Asymmetric Cryptography Public key encryption: definitions and security

Symmetric Cipher

Problems with Symmetric Ciphers

- In order for Alice \& Bob to be able to communicate securely using a symmetric cipher, such as AES, they have to have a shared key in the first place.
- What if they have never met before?
- Alice needs to keep 100 different keys if she wishes to communicate with 100 different people

Motivation of Asymmetric Cryptography

- Is it possible for Alice \& Bob, who have no shared secret key, to communicate securely?
- This led to Asymmetric Cryptography

Asymmetric Cryptography

Asymmetric Cryptography

Laura

Public and private keys

Public and private keys

Public and private keys

Asymmetric Cryptography

- Public key
- Private key
- E(private-key Alice,, m$)=\mathbf{c}$
- $D($ public-key Alice, $\mathbf{c})=m$
- $E\left(\right.$ public-key $\left._{\text {Alice, }}, m\right)=c$
- $D\left(\right.$ private-key $\left._{\text {Alice, }} \mathbf{c}\right)=m$

Main ideas

- Bob:
- publishes, say in Yellow/White pages, his public key, and
- keeps to himself the matching private key.

Main ideas (Confidentiality)

- Alice:
- Looks up the phone book, and finds out Bob's public key
- Encrypts a message using Bob's public key and the encryption algorithm.
- Sends the ciphertext to Bob.

Main ideas (Confidentiality)

- Bob:
- Receives the ciphertext from Alice.
- Decrypts the ciphertext using his private key, together with the decryption algorithm

Asymmetric Encryption

- Confidentiality scenario
- Other scenarios are possible, with keys used differently...
- e.g., Digital signatures

Bob's PRIVATE KEY

Main differences with Symmetric Crypto

- The public key is different from the private key.
- Infeasible for an attacker to find out the private key from the public key.
- No need for Alice \& Bob to distribute a shared secret key beforehand!
- Only one pair of public and private keys is required for each user!

Let's start seriously

- define what is public key encryption
- what it means for public key encryption to be secure

Public key encryption

Bob: generates (PK, SK) and gives PK to Alice

Applications

Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)

- Bob sends email to Alice encrypted using $\mathrm{pk}_{\text {alice }}$
- Note: Bob needs $\mathrm{pk}_{\text {alice }}$ (public key management)

Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)

- G() : randomized alg. outputs a key pair (pk, sk)
- $E(p k, m)$: randomized alg. that takes $m \in M$ and outputs $c \in C$
- $D(s k, c)$: det. alg. that takes $c \in C$ and outputs $m \in M$ or \perp

Consistency: $\forall(\mathrm{pk}$, sk) output by G :
$\forall m \in M: \quad D(s k, E(p k, m))=m$

Security: eavesdropping

For $b=0,1$ define experiments $\operatorname{EXP}(0)$ and $\operatorname{EXP}(1)$ as:

Def: $E=(G, E, D)$ is sem. secure (a.k.a IND-CPA) if for all efficient A :

$$
\operatorname{Adv}_{\mathrm{SS}}[\mathrm{~A}, \mathrm{E}]=|\operatorname{Pr}[\operatorname{EXP}(0)=1]-\operatorname{Pr}[\operatorname{EXP}(1)=1]|<\text { negligible }
$$

Relation to symmetric cipher security

Recall: for symmetric ciphers we had two security notions:

- One-time security and many-time security (CPA)
- We showed that one-time security \nRightarrow many-time security

For public key encryption:

- One-time security \Rightarrow many-time security (CPA)
(follows from the fact that attacker can encrypt by himself)
- Public key encryption must be randomized

Security against active attacks

What if attacker can tamper with ciphertext?

