B C D E F G H I J K L M N C	P
	R R S T U V W X Y Z A B C D E F G H I J K L M N O P	Q
	S S T U V W X Y Z A B C D E F G H I J K L M N O P G	R
	T T U V W X Y Z A B C D E F G H I J K L M N O P Q R	S
	U U V W X Y Z A B C D E F G H I J K L M N O P O R S	Т
	V V W X Y Z A B C D E F G H I I K L M N O P O R S T	U
	WWXYZABCDEFGHIJKLMNOPQRSTU	i V
L	XXYZABCDEFGHIJKLMNOPQRSTUV	W
	YYZABCDEFGHIJKLMNOPQRSTUVW	ΙX
	ZZABCDEFGHIJKLMNOPQRSTUVWX	Y

2. Vigenère cipher (16'th century, Rome)

C = YYYITBKTCSTMVFBPR

Suppose the most common letter is "G" \longrightarrow It is likely that "G" corresponds to "E" First letter of key = "G" - "E" = "C" $(c[i] = m[i] + k[i] \Rightarrow k[i] = c[i] - m[i])$

3. Rotor Machines (1870-1943)

Early example: the Hebern machine (single rotor)

Rotor Machines (cont.)

Most famous: the Enigma (3-5 rotors)

Discrete Probability (crash course)

Probability distribution

• U: finite set, called Universe or Sample space

Examples:

- Coin flip: **U** = { heads, tail } or **U** = { 0, 1 }
- Rolling a dice: **U** = { **1**, **2**, **3**, **4**, **5**, **6** }
- A **Probability distribution** P over U is a function $P: U \rightarrow [0,1]$

such that $\sum_{x \in U} P(x) = 1$

Examples:

- Coin flip: P(heads) = P(tail) = 1/2
- Rolling a dice: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6

Probability distribution

- U: finite set, called Universe or Sample space
- A Probability distribution P over U is a function $P: U \rightarrow [0,1]$ such that $\sum_{x \in U} P(x) = 1$
- Notation: U = {0,1}ⁿ
- Example:

Universe **U** = $\{0,1\}^2 = \{00, 01, 10, 11\}$

Probability distribution **P** defined as follows:

P(00)= 1/2 P(01)= 1/8 P(10)= 1/4 P(11)= 1/8

Probability distributions

Examples:

- 1. Uniform distribution: for all $x \in U$: P(x) = 1/|U|
- 2. Point distribution at x_0 : $P(x_0) = 1$, $\forall x \neq x_0$: P(x) = 0

... and many others

Events

Let us consider a universe **U** and a probability distribution **P** over U.

- An event is a subset A of U, that is, $A \subseteq U$
- The **probability of A** is $Pr[A] = \sum_{x \in A} P(x)$ Note: Pr[U] = 1

Example

- Universe U = { 1, 2, 3, 4, 5, 6 }
- Probability distribution P s.t. P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6
- A = {1, 3, 5}
- P[A] = 1/6 + 1/6 + 1/6 = 1/2

Events

Let us consider a universe **U** and a probability distribution **P** over U.

- An **event is a subset A of U,** that is, $A \subseteq U$
- The probability of A is $Pr[A] = \sum_{x \in A} P(x)$ Example
- Universe U = $\{0,1\}^8$
- Uniform distribution P over U, that is, $P(x) = 1/2^8$ for every $x \in U$
- A = $\{ all x in U such that <math>lsb_2(x)=11 \} \subseteq U$
- Pr[A] = 1/4

Hints: $Pr[A] = 1/2^8 \times |A|$ each element in A is of the form _ _ _ _ _ 1 1

Union of Events

Given events A_1 and A_2 , $A_1 \cup A_2$ is an event.

- $\Pr[A_1 \cup A_2] = \Pr[A_1] + \Pr[A_2] \Pr[A_1 \cap A_2]$
- $\Pr[A_1 \cup A_2] \leq \Pr[A_1] + \Pr[A_2]$ ("Union bound")
- $A_1 \cap A_2 = \emptyset \Rightarrow \Pr[A_1 \cup A_2] = \Pr[A_1] + \Pr[A_2]$

Random Variables

Def: a random variable X is a function $X : U \rightarrow V$

Example (Rolling a dice): U = { 1, 2, 3, 4, 5, 6 } Uniform distribution P over U: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6

```
Random variable X : U \rightarrow \{ "even", "odd" \}
X(2) = X(4) = X(6) = "even"
X(1) = X(3) = X(5) = "odd"
```

Pr[X="even"] = 1/2 , Pr[X="odd"] = 1/2

More generally: X induces a distribution on V

The **uniform** random variable

Let S be some set, e.g. $S = \{0,1\}^n$

We write **r \lapha S** to denote a <u>uniform random variable</u> over S

for all $a \in S$: Pr[r=a] = 1/|S|

Defining a random variable in terms of another

- Let r be a uniform random variable on $\{0,1\}^2$
- Define the random variable $X = r_1 + r_2$
- Then $Pr[X=2] = \frac{1}{4}$
- Hint: Pr[X=2] = Pr[r=11]

Randomized algorithms

• **Deterministic** algorithm: $y \leftarrow A(m)$

Randomized algorithm
 output is a random variable y ← A(m)

Recap

- U: Universe or Sample space (e.g., U = {0,1}ⁿ)
- A Probability distribution P over U is a function P : U \longrightarrow [0,1] such that $\sum_{x\in U} P(x)=1$
- An event is a subset A of U, that is, $A \subseteq U$
- The probability of event A is $Pr[A] = \sum_{x \in A} P(x)$
- A random variable is a function X : U → V
 <u>X takes values in V</u> and defines a distribution on V

Independence

Definition. Independent events Events A and B are **independent** if $Pr[A \cap B] = Pr[A] \cdot Pr[B]$

Definition. Independent random variables

Random variables X and Y taking values in V are **independent** if $\forall a, b \in V$: Pr[X=a and Y=b] = Pr[X=a] · Pr[Y=b]

XOR of two strings in $\{0,1\}^n$ is their bit-wise addition mod 2

X	Y	X \oplus Y
0	0	0
0	1	1
1	0	1
1	1	0

An important property of XOR

Theorem:

- **1. X**: a random variable over $\{0,1\}^n$ with a <u>uniform</u> distribution
- 2. Y: a random variable over {0,1}ⁿ with an <u>arbitrary</u> distribution
- 3. X and Y are independent
- Then $Z := Y \bigoplus X$ is a <u>UNIFORM</u> random variable over $\{0,1\}^n$

Proof: (for n=1) Pr[Z=0] = Pr[(X,Y)=(0,0) or (X,Y)=(1,1)] = Pr[(X,Y)=(0,0)] + Pr[(X,Y)=(1,1)] = $p_0/2 + p_1/2 = \frac{1}{2}$ Therefore Pr[Z=1] = $\frac{1}{2}$

Υ	Pr	V	V	Dr
0	po	^	T	Pí
1	n	0	0	р ₀ /2
-	Ρ ₁	0	1	p ₁ /2
X	Pr	1	0	p ₀ /2
0	1/2	1	1	p ₁ /2
1	1/2			

The birthday paradox

Let $r_1, ..., r_n \in U$ be **independent identically distributed** random variables

Theorem: when $\mathbf{n} = 1.2 \times |\mathbf{U}|^{1/2}$ then $\Pr[\exists i \neq j: r_i = r_i] \ge \frac{1}{2}$

Example:

- U = {1, 2, 3, ..., 366}
- When $n = 1.2 \times \sqrt{366} \approx 23$, two people have the same birthday with probability $\geq \frac{1}{2}$

Example:

- Let U = {0,1}¹²⁸
- After sampling about 2⁶⁴ random messages from U, some two sampled messages will likely be the same

samples n

Stream Ciphers

•

Outline

- One-Time Pad
- Perfect Secrecy
- Pseudorandom Generators (PRGs) and Stream Ciphers
- Attacks
- Security of PRGs
- Semantic Security

Symmetric Ciphers

Definition.

A (symmetric) **cipher** defined over (K, M, C)

is a pair of "efficient" algorithms (E,D) where

- E: $K \times M \rightarrow C$
- D: $K \times C \rightarrow M$

such that $\forall m \in M, \forall k \in K : D(k, E(k,m)) = m$

- E is often **randomized**.
- D is always deterministic.

The One-Time Pad

(Vernam 1917)

First example of a "secure" cipher

- K = M = C = {0,1}ⁿ
- E(k, m) = k ⊕ m
- D(k, c) = k ⊕ c
- k used <u>only once</u>
- k is a **random** key (i.e., **<u>uniform</u>** distribution over K)

The One-Time Pad (Vernam 1917)

The one-time pad is a **cipher**:

- D(k, E(k,m)) =
- D(k, k \oplus m) =
- k ⊕ (k⊕ m) =
- 0 \oplus m =

One-time pad definition:

- E(k, m) = k ⊕ m
- D(k, c) = k ⊕ c

• m

The One-Time Pad

(Vernam 1917)

• Pro:

• Very **fast** encryption and decryption

• Con:

 Long keys (as long as the plaintext), If Alice wants to send a message to Bob, she first has to transmit a key of the same length to Bob in a secure way. If Alice has a secure mechanism to transmit the key, she might use that same mechanism to transmit the message itself!

Is the OTP secure? What is a secure cipher?

What is a secure cipher?

Attacker's abilities: **CT only attack** (for now)

Possible security requirements: attempt #1: attacker cannot recover secret key E(k, m) = m would be secure attempt #2: attacker cannot recover all of plaintext $E(k, m_0 | | m_1) = m_0 | | k \bigoplus m_1$ would be secure Shannon's idea: CT should reveal no "info" about PT

Information Theoretic Security (Shannon 1949)

Definition.

A cipher (E, D) over (K, M, C) has perfect secrecy if

 $\forall \mathbf{m}_0, \mathbf{m}_1 \in M \text{ with } \mathsf{len}(\mathbf{m}_0) = \mathsf{len}(\mathbf{m}_1) \text{ and } \forall \mathbf{c} \in C$

 $Pr[E(k, m_0)=c] = Pr[E(k, m_1)=c]$

where **k** is uniform in K $(k \leftarrow K)$

Information Theoretic Security

- Given CT, can't tell if PT is m₀ or m₁ (for all m₀, m₁)
- Most powerful adversary learns nothing about PT from CT
- No CT only attack! (but other attacks are possible...)

OTP has perfect secrecy.

Proof:

$$\forall m, c \quad \Pr_k[E(k, m) = c] = \frac{\#keys \ k \in K \ s.t. \ E(k, m) = c}{|K|}$$

So if $\forall m, c \ \#\{k \in K : E(k, m) = c\} = const.$
 \Rightarrow Cipher has perfect secrecy

Let $m \in M$ and $c \in C$. How many OTP keys map m to c?

- •2
- It depends on m

OTP has perfect secrecy.

Proof:

$$\forall m, c \quad \Pr_k[E(k, m) = c] = \frac{1}{|K|}$$

So if $\forall m, c \ \#\{k \in K : E(k, m) = c\} = const.$

 \Rightarrow Cipher has perfect secrecy

The bad news ...

- OTP drawback: key-length=msg-length
- Are there ciphers with perfect secrecy that use shorter keys?