(pub-key) Chosen Ciphertext Security: definition

$E=(G, E, D)$ public-key enc. over (M, C). For $b=0,1$ define $\operatorname{EXP}(b)$:

Chosen ciphertext security: definition

Def: E is CCA secure (a.k.a IND-CCA) if for all efficient A:
$A d v_{C C A}[A, E]=\| \operatorname{Pr}[\operatorname{EXP}(0)=1]-\operatorname{Pr}[\operatorname{EXP}(1)=1] \mid$ is negligible.
Example: Suppose (to: alice, body) $\rightarrow \quad$ (to: david, body)

Active attacks: symmetric vs. pub-key

Recall: secure symmetric cipher provides authenticated encryption [chosen plaintext security \& ciphertext integrity]

- Roughly speaking: attacker cannot create new ciphertexts
- Implies security against chosen ciphertext attacks

In public-key settings:

- Attacker can create new ciphertexts using pk !!
- So instead: we directly require chosen ciphertext security

Trapdoor Permutations

Trapdoor functions (TDF)

Def: a trapdoor func. $X \rightarrow Y$ is a triple of efficient algs. (G, F, F^{-1})

- G() : randomized alg. outputs a key pair (pk, sk)
- $F(p k, \cdot):$ det. alg. that defines a function $\quad X \longrightarrow Y$
- $\mathrm{F}^{-1}(\mathrm{sk}, \cdot)$: defines a function $\mathrm{Y} \longrightarrow \mathrm{X}$ that inverts $\mathrm{F}(\mathrm{pk}, \cdot)$

More precisely: $\quad \forall(\mathrm{pk}, \mathrm{sk})$ output by G

$$
\forall x \in X: \quad F^{-1}(s k, F(p k, x))=x
$$

Secure Trapdoor Functions (TDFs)

$\left(G, F, F^{-1}\right)$ is secure if $F(p k, \cdot)$ is a "one-way" function:
can be evaluated, but cannot be inverted without sk

Def: $\left(G, F, F^{-1}\right)$ is a secure TDF if for all efficient A :

$$
\operatorname{Adv}_{\text {ow }}[A, F]=\operatorname{Pr}\left[x=x^{\prime}\right]<\text { negligible }
$$

Hash Functions

- Hash functions:
- Input: arbitrary length
- Output: fixed length (generally much shortern than the input)

One-Way Hash Algorithm

- A one-way hash algorithm hashes an input document into a condensed short output (say of 256 bits)
- Denoting a one-way hash algorithm by $\mathrm{H}($.$) , we have:$
- Input: m-a binary string of any length
- Output: $\mathrm{H}(\mathrm{m})$ - a binary string of L bits, called the "hash of m under H".
- The output length parameter L is fixed for a given one-way hash function H ,
- Examples:
- The one-way hash function "MD5" has L=128 bits
- The one-way hash function "SHA-1" has $L=160$ bits

Properties of One-Way Hash Algorithm

- A good one-way hash algorithm H needs to have these properties:
- 1. Easy to Evaluate:
- The hashing algorithm should be fast
- 2. Hard to Reverse:
- There is no feasible algorithm to "reverse" a hash value,
- That is, given any hash value \mathbf{h}, it is computationally infeasible to find any document \mathbf{m} such that $\mathbf{H}(\mathbf{m})=\mathbf{h}$.
- 3. Hard to find Collisions:
- There is no feasible algorithm to find two or more input documents which are hashed into the same condensed output,
- That is, it is computationally infeasible to find any two documents m1, $\mathbf{m 2}$ such that $\mathbf{H}(\mathrm{m} 1)=\mathbf{H}(\mathrm{m} 2)$.
- 4. A small change to a message should change the hash value so extensively that the new hash value appears uncorrelated with the old hash value

Public-key encryption from TDFs

- $\left(G, F, F^{-1}\right)$: secure TDF $X \longrightarrow Y$
- $\left(E_{s}, D_{s}\right)$: symmetric auth. encryption defined over (K,M,C)
- $\mathrm{H}: \mathrm{X} \rightarrow \mathrm{K}$ a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

- $\left(G, F, F^{-1}\right)$: secure TDF $X \longrightarrow Y$
- $\left(E_{s}, D_{s}\right)$: symmetric auth. encryption defined over (K,M,C)
- $\mathrm{H}: \mathrm{X} \rightarrow \mathrm{K}$ a hash function

$$
\begin{aligned}
& E(\text { pk, m) : } \\
& \qquad \begin{array}{l}
x \leftarrow x, \quad y \leftarrow F(p k, x) \\
k \leftarrow H(x), \quad c \leftarrow E_{s}(k, m) \\
\quad \text { output } \quad(y, c)
\end{array}
\end{aligned}
$$

In pictures:

$$
F(p k, x) \quad E_{s}(H(x), m)
$$

header
body

Security Theorem:

If (G, F, F^{-1}) is a secure TDF, $\quad\left(E_{s}, D_{s}\right)$ provides auth. enc.
and $\mathrm{H}: \mathrm{X} \longrightarrow \mathrm{K}$ is a "random oracle"
then ($\mathbf{G}, \mathbf{E}, \mathbf{D}$) is CCA $^{\text {ro }}$ secure.

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

```
E(pk,m):
    output c c FF(pk,m)
```

```
D( sk, c) :
    output F-1}(sk, c
```

Problems:

- Deterministic: cannot be semantically secure !!
- Many attacks exist (next segment)

The RSA trapdoor permutation

- One of the first practical responses to the challenge posed by Diffie-Hellman was developed by Ron Rivest, Adi Shamir, and Len Adleman of MIT in 1977
- Resulting algorithm is known as RSA
- Based on properties of prime numbers and results from number theory

Review: trapdoor permutations

Three algorithms: (G, F, F^{-1})

- G: outputs pk, sk. pk defines a function $\mathrm{F}(\mathrm{pk}, \cdot): \mathrm{X} \rightarrow \mathrm{X}$
- $F(p k, x)$: evaluates the function at x
- $F^{-1}(s k, y)$: inverts the function at y using sk

Secure trapdoor permutation:
The function $\mathrm{F}(\mathrm{pk}, \cdot \cdot)$ is one-way without the trapdoor sk

Review: arithmetic mod composites

Let $N=p \cdot q$ where p, q are prime where $p, q \approx N^{1 / 2}$

$$
Z_{N}=\{0,1,2, \ldots, N-1\} \quad ; \quad\left(Z_{N}\right)^{*}=\left\{\text { invertible elements in } Z_{N}\right\}
$$

Facts: $\quad x \in Z_{N}$ is invertible $\Leftrightarrow \operatorname{gcd}(x, N)=1$

- Number of elements in $\left(Z_{N}\right)^{*}$ is $\varphi(N)=(p-1)(q-1)=N-p-q+1$

Euler's the:

$$
\forall x \in\left(Z_{N}\right)^{*}: x^{\varphi(N)}=1
$$

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:

- SSL/TLS: certificates and key-exchange
- Secure e-mail and file systems
... many others

The RSA trapdoor permutation

$\mathbf{G}()$: choose random primes $p, q \approx 1024$ bits. Set $\mathbf{N}=\mathbf{p q}$. choose integers \mathbf{e}, \mathbf{d} s.t. $\mathbf{e} \cdot \mathbf{d}=\mathbf{1}(\bmod \varphi(\mathbf{N}))$ output $\mathrm{pk}=(\mathrm{N}, \mathrm{e}) \quad, \quad \mathrm{sk}=(\mathrm{N}, \mathrm{d})$

$$
\mathbf{F}(\mathbf{p k}, \mathbf{x}): \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*} \quad ; \quad \mathbf{R S A}(\mathbf{x})=\mathbf{x}^{\mathrm{e}} \quad\left(\text { in } \mathrm{Z}_{N}\right)
$$

$$
F^{-1}(\text { sk, } y)=y^{d} ; \quad y^{d}=\operatorname{RSA}(x)^{d}=x^{e d}=x^{k \varphi(N)+1}=\left(x^{\varphi(N)}\right)^{k} \cdot x=x
$$

RSA - small example

- Bob (keys generation):
- chooses 2 primes: $\quad p=5, q=11$
- multiplies p and $\mathrm{q}: \quad \mathrm{n}=\mathbf{p} \times \mathbf{q}=55$
- chooses a number $\mathbf{e}=3$ s.t. $\operatorname{gcd}(\mathbf{e}, 40)=1$
- compute $d=27$ that satisfy $(3 \times d) \bmod 40=1$
- Bob's public key: $(3,55)$
- Bob's private key: 27