Theorem: perfect secrecy \Rightarrow $|K| \ge |M|$

i.e. perfect secrecy \Rightarrow key-length \ge msg-length

• Hard to use in practice!!!!
Pseudorandom Generators and Stream Ciphers

.

Review

- **Cipher** over (K,M,C): a pair of "efficient" algorithms (E, D) s.t. $\forall m \in M, \forall k \in K$: D(k, E(k, m)) = m
- Weak ciphers: substitution cipher, Vigener, ...
- A good cipher: **OTP** $M = C = K = \{0,1\}^n$

 $E(k, m) = k \bigoplus m$, $D(k, c) = k \bigoplus c$

OTP has perfect secrecy (i.e., no CT only attacks) **Bad news: perfect-secrecy ⇒ key-len ≥ msg-len**

Stream Ciphers: making OTP practical

Idea: replace "random" key by "pseudorandom" key

Pseudorandom Generator (PRG): PRG is a function $G: \{0,1\}^s \rightarrow \{0,1\}^n$ n>>s seed space

(efficiently computable by a deterministic algorithm)

Stream Ciphers: making OTP practical

 $E(k, m) = G(k) \bigoplus m$ $D(k, c) = G(k) \bigoplus c$

Can a stream cipher have perfect secrecy?

- Yes, if the PRG is really "secure"
- No, there are no ciphers with perfect secrecy
- Yes, every cipher has perfect secrecy
- No, since the key is shorter than the message

Can a stream cipher have perfect secrecy?

- Yes, if the PRG is really "secure"
- No, there are no ciphers with perfect secrecy
- Yes, every cipher has perfect secrecy
- No, since the key is shorter than the message

Stream Ciphers: making OTP practical

Stream ciphers cannot have perfect secrecy !!

Need a different definition of security

• Security will **depend on specific PRG**

Weak PRGs (do not use for crypto)

Linear congruential generator with parameters a, b, p: (a, b are integers, p is a prime)

```
r[0] := seed

r[i] ← a r[i-1] + b mod p

output few bits of r[i]

_____i++
```

has some good statistical properties But it's easy to predict

glibc random():

```
r[i] \leftarrow (r[i-3] + r[i-31]) \% 2^{32}
output r[i] >> 1
```

Do not use random() for crypto (e.g., Kerberos v4) Attacks on OTP and Stream Ciphers

Review

- One-time pad:
 - E(k,m) = **k** \oplus m
 - D(k,c) = **k** ⊕ c

k is random (uniform)
k used only once

• Stream ciphers

making OTP practical using a **PRG** G: $K \rightarrow \{0,1\}^n$

- E(k,m) = **G(k)** \oplus m
- D(k,c) = **G(k)** ⊕ c

Attack 1: two time pad is insecure !!

Never use stream cipher key more than once !!

 $c_1 \leftarrow m_1 \oplus PRG(k)$ $c_2 \leftarrow m_2 \oplus PRG(k)$

Eavesdropper does:

$$c_1 \oplus c_2 \rightarrow$$

Enough redundancy in English and ASCII encoding that: $m_1 \oplus m_2 \rightarrow m_1, m_2$

Real-world examples

• Project Venona (1941 – 1946)

Real-world examples

- Project Venona (1941 1946)
- MS-PPTP (windows NT):

Need different keys for $C \rightarrow S$ and $S \rightarrow C$

Real-world examples

k: LONG-TERM KEY

Length of IV: 24 bits

- Repeated IV after $2^{24} \approx 16M$ frames
- On some 802.11 cards: IV resets to 0 after power cycle

Avoid related keys

24 bits 104 bits key for frame #1: (1 || k) key for frame #2: (2 || k) Very related keys!!

Not random keys!

The PRG used in WEP (called RC4) is not secure for such related keys

- Attack that can recover k after 10⁶ frames (FMS 2001)
- Recent attack => 40.000 frames

A better construction

\Rightarrow now each frame has a pseudorandom key

better solution: use stronger encryption method (as in WPA2)

Yet another example: disk encryption

Two time pad: summary

Never use stream cipher key **more than once** !!

- Network traffic: negotiate new key for every session (e.g. TLS)
 - One key (or "sub-key") for traffic from Client to Server
 - One key (or "sub-key") for traffic from Server to Client
- Disk encryption: typically do not use a stream cipher

Modifications to ciphertext are <u>undetected</u> and have <u>predictable</u> impact on plaintext

- Alice has to answer yes (1) or no (0) to Bob's invitation. She'll encrypt the answer with OTP.
- The attacker cannot recover Alice's answer from CT.

m =

Attacker wants to change Alice into Maria. Can he do that?

Attacker wants to change Alice into Maria. Can he do that?

Attacker wants to change Alice into Maria. Can he do that?

Consider the bank account number in a wire transfer...

Real-world Stream Ciphers

Old example (software): RC4 (1987)

• Used in HTTPS and WEP

RC4 PRG

The RC4 stream cipher key s is a seed for the PRG and is used to initialize the array S to a pseudo-random permutation of the numbers 0 : : : 255. Initialization is performed using the following **setup algorithm**:

```
\begin{array}{ll} \text{input: string of bytes } s \\ \text{for } i \leftarrow 0 \text{ to } 255 \text{ do: } & S[i] \leftarrow i \\ j \leftarrow 0 \\ \text{for } i \leftarrow 0 \text{ to } 255 \text{ do} \\ & k \leftarrow s[i \text{ mod } |s|] & /\!\!/ \quad extract \text{ one byte from seed} \\ & j \leftarrow (j + S[i] + k \text{ ) mod } 256 \\ & \text{swap}(S[i], S[j]) \end{array}
```

During the loop the index i runs linearly through the array while the index j jumps around. At each iteration the entry at index i is swapped with the entry at index j.

RC4 PRG

Once the array S is initialized, the PRG generates pseudo-random output one byte at a time using the following **stream generator**:

```
\begin{split} i \leftarrow 0, \quad j \leftarrow 0 \\ \text{repeat} \\ i \leftarrow (i+1) \bmod 256 \\ j \leftarrow (j+S[i]) \bmod 256 \\ & \text{swap}(S[i], S[j]) \\ & \text{output} \quad S\big[ \ (S[i]+S[j]) \bmod 256 \ \big] \\ \end{split} forever
```

The procedure runs for as long as necessary. Again, the index i runs linearly through the array while the index j jumps around. Swapping S[i] and S[j] continuously shuffles the array S.

Security of RC4

Weaknesses:

1. Bias in initial output: let us assume that the RC4 setup algorithm is perfect and generates a uniform permutation from the set of all 256! permutations. Mantin and Shamir showed that, even assuming perfect initialization, the output of RC4 is biased: $Pr[2^{nd} byte = 0] = 2/256 \rightarrow RC4-drop[n]$

2. Fluhrer and McGrew: Prob. of (0,0) is $1/256^2 + 1/256^3$

3. Related key attacks: attack on WEP

Old example (hardware): CSS (badly broken)

Content Scrambling System

Linear feedback shift register (LFSR):

Modern stream ciphers: eStream

Nonce: a non-repeating value for a given key, that is a pair (k,r) is never used more than once => can re-use the key as long as the nonce changes

 $E(k, m, r) = m \oplus PRG(k, r)$

h: invertible function. designed to be fast on x86 (SSE2)

Performance:

Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

When is a PRG "secure"?

When is a PRG "secure"?

- 1. Unpredictable PRG
- 2. Secure PRG

We'll see that they are equivalent notions

PRG must be unpredictable

Suppose PRG is **predictable**:

$$\exists i: \quad G(k)|_{1,\dots,i} \xrightarrow{Alg} G(k)|_{i+1,\dots,n}$$

PRG must be unpredictable

We say that $G: K \longrightarrow \{0,1\}^n$ is **predictable** if:

 \exists "efficient" algorithm A and $\exists 1 \leq i \leq n-1$ s.t. $\Pr[A(G(k)|_{1,...,i}) = G(k)|_{i+1}] > \frac{1}{2} + \epsilon$ $k \leftarrow K$ for non-negligible ϵ (e.g., $\epsilon = \frac{1}{2^{30}}$)

PRG is **unpredictable** if it **is not predictable**

 \Rightarrow \forall i: no "efficient" adversary can predict bit (i+1) for "non-neg" ϵ

- Suppose $G: K \longrightarrow \{0,1\}^n$ is such that for all k: XOR(G(k)) = 1
- Is G predictable ??

- 1. Yes, given the first bit I can predict the second
- 2. No, G is unpredictable
- 3. Yes, given the first (n-1) bits I can predict the n-th bit
- 4. It depends

- Suppose $G: K \longrightarrow \{0,1\}^n$ is such that for all k: XOR(G(k)) = 1
- Is G predictable ??

- 1. Yes, given the first bit I can predict the second
- 2. No, G is unpredictable
- 3. Yes, given the first (n-1) bits I can predict the n-th bit 🛛 🦛
- 4. It depends

One more definition of "secure" PRG

Let $\mathbf{G:K} \longrightarrow \{0,1\}^n$ be a PRG $G: \{0,1\}^{10} \longrightarrow \{0,1\}^{1000}$

Goal:

define what it means that

 $[k \leftarrow K, \text{ output } G(k)]$

is "indistinguishable" from

$$[r \leftarrow \{0,1\}^n, \text{ ouput } r]$$

 $[k \leftarrow {0,1}^{10}, \text{ output G(k)}]$

 $[r \leftarrow {0,1}^{1000}, output r]$

Note

A minimum security requirement for a PRG is that the length **s** of the random seed should be **sufficiently large** so that a search over **2**^s elements (the total number of possible seeds) is infeasible for the adversary.