RSA - small example

- Alice (encryption):
- has a message $m=13$ to be sent to Bob
- finds out Bob's public encryption key $(3,55)$
- calculates c as follows:

$$
\begin{aligned}
\mathrm{c} & =\mathrm{m}^{\mathrm{e}} \bmod \mathrm{n} \\
& =13^{3} \bmod 55 \\
& =2197 \bmod 55 \\
& =52
\end{aligned}
$$

- sends the ciphertext c=52 to Bob

RSA - small example

- Bob (decryption):
- receives the ciphertext c=52 from Alice
- uses his matching private decryption key 27 to calculate m:

$$
\begin{aligned}
\mathrm{m} & =52^{27} \bmod 55 \\
& =13(\text { Alice' } \mathrm{s} \text { message })
\end{aligned}
$$

The RSA assumption

RSA assumption: RSA is one-way permutation

For all efficient algs. A:

$$
\operatorname{Pr}\left[A(N, e, y)=y^{1 / e}\right]<\text { negligible }
$$

where
$p, q \leftarrow_{\leftarrow}^{R} n$-bit primes, $\quad N \leftarrow p q, \quad y \leftarrow^{R} Z_{N}{ }^{*}$

Review: RSA pub-key encryption (ISO std)

$\left(E_{s}, D_{s}\right)$: symmetric enc. scheme providing auth. encryption. $H: Z_{N} \rightarrow K$ where K is key space of $\left(E_{s}, D_{s}\right)$

- $\mathbf{G}()$: generate RSA params: $\mathrm{pk}=(\mathrm{N}, \mathrm{e}), \quad \mathrm{sk}=(\mathrm{N}, \mathrm{d})$
- $E(p k, m)$:
(1) choose random x in Z_{N}
(2) $y \leftarrow R S A(x)=x^{e}, k \leftarrow H(x)$
(3) output (y, $\left.E_{s}(k, m)\right)$
- D(sk, $(\mathrm{y}, \mathrm{c}))$: output $\mathrm{D}_{\mathrm{s}}\left(\mathrm{H}\left(\mathrm{RSA}^{-1}(\mathrm{y})\right), \mathrm{c}\right)$-> m

Textbook RSA is insecure

Textbook RSA encryption:

- public key: (N,e)
- secret key: (N,d)

Encrypt: $\mathbf{c} \longleftarrow \mathbf{m}^{\mathbf{e}} \quad\left(\right.$ in $\left.Z_{N}\right)$
Decrypt: $\mathbf{c}^{\mathbf{d}} \rightarrow \mathbf{m}$

Insecure cryptosystem !!

- Is not semantically secure and many attacks exist
$\Rightarrow \quad$ The RSA trapdoor permutation is not an encryption scheme!

A simple attack on textbook RSA

Suppose k is 64 bits: $k \in\left\{0, \ldots, 2^{64}\right\}$. Eve sees: $c=k^{e}$ in Z_{N}
If $\mathbf{k}=\mathbf{k}_{\mathbf{1}} \cdot \mathbf{k}_{\mathbf{2}}$ where $\mathbf{k}_{1}, \mathbf{k}_{2}<2^{34}$ (prob. $\approx 20 \%$) then $\mathbf{c} / \mathbf{k}_{\mathbf{1}}{ }^{\mathbf{e}}=\mathbf{k}_{\mathbf{2}}{ }^{\mathbf{e}}$ in Z_{N}
Meet-in-the-middle attack:
Step 1: build table: $c / 1^{e}, c / 2^{e}, c / 3^{e}, \ldots, c / 2^{34 e}$. time: 2^{34}
Step 2: for $k_{2}=0, \ldots, 2^{34}$ test if $k_{2}{ }^{e}$ is in table. time: 2^{34}
Output matching $\left(k_{1}, k_{2}\right) . \quad$ Total attack time: $\approx 2^{40} \ll 2^{64}$

Is RSA a one-way function?

Is it really hard to invert RSA without knowing the trapdoor?

Is RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute: x from $c=x^{e}(\bmod N)$.

How hard is computing e'th roots modulo N ??
Best known algorithm:

- Step 1: factor N (hard)
- Step 2: compute e'th roots modulo p and q (easy)

Shortcuts?

Must one factor N in order to compute e'th roots?