Statistical Tests

Statistical test on {0,1}ⁿ:

```
An algorithm A s.t. A(x) outputs "0" or "1",
that is A : \{0,1\}^n \longrightarrow \{0,1\}
```

Examples:

- 1. A(x)=1 iff $|\#0(x) \#1(x)| \le 10 \sqrt{n}$
- 2. A(x)=1 iff $|\#00(x) n/4| \le 10 \sqrt{n}$
- 3. A(x)=1 iff max-run-of- $O(x) < 10 \log_2(n)$

Advantage

- Let $G:K \longrightarrow \{0,1\}^n$ be a **PRG**
- Let $A: \{0,1\}^n \longrightarrow \{0,1\}$ be a statistical test on $\{0,1\}^n$

Define:
$$Adv_{PRG}[A,G] = \left| \Pr_{k \leftarrow K} [A(G(k)) = 1] - \Pr_{r \leftarrow \{0,1\}^n} [A(r) = 1] \right| \in [0,1]$$

- Adv close to 0 => A cannot distinguish G from random
- Adv non-negligible => A can distinguish G from random
- Adv close to 1 => A can distinguish G from random very well

A silly example: $A(x) = 0 \implies Adv_{PRG} [A,G] =$

Example of Advantage

- Suppose $G:K \longrightarrow \{0,1\}^n$ satisfies msb(G(k)) = 1 for 2/3 of keys in K
- Define statistical test A(x) as:

if [msb(x)=1] output "1" else output "0"

Then

$$Adv_{PRG}[A,G] = |Pr[A(G(k))=1] - Pr[A(r)=1]| = |2/3 - 1/2| = 1/6$$

A breaks G with advantage 1/6 (which is not negligible) hence **G is not a good PRG**

Secure PRGs: crypto definition

Definition:

We say that $\mathbf{G}: \mathbf{K} \longrightarrow \{\mathbf{0},\mathbf{1}\}^n$ is a secure PRG if

for every "efficient" statistical test A, Adv_{PRG}[A,G] is "negligible"

Are there provably secure PRGs? Unknown (=> $P \neq PN$)

A secure PRG is unpredictable

We show: PRG predictable \Rightarrow PRG is insecure

Suppose *A* is an efficient algorithm s.t.

$$\Pr_{k \leftarrow K} [A(G(k)|_{1,...,i}) = G(k)|_{i+1}] > \frac{1}{2} + \epsilon$$

for non-negligible ϵ (e.g. $\epsilon = 1/1000$)

A secure PRG is unpredictable

Define statistical test B as:

$$B(X) = \begin{cases} \text{if } A(X|_{1,\dots,i}) = X_{i+1} \text{ output } 1\\ \text{else output } 0 \end{cases}$$

$$k \leftarrow K: \ Pr[B(G(k)) = 1] > \frac{1}{2} + \epsilon$$

$$r \leftarrow \{0,1\}^n : Pr[B(r) = 1] = \frac{1}{2}$$

 $\Rightarrow Adv_{PRG}[B,G] = |Pr[B(G(k)) = 1] - Pr[B(r) = 1]| > \epsilon$

Thm (Yao'82): an unpredictable PRG is secure

Let $\mathbf{G}: \mathbf{K} \longrightarrow \{\mathbf{0},\mathbf{1}\}^n$ be **PRG**

"Thm": if $\forall i \in \{0, ..., n-1\}$ G is unpredictable at position i then G is a secure PRG.

If next-bit predictors cannot distinguish G from random then no statistical test can !!

More Generally

Let P_1 and P_2 be two distributions over $\{0,1\}^n$

We say that P_1 and P_2 are computationally indistinguishable (denoted $P_1 \approx_p P_2$)

if
$$\forall$$
 "efficient" statistical test A
 $\left| \Pr_{X \leftarrow P_1} [A(X) = 1] - \Pr_{X \leftarrow P_2} [A(X) = 1] \right| < \text{negligible}$

Example: a PRG is secure if $\{k \leftarrow K : G(k)\} \approx_p uniform(\{0,1\}^n)$

Semantic Security

What is a secure cipher?

Attacker's abilities: CT only attack: obtains one ciphertext

Possible security requirements: attempt #1: attacker cannot recover secret key E(k, m) = m would be secure attempt #2: attacker cannot recover all of plaintext $E(k, m_0 | | m_1) = m_0 | | k \bigoplus m_1$ would be secure Shannon's idea: CT should reveal no "info" about PT

Recall Shannon's perfect secrecy

Let (E,D) be a cipher over (K,M,C)

Shannon's perfect secrecy:

(E,D) has perfect secrecy if $\forall m_0, m_1 \in M$ ($|m_0| = |m_1|$) {E(k,m_0)} = {E(k,m_1)} where k \leftarrow K

Weaker Definition:

(E,D) has perfect secrecy if
$$\forall m_0, m_1 \in M$$
 ($|m_0| = |m_1|$)
{ $E(k,m_0) \} \approx_p \{E(k,m_1)\}$ where $k \leftarrow K$

- The two distributions must be identical
- Too strong definition
- It requires long keys
- Stream Ciphers can't satisfy it

Rather than requiring the two distributions to be identical, we require them to be COMPUTATIONALLY INDISTINGUISHABLE

(One more requirement) ... but also need adversary to exhibit $m_0, m_1 \in M$ explicitly

Semantic Security (one-time key)

For a cipher Q = (E,D) and an adversary A define a game as follows. For b=0,1 define experiments EXP(0) and EXP(1) as:

Adv_{ss}[A,Q] := | Pr[EXP(0)=1] - Pr[EXP(1)=1] |

Semantic Security (one-time key)

Adv_{ss}[A,Q] = Pr[EXP(0)=1] - Pr[EXP(1)=1] should be "negligible" for all "efficient" A

Semantic Security (one-time key)

Definition:

Q is semantically secure if for all "efficient" A,

Adv_{ss}[A,Q] is "negligible".

Example

Suppose efficient A can always deduce LSB of PT from CT \Rightarrow Q is not semantically secure.

Stream ciphers are semantically secure

Theorem:

G is a **secure PRG** \Rightarrow stream cipher **Q** <u>derived from G</u> is **semantically secure**

In particular:

∀ semantic security adversary **A**, ∃ a PRG adversary **B** (i.e., a statistical test) s.t.

 $Adv_{ss}[A,Q] \leq 2 \cdot Adv_{PRG}[B,G]$

Block Ciphers

Outline

- Block Ciphers
- Pseudo Random Functions (PRFs)
- Pseudo Random Permutations (PRPs)
- DES Data Encryption Standard
- AES Advanced Encryption Standard
- PRF \Rightarrow PRG
- PRG \Rightarrow PRF

Block Ciphers: crypto work horse

Canonical examples:

- **DES**: n = 64 bits, k = 56 bits
- **3DES**: n= 64 bits, k = 168 bits
- **AES**: n=128 bits, k = 128, 192, 256 bits

Block Ciphers Built by Iteration

R(k,m) is called a **round function**

for 3DES (n=48), for AES-128 (n=10)

Performance: Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

	<u>/JCC</u>
ST RC4 126	
Salsa20/12 643	
Sosemanuk 727	
<u>a</u> 3DES 64/168 13	
AES-128 128/128 109	

Abstractly: PRPs and PRFs

• **Pseudo Random Function** (**PRF**) defined over (K,X,Y):

 $F: K \times X \rightarrow Y$

such that there exists "efficient" algorithm to evaluate F(k,x)

• **Pseudo Random Permutation** (**PRP**) defined over (K,X):

 $E: K \times X \rightarrow X$

such that:

- 1. There exists "efficient" <u>deterministic</u> algorithm to evaluate E(k,x)
- 2. The function $E(k, \cdot)$ is **one-to-one** (for every k)
- 3. There exists "efficient" inversion algorithm D(k,y)

Running example

• Example PRPs: 3DES, AES, ...

AES: $K \times X \rightarrow X$ where $K = X = \{0,1\}^{128}$

3DES: $K \times X \rightarrow X$ where $X = \{0,1\}^{64}$, $K = \{0,1\}^{168}$

• Functionally, any PRP is also a PRF.

• A PRP is a PRF where X=Y and is efficiently invertible.

Secure PRFs

- Let $F: K \times X \rightarrow Y$ be a PRF. Set some notation: $\begin{cases}
 Funs[X,Y]: \text{ the set of all functions from X to Y} \\
 S_F = \{F(k, \cdot) \text{ s.t. } k \in K\} \subseteq Funs[X,Y]
 \end{cases}$
- Intuition: a PRF is secure if a random function in Funs[X,Y] is "indistinguishable" from a random function in S_F

Secure PRF: definition

• Consider a PRF **F** : **K** × **X** \rightarrow **Y**. For b=0,1 define experiment EXP(b) as: b

Definition: F is a secure PRF if for all "efficient" adversary A:Adv_{PRF}[A,F] :=Pr[EXP(0)=1] - Pr[EXP(1)=1]is "negligible".

Secure PRPs (secure block cipher)

• Let $E: K \times X \rightarrow X$ be a PRP

Perms[X]: the set of **all one-to-one** functions from X to X (i.e., **permutations**)

$$S_E = \{ E(k, \cdot) \text{ s.t. } k \in K \} \subseteq Perms[X]$$

• Intuition: a PRP is secure if a random function in Perms[X] is "indistinguishable" from a random function in S_E

Secure PRP (secure block cipher)

• Consider a PRP **E** : $\mathbf{K} \times \mathbf{X} \rightarrow \mathbf{X}$. For b=0,1 define experiment EXP(b) as:

Data Encryption Standard (DES)
The Data Encryption Standard (DES)

- Early 1970s: Horst Feistel designs Lucifer at IBM key-length = 128 bits ; block-length = 128 bits
- 1973: NBS (nowadays called NIST) asks for block cipher proposals. IBM submits variant of Lucifer.
- 1976: NBS adopts DES as a federal standard key-length = 56 bits ; block-length = 64 bits
- 1997: DES broken by exhaustive search
- 2000: NIST adopts Rijndael as AES to replace DES

DES: core idea – Feistel Network

Given functions $f_1, ..., f_d: \{0,1\}^n \rightarrow \{0,1\}^n$ (not necessarily invertible)

Goal: build **invertible** function F: $\{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$

Feistel network is invertible

Claim: for all (arbitrary) $f_1, ..., f_d: \{0,1\}^n \rightarrow \{0,1\}^n$ Feistel network F: $\{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ is invertible Proof: construct inverse

Feistel network is invertible

Claim: for all (arbitrary) $f_1, ..., f_d: \{0,1\}^n \rightarrow \{0,1\}^n$ Feistel network F: $\{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ is invertible Proof: construct inverse

Decryption circuit

- Inversion is basically the same circuit, with $f_1, ..., f_d$ applied in reverse order
- General method for building invertible functions (block ciphers) from arbitrary functions.
- Used in many block ciphers ... but not AES

Theorem (Luby-Rackoff '85):

f: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ a secure PRF

⇒ 3-round Feistel F: $K^3 \times \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ is a secure PRP $(k_0, k_1, k_2$ three independent keys)

DES: 16 round Feistel network

 $f_1, ..., f_{16}$: $\{0,1\}^{32} \longrightarrow \{0,1\}^{32}$, $f_i(x) = F(k_i, x)$

The function $F(k_i, x)$

S-box: function $\{0,1\}^6 \longrightarrow \{0,1\}^4$, implemented as look-up table.

The S-boxes (substitution boxes)

$S_i: \{0,1\}^6 \longrightarrow \{0,1\}^4$

S 5		Middle 4 bits of input															
		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Outer bits	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

 $S_5(011011) \longrightarrow 1001$

Choosing the S-boxes and P-box

- Choosing the S-boxes and P-box at random would result in an insecure block cipher (key recovery after ≈2²⁴ outputs)
- Several rules used in choice of S and P boxes:
 - No output bit should be close to a linear func. of the input bits
 - S-boxes are 4-to-1 maps (4 pre-images for each output)
 - ..

Exhaustive Search for block cipher key

Goal: given a few input output pairs $(m_i, c_i = E(k, m_i))$ i=1,...,3 find key k.

Exhaustive Search for block cipher key

Goal: given a few input output pairs $(m_i, c_i = E(k, m_i))$ i=1,...,3 find key k.

Lemma: Suppose DES is an *ideal cipher* (2^{56} random invertible functions \mathbb{T}_1 , ..., $\mathbb{T}_{2^{56}}$: $\{0,1\}^{64} \rightarrow \{0,1\}^{64}$) Then \forall m, c there is at most <u>one</u> key k s.t. c = DES(k, m) with prob. $\geq 1 - 1/256 \approx 99.5\%$

Proof:

 $Pr[\exists k' \neq k: c=DES(k,m)=DES(k',m)] \le \sum_{k' \in \{0,1\}} Pr[DES(k,m) = DES(k',m)] \le 2^{56} \times 1/(2^{64}) = 1/(2^8) = 1/$

Exhaustive Search for block cipher key

For two DES pairs
$$(m_1, c_1 = DES(k, m_1)), (m_2, c_2 = DES(k, m_2))$$

unicity prob. $\approx 1 - 1/2^{71}$

For AES-128: given two inp/out pairs, unicity prob. $\approx 1 - 1/2^{128}$

 \Rightarrow two input/output pairs are enough for exhaustive key search.

Exhaustive Search Attacks

Goal: find $k \in \{0,1\}^{56}$ s.t. DES(k, m_i) = c_i for i=1,2,3 and decrypt c₄, c_{5...}

- 1997: Internet search -- 3 months
 1998: EFF machine (deep crack) -- 3 days (250K \$)
 1999: combined search -- 22 hours
 2006: COPACOBANA (120 FPGAs) -- 7 days (10K \$)
- \Rightarrow 56-bit ciphers should not be used !!

Strengthening DES against exhaustive search

- Method 1: Triple-DES
- Method 2: **DESX**
- General construction that can be applied to other block

ciphers as well.

Triple DES

- Consider a block cipher
 - $\mathsf{E}:\mathsf{K}\times\mathsf{M}\longrightarrow\mathsf{M}$

 $\mathbf{D}:\mathsf{K}\times\mathsf{M}\longrightarrow\mathsf{M}$

• Define **3E**: $K^3 \times M \longrightarrow M$ as

 $3E(k_1,k_2,k_3,m) = E(k_1,D(k_2,E(k_3,m)))$

- For 3DES (or Triple DES)
 - key lenght = 3×56 = 168 bits.
 - 3×slower than DES.
 - $k_1 = k_2 = k_3 \Rightarrow$ single DES
 - simple attack in time ≈ 2¹¹⁸ (more on this later ...)

Why not double DES?

- Given a block cipher E, define 2E(k_1, k_2, m) = E($k_1, E(k_2, m)$)
- Double DES: 2DES(k_1 , k_2 , m) = E(k_1 , E(k_2 , m)) key-length = 112 bits for 2DES
- Attack: Given m and c the goal is to find (k_1, k_2) s.t. $E(k_1, E(k_2, m)) = c$ or equivalently find (k_1, k_2) s.t. $E(k_2, m) = D(k_1, c)$

• Attack: Given m and c the goal is to find (k_1, k_2) s.t. $E(k_1, E(k_2, m)) = c$ or equivalently find (k_1, k_2) s.t. $E(k_2, m) = D(k_1, c)$

Attack involves TWO STEPS

Step 1:

- build table.
- sort on 2nd column

$$\begin{array}{c} k^{0} = 00...00 & E(k^{0}, m) \\ k^{1} = 00...01 & E(k^{1}, m) \\ k^{2} = 00...10 & E(k^{2}, m) \\ \vdots & \vdots \\ k^{N} = 11...11 & E(k^{N}, m) \end{array} \right\} \begin{array}{c} 2^{56} \\ entries \end{array}$$

Step 2:

• for each $k \in \{0,1\}^{56}$ do:

test if D(k, c) is in the 2nd column of the table If so, then $E(k^i,m) = D(k,c) \implies (k^i,k) = (k_2,k_1)$

k ⁰ = 0000	E(k ^o , m)	
k ¹ = 0001	E(k ¹ , m)	
:	:	
k ⁱ = 00	E(k ⁱ , m)	$\mathbf{m} \longrightarrow E(\mathbf{k}_2, \cdot) \longrightarrow E(\mathbf{k}_1, \cdot) \longrightarrow C$
:	:	
k ^N = 1111	E(k ^N , m)	

Time =
$$2^{56}\log(2^{56}) + 2^{56}\log(2^{56}) < 2^{63} << 2^{112}$$
,

build + sort table search in table

Space $\approx 2^{56}$

Same attack on 3DES:

$$\xrightarrow{} E(\mathbf{k}_3, \cdot) \xrightarrow{} D(\mathbf{k}_2, \cdot) \xrightarrow{} E(\mathbf{k}_1, \cdot) \xrightarrow{} c$$

Time = 2^{118} , space $\approx 2^{56}$

Time =
$$2^{56}\log(2^{56}) + 2^{112}\log(2^{56}) < 2^{118}$$

build + sort table search in table

DESX

- Consider a block cipher
 - $\mathbf{E}:\mathsf{K}\times\mathsf{M}\longrightarrow\mathsf{M}$
 - $\mathbf{D}:\mathbf{K}\times\mathbf{M}\longrightarrow\mathbf{M}$
- Define **EX** as

 $EX(k_1, k_2, k_3, m) = k_1 \bigoplus E(k_2, m \bigoplus k_3)$

- For **DESX**
 - key-len = 64+56+64 = 184 bits $k_1 \oplus E(k_2, m \oplus k_3)$
 - ... but easy attack in time $2^{64+56} = 2^{120}$
- Note: $k_1 \oplus E(k_2, m)$ and $E(k_2, m \oplus k_1)$ insecure !! (XOR outside) or (XOR inside) \Rightarrow As weak as E w.r.t. exhaustive search

Few others attacks on block ciphers

Linear attacks on DES

A tiny bit of linearly in S_5 lead to a 2⁴³ time attack.

Total attack time $\approx 2^{43}$ (<< 2^{56}) with 2^{42} random inp/out pairs

Quantum attacks

Generic search problem:

Let $f: X \longrightarrow \{0,1\}$ be a function. Goal: find $x^* \in X$ s.t. $f(x^*)=1$.

Classical computer: best generic algorithm **time = O(|X|)**

Quantum computer [Grover '96] : time = O($|X|^{1/2}$)

Quantum exhaustive search

```
Given m and c = E(k,m) define

For k \in K, f(k) = \begin{cases}
1 & \text{if } E(k,m) = c \\
0 & \text{otherwise}
\end{cases}
```

Grover \Rightarrow quantum computer can find k in time O(|K|^{1/2})

DES: time $\approx 2^{28}$, AES-128: time $\approx 2^{64}$ Quantum computer \Rightarrow 256-bits key ciphers (e.g., AES-256)

Advanced Encryption Standard (AES)

The AES process

- 1997: NIST publishes request for proposal
- 1998: 15 submissions. Five claimed attacks.
- 1999: NIST chooses 5 finalists
- 2000: NIST chooses Rijndael as AES (designed in Belgium)

Key sizes: 128, 192, 256 bits. Block size: 128 bits

AES is a Substitution–permutation Network (not Feistel)

The round function

- ByteSub: a 1 byte S-box. 256 byte table (easily computable)
 - Apply S-box to each byte of the 4x4 input A, i.e., A[i,j] = S[A[i,j]], for $1 \le i,j \le 4$
- ShiftRows:

• MixColumns:

AES in hardware

AES instructions in Intel Westmere:

- aeskeygenassist: performs AES key expansion
- Claim 14 x speed-up over OpenSSL on same hardware

Similar instructions on AMD Bulldozer

• Best key recovery attack:

four times better than ex. search [BKR'11]

• Related key attack on AES-256: [BK'09]

Given 2^{99} inp/out pairs from **four related keys** in AES-256 can recover keys in time $\approx 2^{99}$

 $PRF \Rightarrow PRG$ $PRG \Rightarrow PRF$
An easy application: $PRF \Rightarrow PRG$ (counter mode)

- Let $F: K \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a PRF.
- We define the **PRG** $G: K \rightarrow \{0,1\}^{nt}$ as follows:

(t is a parameter that we can choose)

 $G(k) = F(k, \langle 0 \rangle n) || F(k, \langle 1 \rangle n) || \cdots || F(k, \langle t-1 \rangle n)$

- Properties:
 - Theorem: If F is a secure PRF then G is a secure PRG
 - Key property: parallelizable

Can we build a PRF from a PRG?

Let G: $K \rightarrow K^2$ be a PRG

Define a 1-bit PRF F: $K \times \{0,1\} \longrightarrow K$ as

 $F(k, x \in \{0, 1\}) = G(k)[x]$

k G G(k)[0] G(k)[1] † † F(k,0) F(k,1)

Theorem. If G is a secure PRG then F is a secure PRF

Can we build a PRF with a larger domain? (e.g., 128 bits)

Let $G: K \longrightarrow K^2$ be a PRG

Define $G_1: K \longrightarrow K^4$ as

 $G_1(k) = G(G(k)[0]) || G(G(k)[1])$

Then define a 2-bit PRF F: $K \times \{0,1\}^2 \longrightarrow K$ as

 $F(k, x \in \{0, 1\}^2) = G_1(k)[x]$

Extending more

Extending even more: the GGM PRF

Let $G: K \longrightarrow K^2$. define PRF $F: K \times \{0,1\}^n \longrightarrow K$ as For input $x = x_0 x_1 \dots x_{n-1} \in \{0,1\}^n$ do:

Security: **G** a secure PRG \Rightarrow **F** is a secure PRF on $\{0,1\}^n$. Not used in practice due to slow performance.

Secure block cipher from a PRG?

Can we build a secure PRP from a secure PRG?

- No, it cannot be done
- Yes, just plug the GGM PRF into the Luby-Rackoff theorem
- It depends on the underlying PRG

Theorem (Luby-Rackoff '85):

f: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ a secure PRF

⇒ 3-round Feistel F: $K^3 \times \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ is a secure PRP $(k_0, k_1, k_2$ three independent keys)

Modes of Operation (using block ciphers)

Outline

- One-Time Key
 - Semantic Security
 - Electronic Code Book (ECB)
 - Deterministic Counter Mode (DETCTR)
- Many-Time Key
 - Semantic Security for Many-Time Key: Semantic Security under Chosen-Plaintext Attack (CPA)
 - Cipher Block Chaining (CBC)
 - Randomized
 - Nonce-based

Review: PRPs and PRFs

Canonical examples:

- **DES**: n = 64 bits, k = 56 bits
- **3DES**: n = 64 bits, k = 168 bits
- **AES**: n=128 bits, k=1
- k = 128, 192, 256 bits

Abstractly: PRPs and PRFs

• **Pseudo Random Function** (**PRF**) defined over (K,X,Y):

 $F: K \times X \rightarrow Y$

such that there exists "efficient" algorithm to evaluate F(k,x)

• Pseudo Random Permutation (PRP) defined over (K,X):

 $E: K \times X \rightarrow X$

such that:

- 1. There exists "efficient" deterministic algorithm to evaluate E(k,x)
- 2. The function $E(k, \cdot)$ is one-to-one, for every k
- 3. There exists "efficient" inversion algorithm D(k,y)

Using block ciphers

- Don't think about the **inner-workings** of AES and 3DES.
- We assume both are secure PRPs and will see how to use them

Modes of Operation

How to use a **block cipher** on **messages consisting of more than one block**

• One-Time Key

- Electronic Code Book
- Deterministic Counter Mode

• Many-Time Key

- Cipher Block Chaining
- Counter Mode

Modes of Operation One-Time Key

(example: encrypted email, new key for every message)

Using PRPs and PRFs

Goal: build "secure" encryption from a secure PRP (e.g., AES).

This segment: **one-time key**

- 1. Adversary's power: Adversary sees only one ciphertext (one-time key)
- 2. Adversary's goal: Learn info about PT from CT (semantic security)

Next segment: many-time keys (a.k.a. *chosen-plaintext security*)

Incorrect use of a PRP

Electronic Code Book (ECB):

Problem: if $b_1 = b_2$ then $c_1 = c_2$

In pictures

Plain text

Cipher text with **ECB**

Cipher text with other modes of operation

Semantic Security (one-time key)

Adv_{ss}[A,Cipher] = Pr[EXP(0)=1] - Pr[EXP(1)=1] should be "negligible" for all "efficient" A

ECB is not Semantically Secure

ECB is not semantically secure for messages that contain **more than one block.** (known-plaintext attack)

Deterministic Counter Mode (Secure Construction)

• **PRF** $F: K \times \{0,1\}^n \rightarrow \{0,1\}^n$ (e.g., n=128 with AES)

 \Rightarrow Stream cipher built from a PRF (e.g., AES, 3DES)

Deterministic Counter Mode (Secure Construction)

• **PRF** $F: K \times \{0,1\}^n \rightarrow \{0,1\}^n$ (e.g., n=128 with AES)

No need to **invert** F when decrypting

Deterministic Counter Mode Security

Theorem: For any L>0,

If **F** is a **secure PRF** over (K,X,X) then **DETCTR** is **semantically secure** over (K,X^L,X^L).

In particular, for every efficient adversary **A attacking DETCTR** there exists an efficient adversary **B attacking F** s.t.:

 $Adv_{SS}[A, DETCTR] = 2 \cdot Adv_{PRF}[B, F]$

Adv_{PRF}[B, F] is negligible (since F is a secure PRF)

Hence, Adv_{ss}[A, DETCTR] must be negligible.

Modes of Operation Many-Time Key

Examples:

- File systems: Same AES key used to encrypt many files.
- IPsec: Same AES key used to encrypt many packets.

Semantic Security for Many-Time Key

Key used **more than once** \Rightarrow adversary sees many CTs with same key (i.e., <u>used for **multiple messages**</u>)

Adversary's power: Chosen-Plaintext Attack (CPA)

• Adversary can obtain the encryption of arbitrary messages of his choice (conservative modeling of real life)

Adversary's goal: Break semantic security

Semantic Security for Many-Time Key (CPA Security)

Q = (E,D) a cipher defined over (K,M,C). For b=0,1 define EXP(b) as:

Semantic Security for Many-Time Key (CPA Security)

Q = (E,D) a cipher defined over (K,M,C). For b=0,1 define EXP(b) as:

Semantic Security for Many-Time Key (CPA Security)

Q = (E,D) a cipher defined over (K,M,C). For b=0,1 define EXP(b) as:

CPA ⇒ if adversary wants c = E(k, m) it queries with $m_{j,0} = m_{j,1} = m$ Definition: Q is semantically secure under CPA if for all "efficient" adversary A: $Adv_{CPA} [A,Q] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$ is "negligible".

Ciphers Insecure under CPA

Suppose E(k,m) always outputs same ciphertext for msg m and key k. Then:

So what? an attacker can learn that two encrypted files are the same, two encrypted packets are the same, etc.

• Leads to significant attacks when the message space M is small

Ciphers Insecure under CPA

Suppose E(k,m) always outputs same ciphertext for msg m and key k. Then:

If secret key is to be used multiple times \Rightarrow given the same plaintext message twice,

encryption must produce different outputs.

Solution 1: Randomized Encryption

• E(k,m) is a randomized algorithm:

- \Rightarrow encrypting same msg twice gives different ciphertexts (w.h.p.)
- \Rightarrow ciphertext must be longer than plaintext

Roughly speaking: CT-size = PT-size + "# random bits"

Solution 2: Nonce-based Encryption

Nonce n:

- a value that changes from msg to msg
- (k,n) pair never used more than once
- n does not need to be secret and does not need to be random

Solution 2: Nonce-based Encryption

Nonce

- Method 1: nonce is a counter (e.g., packet counter)
 - used when encryptor keeps state from msg to msg
 - if decryptor has same state, need not send nonce with CT
- Method 2: encryptor chooses a random nonce, n ← N (It's like randomized encryption) (ex. Multiple devices encrypting with the same key)
 - $\ensuremath{\mathbb{N}}$ must be large enough to ensure that the same nonce is not chosen twice with high probability

CPA Security for Nonce-based Encryption

System should be secure when **nonces are chosen adversarially.**

All nonces {n₁, ..., n_q} must be distinct.

Definition. Nonce-based Q is semantically secure under CPA if for all "efficient" adversary A:

Adv_{nCPA} [A,Q] = |Pr[EXP(0)=1] - Pr[EXP(1)=1] | is "negligible".

Many-time Key Mode of Operation: Cipher Block Chaining (CBC)

Construction 1: CBC with random IV

- **PRP** E : K × $\{0,1\}^n \rightarrow \{0,1\}^n$
- (Encryption) E_{CBC}(k,m): choose random IV∈{0,1}ⁿ and do:

Construction 1: CBC with random IV

- $D: K \times \{0,1\}^n \rightarrow \{0,1\}^n$ inversion algorithm of E
- (Decryption) D_{CBC}(k,c):

(Randomized) CBC Security

Theorem: For any L>0 (length of the message we are encrypting), If E is a secure PRP over (K,X) then CBC is semantically secure under CPA over (K, X^L, X^{L+1}).

In particular, for every efficient q-query adversary **A attacking CBC** there exists an efficient PRP adversary **B attacking E** s.t.

 $Adv_{CPA} [A, CBC] \le 2 \cdot Adv_{PRP}[B, E] + 2 q^2 L^2 / |X|$

Note: CBC is only secure as long as q²L² << |X|

(the error term should be negligible)

An example

$Adv_{CPA} [A, CBC] \leq 2 \cdot Adv_{PRP} [B, E] + 2 q^2 L^2 / |X|$

q = # messages encrypted with k , L = length of max message

Suppose we want $Adv_{CPA} [A, CBC] \le 1/2^{32} \iff q^2 L^2 / |X| < 1/2^{32}$

- AES: |X| = 2¹²⁸ ⇒ q L < 2⁴⁸
 So, after 2⁴⁸ AES blocks, must change key
- 3DES: $|X| = 2^{64} \Rightarrow q L < 2^{16}$

So, after 2¹⁶ DES blocks, must change key

 \Rightarrow after 2¹⁶ blocks (each of 8 bytes) need to change key $\Rightarrow 2^{16} \times 8 = \frac{1}{2} \text{ MB} !!!$

Warning: an attack on CBC with rand. IV

CBC where adversary can **predict** the IV is not CPA-secure !!

Suppose given $c \leftarrow E_{CBC}(k,m)$ adversary can predict IV for next message

Bug in SSL/TLS 1.0: IV for record #i is last CT block of record #(i-1)

Construction 2: Nonce-based CBC

- key = (**k, k**₁)
- (key, nonce) pair is used for only one message
- Encryption:

Construction 2: Nonce-based CBC

• Decryption:

An example Crypto API (OpenSSL)

```
void AES cbc encrypt(
      const unsigned char *in,
      unsigned char *out,
      size t length,
      const AES KEY *key,
      unsigned char *ivec,
                                    ← user supplies IV
      AES ENCRYPT or AES DECRYPT);
```

When it is non-random need to encrypt it before use (Otherwise, no CPA security!!)

A CBC technicality: padding

Key Exchange

Outline

• Trusted 3rd Parties

Merkle Puzzles

• The Diffie-Hellman Protocol

Trusted 3rd Parties

Key Management

Problem: n users. Storing mutual secret keys is difficult

O(n) keys per user **O(n²)** keys in total

A Better Solution

Online Trusted 3rd Party (TTP)

Every user only remembers **ONE key**

Generating keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Generating keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: $E(k_A, "A, B" \parallel k_{AB})$; $E(k_B, "A, B" \parallel k_{AB})$

(E,D) is CPA-secure \Rightarrow eavesdropper learns nothing about k_{AB}

Note: TTP needed for every key exchange, knows all session keys.

(basis of Kerberos system)

Key Question

Can we generate shared keys without an online trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

- Merkle (1974),
- Diffie-Hellman (1976),
- RSA (1977)

• ...

Merkle Puzzles

Key exchange without an online TTP?

- Goal: Alice and Bob want a shared key, unknown to eavesdropper
- Security against eavesdropping only (no tampering)

• Can this be done using generic symmetric crypto?

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: "puzzles"

- Puzzles: Problems that can be solved with "some effort"
- Example:
 - E(k,m) a symmetric cipher with $k \in \{0,1\}^{128}$
 - puzzle = E(P, "message") where P = 0⁹⁶ II b₁ ... b₃₂
 - To "solve" a puzzle, find **P** by trying all **2³²** possibilities

Merkle Puzzles

<u>Alice</u>:

- Prepare 2³² puzzles:
 - For $i = 1, ..., 2^{32}$ choose random $P_i \in \{0,1\}^{32}$ and random $x_i, k_i \in \{0,1\}^{128}$ $x_i \neq x_j$

```
Set puzzle_i \leftarrow E(0^{96} || P_i, "Puzzle #" || x_i || k_i)
```

• Send **puzzle₁**, ..., **puzzle₂**³² to Bob.

<u>Bob</u>:

- Choose a random puzzle_i and solve it. Obtain (x_i, k_i) and use k_i as shared secret.
- Send **x**_j to Alice.

<u>Alice</u>:

- Lookup puzzle with number **x**_i.
- Use k_i as shared secret.

Eavesdropper's work: **O(2⁶⁴)** (solve **2³²** puzzles)

in general **O(n)**

Impossibility Result

Can we achieve a better gap using a general symmetric cipher?

Answer: unknown

Key exchange without an online TTP?

- Goal: Alice and Bob want a shared key, unknown to eavesdropper
- Security against eavesdropping only (no tampering)

• Can this be done with an **exponential gap**?

High-level idea:

- Alice and Bob do NOT share any secret information beforehand
- Alice and Bob exchange messages
- After that, Alice and Bob have agreed on a shared secret key k
- k unknown to eavesdropper

(Security) Based on the **Discrete Logarithm** Problem: **Given**

•g •p •g^k mod p Find k

```
Fix a large prime p (e.g., 600 digits)
Fix an integer g in {2, ..., p-2}
```

<u>Alice</u>		<u>Bob</u>
Choose random a in {1,,p-2}	g ^a (mod p)	Choose random b in {1,,p-2}
	g ^b (mod p)	
Alice computes (g ^b) ^a (mod p) =	g ^{ab} (mod p)	Bob computes = (g ^a) ^b (mod p)

Security

Eavesdropper sees: **p**, **g**, **g**^a (mod **p**), and **g**^b (mod **p**) Can she compute **g**^{ab} (mod **p**) ??

How hard is the DH function mod p?

Suppose prime **p** is **n** bits long. Best known algorithm (GNFS): run time exp($\tilde{O}(\sqrt[3]{n})$)

Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

Introduction Number Theory

Background

We will use a bit of number theory to construct:

- Key exchange protocols
- Digital signatures
- Public-key encryption

Notation

From here on:

- N denotes a positive integer.
- p denote a prime.

Notation:
$$\mathbb{Z}_N = \{0, 1, ..., N - 1\}$$

Can do addition and multiplication modulo N

Modular arithmetic

Examples: let N = 12

Arithmetic in \mathbb{Z}_N works as you expect, e.g. $x \cdot (y+z) = x \cdot y + x \cdot z$ in \mathbb{Z}_N

Modular arithmetic

Examples: let N = 12

9 + 8 = 5 in \mathbb{Z}_{12} $5 \times 7 = 11$ in \mathbb{Z}_{12} 5 - 7 = 10 in \mathbb{Z}_{12}

Arithmetic in \mathbb{Z}_N works as you expect, e.g $x \cdot (y+z) = x \cdot y + x \cdot z$ in \mathbb{Z}_N

Greatest common divisor

<u>Def</u>: For ints. x,y: gcd(x, y) is the greatest common divisor of x,y</u>

Example: gcd(12, 18) = 6

<u>Fact</u>: for all ints. x,y there exist ints. a,b such that a·x + b·y = gcd(x,y)

a,b can be found efficiently using the extended Euclid alg.

If gcd(x,y)=1 we say that x and y are relatively prime

Example: 2 x 12 **-1** x 18 = 6

Modular inversion

Over the rationals, inverse w.r.t. the moltiplication of 2 is $\frac{1}{2}$. What about \mathbb{Z}_N ?

<u>**Def**</u>: The **inverse** of x in \mathbb{Z}_N is an element y in \mathbb{Z}_N s.t. $x \cdot y = 1$ y is denoted x^{-1} .

Example: let N be an odd integer. The inverse of 2 in \mathbb{Z}_N is $\frac{N+1}{2}$ since $2 \cdot \frac{N+1}{2} = N + 1 = 1$
Modular inversion

Which elements have an inverse in \mathbb{Z}_N ?

Lemma: x in \mathbb{Z}_N has an inverse if and only if gcd(x,N) = 1 Proof:

$$gcd(x,N)=1 \implies \exists a,b: a\cdot x + b\cdot N = 1 \implies a\cdot x = 1 \text{ in } \mathbb{Z}_N$$

 $\implies x^{-1} = a \text{ in } \mathbb{Z}_N$

 $gcd(x,N) > 1 \implies \forall a: gcd(a \cdot x, N) > 1 \implies a \cdot x \neq 1 \text{ in } \mathbb{Z}_N$

More notation

Def:
$$\mathbb{Z}_N^* = (\text{set of invertible elements in } \mathbb{Z}_N) =$$

= { x \in \mathbb{Z}_N : gcd(x,N) = 1 }

Examples:

1. for prime p,
$$\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\} = \{1, 2, \dots, p-1\}$$

2. \mathbb{Z}_{12}^* =

For x in \mathbb{Z}_N^* , can find x⁻¹ using extended Euclid algorithm.

More notation

Def:
$$\mathbb{Z}_N^* = (\text{set of invertible elements in } \mathbb{Z}_N) =$$

= { x \in \mathbb{Z}_N : gcd(x,N) = 1 }

Examples:

1. for prime p,
$$\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\} = \{1, 2, \dots, p-1\}$$

2. $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$

For x in \mathbb{Z}_N^* , can find x⁻¹ using extended Euclid algorithm.

Solving modular linear equations

Solve: $\mathbf{a} \cdot \mathbf{x} + \mathbf{b} = \mathbf{0}$ in \mathbb{Z}_N

Solution: $\mathbf{x} = -\mathbf{b} \cdot \mathbf{a}^{-1}$ in \mathbb{Z}_N

Find a^{-1} in \mathbb{Z}_N using extended Euclid. Run time: O(log² N)

What about modular quadratic equations? next segments

Fermat's theorem (1640)

<u>Thm</u>: Let p be a prime

$$\forall x \in (Z_p)^*$$
: $x^{p-1} = 1$ in Z_p

Example: p=5. $3^4 = 81 = 1$ in Z_5

Example of application:

So:
$$x \in (Z_p)^* \implies x \cdot x^{p-2} = 1 \implies x^{-1} = x^{p-2}$$
 in Z_p

another way to compute inverses, but less efficient than Euclid

Application: generating random primes

Suppose we want to generate a large random prime

say, prime p of length 1024 bits (i.e. $p \approx 2^{1024}$)

Step 1:choose a random integer $p \in [2^{1024}, 2^{1025}-1]$ Step 2:test if $2^{p-1} = 1$ in Z_p If so, output p and stop.If not, goto step 1.

Simple algorithm (not the best). **Pr[p not prime] < 2**-60

The structure of $(Z_p)^*$

<u>**Thm</u>** (Euler): $(Z_p)^*$ is a **cyclic group**, that is</u>

$$\exists g \in (Z_p)^*$$
 such that $\{1, g, g^2, g^3, ..., g^{p-2}\} = (Z_p)^*$

g is called a <u>generator</u> of $(Z_p)^*$

Example: p=7. {1, 3, 3², 3³, 3⁴, 3⁵} = {1, 3, 2, 6, 4, 5} = $(Z_7)^*$

Not every elem. is a generator: $\{1, 2, 2^2, 2^3, 2^4, 2^5\} = \{1, 2, 4\}$

Order

For $g \in (Z_p)^*$ the set $\{1, g, g^2, g^3, ...\}$ is called the **group generated by g**, denoted <g>

<u>Def</u>: the order of $g \in (Z_p)^*$ is the size of $\langle g \rangle$

 $ord_{p}(g) = |\langle g \rangle| = (smallest a > 0 s.t. g^{a} = 1 in Z_{p})$

Examples: $ord_7(3) = 6$; $ord_7(2) = 3$; $ord_7(1) = 1$

<u>**Thm</u>** (Lagrange): $\forall g \in (Z_p)^*$: **ord**_p(g) divides p-1</u>

Euler's generalization of Fermat (1736)

<u>Def</u>: For an integer N define $\varphi(N) = |(Z_N)^*|$ (Euler's φ func.)

Examples:
$$\phi(12) = |\{1,5,7,11\}| = 4$$
; $\phi(p) = p-1$
For N=p·q: $\phi(N) = N-p-q+1 = (p-1)(q-1)$

<u>Thm</u> (Euler): $\forall x \in (Z_N)^*$: $x^{\phi(N)} = 1$ in Z_N

Example: $5^{\phi(12)} = 5^4 = 625 = 1$ in Z_{12}

Generalization of Fermat. Basis of the RSA cryptosystem

Modular e'th roots

We know how to solve modular **linear** equations:

 $\mathbf{a} \cdot \mathbf{x} + \mathbf{b} = \mathbf{0}$ in Z_N Solution: $\mathbf{x} = -\mathbf{b} \cdot \mathbf{a}^{-1}$ in Z_N

What about higher degree polynomials?

Example: let p be a prime and $c \in Z_p$. Can we solve:

$$x^2 - c = 0$$
 , $y^3 - c = 0$, $z^{37} - c = 0$ in Z_p

Modular e'th roots

Let p be a prime and $c \in Z_p$.

<u>Def</u>: $x \in \mathbb{Z}_p$ s.t. $x^e = c$ in \mathbb{Z}_p is called an <u>e'th root</u> of c. Examples: $7^{1/3} = 6$ in \mathbb{Z}_{11} $3^{1/2} = 5$ in \mathbb{Z}_{11} $1^{1/3} = 1$ in \mathbb{Z}_{11}

The easy case

When does $c^{1/e}$ in Z_p exist? Can we compute it efficiently?

<u>The easy case</u>: suppose gcd(e, p-1) = 1Then for all c in $(Z_p)^*$: $c^{1/e}$ exists in Z_p and is easy to find.

The case e=2: square roots

x -x

If p is an odd prime then $gcd(2, p-1) \neq 1$

Fact: in
$$\mathbb{Z}_p^*$$
, $x \longrightarrow x^2$ is a 2-to-1 function

<u>Def</u>: x in \mathbb{Z}_p is a **quadratic residue** (Q.R.) if it has a square root in \mathbb{Z}_p p odd prime \Rightarrow the # of Q.R. in \mathbb{Z}_p is (p-1)/2 + 1

Euler's theorem

<u>Thm</u>: $x \text{ in } (Z_p)^* \text{ is a Q.R.} \iff x^{(p-1)/2} = 1 \text{ in } Z_p \qquad (p \text{ odd prime})$

Example: in
$$\mathbb{Z}_{11}$$
: 1⁵, 2⁵, 3⁵, 4⁵, 5⁵, 6⁵, 7⁵, 8⁵, 9⁵, 10⁵
= 1 -1 1 1 1, -1, -1, 1, 1, -1

Note:
$$x \neq 0 \implies x^{(p-1)/2} = (x^{p-1})^{1/2} = 1^{1/2} \in \{1, -1\}$$
 in Z_p

<u>Def</u>: $x^{(p-1)/2}$ is called the <u>Legendre Symbol</u> of x over p (1798)

Computing square roots mod p

Suppose $p = 3 \pmod{4}$

Lemma: if
$$c \in (Z_p)^*$$
 is Q.R. then $\sqrt{c} = c^{(p+1)/4}$ in Z_p

Solving quadratic equations mod p

Solve: $\mathbf{a} \cdot \mathbf{x}^2 + \mathbf{b} \cdot \mathbf{x} + \mathbf{c} = 0$ in Z_p Solution: $\mathbf{x} = (-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4 \cdot \mathbf{a} \cdot \mathbf{c}}) / 2\mathbf{a}$ in Z_p

• Find (2a)⁻¹ in Z_p using extended Euclid.

 Find square root of b² – 4·a·c in Z_p (if one exists) using a square root algorithm

Computing e'th roots mod N ??

Let N be a composite number and e>1

When does $c^{1/e}$ in Z_N exist? Can we compute it efficiently?

Answering these questions requires the factorization of N (as far as we know)

Easy problems

• Given composite N and x in Z_N find x^{-1} in Z_N

• Given prime p and polynomial f(x) in $Z_p[x]$

find x in
$$Z_p$$
 s.t. $f(x) = 0$ in Z_p (if one exists)

Running time is linear in deg(f).

... but many problems are difficult

Intractable problems with primes

Fix a prime p>2 and g in $(Z_p)^*$ of order q.

Consider the function: $\mathbf{x} \mapsto \mathbf{g}^{\mathbf{X}}$ in $\mathbf{Z}_{\mathbf{p}}$

Now, consider the inverse function:

 $Dlog_{g}(g^{X}) = x$ where x in {0, ..., q-2}

Example:

in
$$\mathbb{Z}_{11}$$
: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
 $\mathsf{Dlog}_2(\cdot)$: 0, 1, 8, 2, 4, 9, 7, 3, 6, 5

Intractable problems with composites

Consider the set of integers: (e.g. for n=1024)

$$\mathbb{Z}_{(2)}(n) := \{ N = p \cdot q \text{ where } p, q \text{ are n-bit primes} \}$$

<u>Problem 1</u>: Factor a random N in $\mathbb{Z}_{(2)}(n)$ (e.g. for n=1024)

<u>Problem 2</u>: Given a polynomial **f(x)** where degree(f) > 1 and a random N in $\mathbb{Z}_{(2)}(n)$

find x in \mathbb{Z}_N s.t. f(x) = 0 in \mathbb{Z}_N

The factoring problem

Gauss (1805):

"The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic."

Best known alg. (NFS): run time exp($\tilde{O}(\sqrt[3]{n})$) for n-bit integer

Current world record: **RSA-768** (232 digits)

- Work: two years on hundreds of machines
- Factoring a 1024-bit integer: about 1000 times harder
 ⇒ likely possible this decade

Asymmetric Cryptography Public key encryption: definitions and security

Symmetric Cipher

Problems with Symmetric Ciphers

- In order for Alice & Bob to be able to communicate securely using a symmetric cipher, such as AES, they have to have a shared key in the first place.
 - What if they have never met before?
- Alice needs to keep 100 different keys if she wishes to communicate with 100 different people

Motivation of Asymmetric Cryptography

• Is it possible for Alice & Bob, who have no shared secret key, to communicate securely?

• This led to Asymmetric Cryptography

Asymmetric Cryptography

Asymmetric Cryptography

Laura

Public and private keys

Public and private keys

Public and private keys

Asymmetric Cryptography

- Public key
- Private key
- E(private-key_{Alice}, m) = c
- D(public-key_{Alice}, c) = m
- E(public-key_{Alice}, m) = c
- D(private-key_{Alice}, c) = m

Main ideas

• Bob:

- publishes, say in Yellow/White pages, his public key, and
- keeps to himself the matching private key.

Main ideas (Confidentiality)

• Alice:

Looks up the phone book, and finds out Bob's public key

Encrypts a message using Bob's public key and the encryption algorithm.

- Sends the ciphertext to Bob.

Main ideas (Confidentiality)

• Bob:

- Receives the ciphertext from Alice.

 Decrypts the ciphertext using his private key, together with the decryption algorithm

Asymmetric Encryption

Main differences with Symmetric Crypto

- The public key is different from the private key.
- Infeasible for an attacker to find out the private key from the public key.
- No need for Alice & Bob to distribute a shared secret key beforehand!
- Only one pair of public and private keys is required for each user!
Let's start seriously

define what is public key encryptionwhat it means for public key encryption to be secure

Public key encryption

Bob: generates (PK, SK) and gives PK to Alice

Applications

Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)

- Bob sends email to Alice encrypted using pk_{alice}
- Note: Bob needs pk_{alice} (public key management)

Public key encryption

<u>Def</u>: a public-key encryption system is a triple of algs. (G, E, D)

- G(): randomized alg. outputs a key pair (pk, sk)
- E(pk, m): randomized alg. that takes $m \in M$ and outputs $c \in C$
- D(sk,c): det. alg. that takes $c \in C$ and outputs $m \in M$ or \bot

Consistency: \forall (pk, sk) output by G :

 $\forall m \in M$: D(sk, E(pk, m)) = m

Security: eavesdropping

For b=0,1 define experiments EXP(0) and EXP(1) as:

Def: $\mathbb{E} = (G, E, D)$ is sem. secure (a.k.a IND-CPA) if for all efficient A:

 $Adv_{ss}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1] < negligible$

Relation to symmetric cipher security

Recall: for symmetric ciphers we had two security notions:

- One-time security and many-time security (CPA)
- We showed that one-time security \neq many-time security

For public key encryption:

• One-time security \Rightarrow many-time security (CPA)

(follows from the fact that attacker can encrypt by himself)

• Public key encryption **must** be randomized

Security against active attacks

What if attacker can tamper with ciphertext?

(pub-key) Chosen Ciphertext Security: definition

E = (G,E,D) public-key enc. over (M,C). For b=0,1 define EXP(b):

Chosen ciphertext security: definition

<u>Def</u>: \mathbb{E} is CCA secure (a.k.a IND-CCA) if for all efficient A:

 $Adv_{CCA}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$ is negligible.

Active attacks: symmetric vs. pub-key

Recall: secure symmetric cipher provides authenticated encryption

[chosen plaintext security & ciphertext integrity]

- Roughly speaking: attacker cannot create new ciphertexts
- Implies security against chosen ciphertext attacks

In public-key settings:

- Attacker **can** create new ciphertexts using pk !!
- So instead: we directly require chosen ciphertext security

Trapdoor Permutations

Trapdoor functions (TDF)

<u>**Def</u>**: a trapdoor func. $X \rightarrow Y$ is a triple of efficient algs. (G, F, F⁻¹)</u>

- G(): randomized alg. outputs a key pair (pk, sk)
- $F(pk, \cdot)$: det. alg. that defines a function $X \longrightarrow Y$
- $F^{-1}(sk, \cdot)$: defines a function $Y \rightarrow X$ that inverts $F(pk, \cdot)$

More precisely: \forall (pk, sk) output by G

 $\forall x \in X$: $F^{-1}(sk, F(pk, x)) = x$

Secure Trapdoor Functions (TDFs)

(G, F, F^{-1}) is secure if $F(pk, \cdot)$ is a "one-way" function:

can be evaluated, but cannot be inverted without sk

<u>**Def</u>**: (G, F, F⁻¹) is a secure TDF if for all efficient A:</u>

 $Adv_{OW}[A,F] = Pr[x = x'] < negligible$

Hash Functions

- Hash functions:
 - Input: arbitrary length
 - Output: fixed length (generally much shortern than the input)

One-Way Hash Algorithm

- A one-way hash algorithm hashes an input document into a condensed short output (say of 256 bits)
 - Denoting a one-way hash algorithm by H(.), we have:
 - Input: m a binary string of any length
 - Output: H(m) a binary string of L bits, called the "hash of m under H".
 - The output length parameter L is fixed for a given one-way hash function H,
 - Examples:
 - The one-way hash function "MD5" has L = 128 bits
 - The one-way hash function "SHA-1" has L = 160 bits

Properties of One-Way Hash Algorithm

- A good one-way hash algorithm H needs to have these properties:
 - 1. Easy to Evaluate:
 - The hashing algorithm should be fast
 - 2. Hard to Reverse:
 - There is no feasible algorithm to "reverse" a hash value,
 - That is, given any hash value h, it is computationally infeasible to find any document m such that H(m) = h.
 - 3. Hard to find Collisions:
 - There is no feasible algorithm to find two or more input documents which are hashed into the same condensed output,
 - That is, it is computationally infeasible to find any two documents m1, m2 such that H(m1)= H(m2).
 - 4. A small change to a message should change the hash value so extensively that the new hash value appears uncorrelated with the old hash value

Public-key encryption from TDFs

- (G, F, F^{-1}): secure TDF $X \rightarrow Y$
- (E_s, D_s) : symmetric auth. encryption defined over (K,M,C)
- $H: X \longrightarrow K$ a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

- (G, F, F⁻¹): secure TDF $X \rightarrow Y$
- (E_s, D_s) : symmetric auth. encryption defined over (K,M,C)
- $H: X \longrightarrow K$ a hash function

E(pk, m): $x \leftarrow R X, \quad y \leftarrow F(pk, x)$ $k \leftarrow H(x), \quad c \leftarrow E_s(k, m)$ output (y, c)

$$\begin{array}{l} \underline{D(sk,(y,c))}:\\ x \leftarrow F^{-1}(sk,y),\\ k \leftarrow H(x), \quad m \leftarrow D_s(k,c)\\ output \quad m \end{array}$$

Security Theorem:

If (G, F, F^{-1}) is a secure TDF, (E_s, D_s) provides auth. enc. and $H: X \rightarrow K$ is a "random oracle" then (G, E, D) is CCA^{ro} secure.

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

E(pk, m):D(sk, c):output $c \leftarrow F(pk, m)$ outputoutput $F^{-1}(sk, c)$

Problems:

- Deterministic: cannot be semantically secure !!
- Many attacks exist (next segment)

The RSA trapdoor permutation

One of the first practical responses to the challenge posed by Diffie-Hellman was developed by *Ron Rivest, Adi Shamir,* and *Len Adleman* of MIT in 1977

- Resulting algorithm is known as RSA
- Based on properties of *prime numbers* and results from *number theory*

Review: trapdoor permutations

Three algorithms: (G, F, F^{-1})

- G: outputs pk, sk. pk defines a function $F(pk, \cdot): X \rightarrow X$
- F(pk, x): evaluates the function at x
- $F^{-1}(sk, y)$: inverts the function at y using sk

Secure trapdoor permutation:

The function $F(pk, \cdot)$ is one-way without the trapdoor sk

Review: arithmetic mod composites

Let $N = p \cdot q$ where p,q are prime where p,q $\approx N^{1/2}$

 $Z_N = \{0, 1, 2, ..., N-1\}$; $(Z_N)^* = \{\text{invertible elements in } Z_N\}$

<u>Facts</u>: $x \in Z_N$ is invertible \iff gcd(x,N) = 1

- Number of elements in $(Z_N)^*$ is $\phi(N) = (p-1)(q-1) = N-p-q+1$

Euler's thm:
$$\forall x \in (Z_N)^* : x^{\phi(N)} = 1$$

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:

- SSL/TLS: certificates and key-exchange
- Secure e-mail and file systems

... many others

The RSA trapdoor permutation

G(): choose random primes $p,q \approx 1024$ bits. Set **N=pq**.

choose integers e, d s.t. $e \cdot d = 1 \pmod{\phi(N)}$ output pk = (N, e), sk = (N, d)

F(pk, x):
$$\mathbb{Z}_N^* \to \mathbb{Z}_N^*$$
; RSA(x) = x^e (in Z_N)

F⁻¹(sk, y) = y^d;
$$y^d$$
 = **RSA(x)^d** = x^{ed} = x^{k $\phi(N)$ +1} = (x ^{$\phi(N)$})^k · x = x

RSA - small example

- Bob (keys generation):
 - chooses 2 primes: p=5, q=11
 - multiplies p and q: $n = p \times q = 55$
 - chooses a number e=3 s.t. gcd(e, 40) = 1
 - compute d=27 that satisfy $(3 \times d) \mod 40 = 1$

- Bob's public key: (3, 55)
- Bob's private key: 27

RSA - small example

- Alice (encryption):
 - has a message m=13 to be sent to Bob
 - finds out Bob's public encryption key (3, 55)
 - calculates c as follows:
 - c = m^e mod n
 - $= 13^3 \mod 55$
 - = 2197 mod 55
 - = 52
 - sends the ciphertext c=52 to Bob

RSA - small example

- Bob (decryption):
 - receives the ciphertext c=52 from Alice

uses his matching private decryption key 27 to calculate m:
m = 52²⁷ mod 55
= 13 (Alice's message)

The RSA assumption

RSA assumption: RSA is one-way permutation

For all efficient algs. A: $Pr\left[A(N,e,y) = y^{1/e}\right] < negligible$ where $p,q \leftarrow R$ n-bit primes, $N \leftarrow pq$, $y \leftarrow R^{R} Z_{N}^{*}$

Review: RSA pub-key encryption (ISO std)

- (E_s , D_s): symmetric enc. scheme providing auth. encryption. H: $Z_N \rightarrow K$ where K is key space of (E_s , D_s)
- G(): generate RSA params: pk = (N,e), sk = (N,d)
- **E**(pk, m): (1) choose random x in Z_N

(2)
$$y \leftarrow RSA(x) = x^e$$
, $k \leftarrow H(x)$
(3) output (y, $E_s(k,m)$)

• **D**(sk, (y, c)): output D_s(H(RSA⁻¹(y)), c) -> m

Textbook RSA is insecure

Textbook RSA encryption:

- public key: (N,e)
- secret key: (N,d)

Encrypt: $\mathbf{c} \leftarrow \mathbf{m}^{\mathbf{e}}$ (in Z_N) Decrypt: $\mathbf{c}^{\mathbf{d}} \rightarrow \mathbf{m}$

Insecure cryptosystem !!

Is not semantically secure and many attacks exist

 \Rightarrow The RSA trapdoor permutation is not an encryption scheme !

A simple attack on textbook RSA

Suppose k is 64 bits: $k \in \{0,...,2^{64}\}$. Eve sees: $c = k^e$ in Z_N

If
$$\mathbf{k} = \mathbf{k_1} \cdot \mathbf{k_2}$$
 where $\mathbf{k_1}, \mathbf{k_2} < 2^{34}$ (prob. $\approx 20\%$) then $\mathbf{c/k_1}^e = \mathbf{k_2}^e$ in Z_N

Meet-in-the-middle attack:

Step 1: build table: $c/1^{e}$, $c/2^{e}$, $c/3^{e}$, ..., $c/2^{34e}$. time: 2^{34}

Step 2: for $k_2 = 0, ..., 2^{34}$ test if k_2^e is in table. time: 2^{34}

Output matching (k_1, k_2) . Total attack time: $\approx 2^{40} \ll 2^{64}$

Is RSA a one-way function?

Is it really hard to invert RSA without knowing the trapdoor?

Is RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute:

x from $c = x^e \pmod{N}$.

How hard is computing e'th roots modulo N ??

Best known algorithm:

- Step 1: factor N (hard)
- Step 2: compute e'th roots modulo p and q (easy)

Shortcuts?

Must one factor N in order to compute e'th roots?

To prove no shortcut exists show a reduction:

Efficient algorithm for e'th roots mod N

 \Rightarrow efficient algorithm for factoring N.

Oldest problem in public key cryptography.

Some evidence no reduction exists: (BV'98)

- "Algebraic" reduction \Rightarrow factoring is easy.

How **not** to improve RSA's performance

To speed up RSA decryption use small private key d ($d \approx 2^{128}$)

$$c^d = m \pmod{N}$$

Wiener'87: if $d < N^{0.25}$ then RSA is insecure.

BD'98: if $d < N^{0.292}$ then RSA is insecure (open: $d < N^{0.5}$)

<u>Insecure:</u> priv. key d can be found from (N,e)
Wiener's attack

 $(N,e) => d and d < N^{0.25}/3$

Recall: $e \cdot d = 1 \pmod{\phi(N)} \implies \exists k \in Z : e \cdot d = k \cdot \phi(N) + 1$

$$\left|\frac{e}{\psi(N)} - \frac{k}{d}\right| = \frac{1}{d \cdot \varphi(N)} \le \frac{1}{\sqrt{N}}$$

$$\varphi(\mathsf{N}) = \mathsf{N} - \varphi(\mathsf{N})| \le \mathsf{p} + \mathsf{q} \le 3\sqrt{N}$$
$$\mathsf{d} \le \mathsf{N}^{0.25}/\mathsf{3} \implies \frac{1}{2d^2} - \frac{1}{\sqrt{N}} \ge \frac{3}{\sqrt{N}} \qquad \left|\frac{\mathsf{e}}{N} - \frac{k}{d}\right| \le \left|\frac{\mathsf{e}}{N} - \frac{\mathsf{e}}{\varphi(N)}\right| + \left|\frac{\mathsf{e}}{\varphi(N)} - \frac{k}{d}\right| \le \frac{1}{2d^2}$$

Continued fraction expansion of e/N gives k/d.

 $e \cdot d = 1 \pmod{k} \implies gcd(d,k)=1 \implies can find d from k/d$

RSA in Practice

RSA With Low public exponent

To speed up RSA encryption use a small e: $c = m^e \pmod{N}$

- Minimum value: **e=3** (gcd(e, $\phi(N)$) = 1) (Q: why not 2?)
- Recommended value: **e=65537=2**¹⁶**+1**

Encryption: 17 multiplications

<u>Asymmetry of RSA:</u> fast enc. / slow dec.

- ElGamal (next week): approx. same time for both.

Key lengths

Security of public key system should be comparable to security of symmetric cipher:

	KSA
<u>Cipher key-size</u>	<u>Modulus size</u>
80 bits	1024 bits
128 bits	3072 bits
256 bits (AES)	15360 bits

Implementation attacks

Timing attack: [Kocher et al. 1997] , [BB'04] The time it takes to compute c^d (mod N) can expose d

Power attack: [Kocher et al. 1999) The power consumption of a smartcard while it is computing c^d (mod N) can expose d.

Faults attack: [BDL'97] A computer error during c^d (mod N) can expose d.

A common defense: check output. 10% slowdown.

An Example Fault Attack on RSA (CRT)

A common implementation of RSA decryption: $x = c^d$ in Z_N

decrypt mod p:
$$x_p = c^d$$
 in Z_p
decrypt mod q: $x_q = c^d$ in Z_q combine to get $x = c^d$ in Z_N

Suppose error occurs when computing x_q , but no error in x_p

Then: output is x' where
$$x' = c^d$$
 in Z_p but $x' \neq c^d$ in Z_q
 $\Rightarrow (x')^e = c$ in Z_p but $(x')^e \neq c$ in $Z_q \Rightarrow gcd((x')^e - c, N) =$

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

OpenSSL RSA key generation (abstract):

prng.seed(seed)
p = prng.generate_random_prime()
prng.add_randomness(bits)
q = prng.generate_random_prime()
N = p*q

Suppose poor entropy at startup:

- Same p will be generated by multiple devices, but different q
- N_1 , N_2 : RSA keys from different devices \Rightarrow gcd(N_1 , N_2) = p

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

Experiment: factors 0.4% of public HTTPS keys !!

Lesson:

Make sure random number generator is properly seeded when generating keys

Digital Signatures

Digital Signature

Digital Signature (based on RSA)

RSA Signature - small example

- Bob (keys generation):
 - chooses 2 primes: p=5, q=11
 - multiplies p and q: $n = p \times q = 55$
 - chooses a number e=3 s.t. gcd(e, 40) = 1
 - compute d=27 that satisfy $(3 \times d) \mod 40 = 1$

- Bob's public key: (3, 55)
- Bob's private key: 27

RSA Signature - small example

- Bob:
 - has a document m=19 to sign:
 - uses his private key d=27 to calculate the digital signature of m=19:

s = m^d mod n = 19²⁷ mod 55 = 24

- appends 24 to 19.

Now (m, s) = (19, 24) indicates that the doc is 19, and Bob's signature on the doc is 24.

RSA Signature - small example

- Cathy, a verifier:
 - receives a pair (m,s)=(19, 24)
 - looks up the phone book and finds out Bob's public key (e, n)=(3, 55)
 - calculates t = s^e mod n
 - t = s^e mod n = 24³ mod 55 = 19
 - checks whether t=m
 - confirms that (19,24) is a genuinely signed document of Bob if t=m.

How about Long Documents ?

- In the previous example, a document has to be an integer in [0,...,n)
- To sign a very long document, we need a so called one-way hash algorithm
- Instead of signing directly on a doc,
 - we hash the doc first,
 - and sign the hashed data which is normally short.

Hash Functions

- Hash functions:
 - Input: arbitrary length
 - Output: fixed length (generally much shortern than the input)

Digital Signature (for long docs)

Bob

Why Digital Signature ?

- Unforgeable
 - takes 1 billion years to forge !
- Un-deniable by the signatory
- Universally verifiable
- Differs from doc to doc

Digital Signature - summary

- Three (3) steps are involved in digital signature
 - Setting up public and private keys
 - Signing a document
 - Verifying a signature

Setting up Public & Private Keys

- Bob does the following
 - prepares a pair of public and private keys
 - Publishes his public key in the public key file (such as an on-line phone book)
 - Keeps the private key to himself
- Note:
 - Setting up needs only to be done once !

Signing a Document

- Once setting up is completed, Bob can sign a document (such as a contract, a cheque, a certificate, ...) using the private key
- The pair of document & signature is a proof that Bob has signed the document.

Verifying a Signature

- Any party, say Cathy, can verify the pair of document and signature, by using Bob's public key in the public key file.
- Important !
 - Cathy does NOT have to have public or private key !

(Other) Asymmetric Cryptosystems

Encryption schemes built from the Diffie-Hellman protocol

- Key Generation (for Bob)
 - chooses a prime p and a number g primitive root modulo p
 - i.e., for every integer a coprime to p, there is an interger k such that g^k = a mod p
 - Two integers are coprime if their gcd is 1
 - chooses a random exponent a in [0, p-2]
 - computes A = g^a mod p
 - public key (published in the phone book): (p,g,A)
 - private key: a

- Encryption: Alice has a message m (0<=m<n) to be sent to Bob:
 - finds out Bob's public key (p,g,A).
 - chooses a random exponent b in [0,p-2]
 - computes B = g^b mod p
 - computes $c = A^b m \mod p$.
 - The complete ciphertex is (B,c)
 - sends the ciphertext (B,c) to Bob.

- **Decryption**: Bob
 - receives the ciphertext (B,c) from Alice.
 - uses his matching private decryption key a to calculate m as follows.
 - Compute **x** = **p-1-a**
 - Compute m = B^x c mod p

- Randomized cryptosystem
- Based on the Diffie–Hellman key exchange
- Efficiency
 - The ciphertext is twice as long as the plaintext. This is called message expansion and is a disadvantage of this cryptosystem.
- Security
 - Its security depends upon the difficulty of a certain problem related to computing discrete logarithms.

Key Generation (for Bob)

- generates 2 large random and distinct primes **p**, **q** s.t.

 $p \pmod{4} = q \pmod{4} = 3$

(other options are possible, this makes decryption more efficient)

- multiplies p and q: $n = p \times q$
- public key (published in the phone book): n
- private key: (p, q)

- Encryption: Alice has a message m (0<=m<n) to be sent to Bob:
 - finds out Bob's public key n.
 - calculates the ciphertext $c = m^2 \mod n$.
 - sends the ciphertext **c** to Bob.

• Decryption: Bob

- receives the ciphertext c from Alice.
- uses his matching private decryption key (p,q) to calculate m as follows.
 - Compute $m_p = c^{(p+1)/4} \mod p$
 - Compute $m_q = c^{(q+1)/4} \mod q$
 - Find y_p and y_q such that $y_p p + y_q q = 1$ (Euclidean algorithm)
 - Compute $r = (y_p p m_q + y_q q m_p) \mod n$
 - Compute $s = (y_p p m_q y_q q m_p) \mod n$
 - One of r, -r, s, -s must be the original message m

- Efficiency
 - Encryption more efficient than RSA encryption
- Security
 - The Rabin cryptosystem has the advantage that the problem on which it relies has been proved to be as hard as integer factorization
 - Recovering the plaintext *m* from the ciphertext *c* and the public key *n* is computationally equivalent to factoring
 - Not currently known to be true for the RSA problem.