To prove no shortcut exists show a reduction:

- Efficient algorithm for e^{\prime} th roots mod N
\Rightarrow efficient algorithm for factoring N .
- Oldest problem in public key cryptography.

Some evidence no reduction exists:

- "Algebraic" reduction \Rightarrow factoring is easy.

How not to improve RSA's performance

To speed up RSA decryption use small private key $d \quad\left(d \approx 2^{128}\right)$

$$
c^{d}=m(\bmod N)
$$

Wiener'87: if $\mathrm{d}<\mathrm{N}^{0.25}$ then RSA is insecure.
BD'98: if $d<N^{0.292}$ then RSA is insecure (open: $d<N^{0.5}$)

Insecure: priv. key d can be found from (N, e)

Wiener's attack

(N, e) $=>\mathrm{d}$ and $\mathrm{d}<\mathrm{N}^{0.25} / 3$
Recall: $\quad e \cdot d=1(\bmod \varphi(N)) \quad \Rightarrow \quad \exists k \in Z: \quad e \cdot d=k \cdot \varphi(N)+1$

$$
\left|\frac{e}{\psi(N)}-\frac{k}{d}\right|=\frac{1}{d \cdot \varphi(N)} \leq \frac{1}{\sqrt{N}}
$$

$\varphi(\mathrm{N})=\mathrm{N}-\mathrm{p}-\mathrm{q}+1 \Rightarrow|\mathrm{~N}-\varphi(\mathrm{N})| \leq \mathrm{p}+\mathrm{q} \leq 3 \sqrt{N}$

$$
\mathrm{d} \leq \mathrm{N}^{0.25} / 3 \Rightarrow \frac{1}{2 d^{2}}-\frac{1}{\sqrt{N}} \geq \frac{3}{\sqrt{N}} \quad\left|\frac{\mathrm{e}}{N}-\frac{k}{d}\right| \leq\left|\frac{\mathrm{e}}{N}-\frac{\mathrm{e}}{\varphi(N)}\right|+\left|\frac{\mathrm{e}}{\varphi(N)}-\frac{k}{d}\right| \leq \frac{1}{2 d^{2}}
$$

Continued fraction expansion of e/N gives k/d.

$$
e \cdot d=1(\bmod k) \Rightarrow \operatorname{gcd}(d, k)=1 \Rightarrow \text { can find } d \text { from } k / d
$$

RSA in Practice

RSA With Low public exponent

To speed up RSA encryption use a small $e: c=m^{e}(\bmod N)$

- Minimum value: $e=3(\operatorname{gcd}(e, \varphi(N))=1) \quad(Q:$ why not 2 ?)
- Recommended value: $\mathbf{e}=65537=\mathbf{2}^{\mathbf{1 6}} \mathbf{+ 1}$

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.

- ElGamal (next week): approx. same time for both.

Key lengths

Security of public key system should be comparable to security of symmetric cipher:

Cipher key-size	
	Modulus size
80 bits	1024 bits
128 bits	3072 bits
256 bits (AES)	$\underline{15360}$ bits

Implementation attacks

Timing attack: [Kocher et al. 1997] , [BB’04]
The time it takes to compute $c^{d}(\bmod N)$ can expose d

Power attack: [Kocher et al. 1999)
The power consumption of a smartcard while it is computing $c^{d}(\bmod N)$ can expose d.

Faults attack: [BDL'97]
A computer error during $c^{d}(\bmod N)$ can expose d.
A common defense: check output. 10\% slowdown.

An Example Fault Attack on RSA (CRT)

A common implementation of RSA decryption: $\quad x=c^{d}$ in Z_{N}

$$
\left.\begin{array}{lll}
\text { decrypt } \bmod p: & x_{p}=c^{d} & \text { in } Z_{p} \\
\text { decrypt } \bmod q: & x_{q}=c^{d} & \text { in } Z_{q}
\end{array}\right\} \text { combine to get } x=c^{d} \text { in } Z_{N}
$$

Suppose error occurs when computing x_{q}, but no error in x_{p}

Then: output is x^{\prime} where $x^{\prime}=c^{d}$ in Z_{p} but $x^{\prime} \neq c^{d}$ in Z_{q}
$\Rightarrow\left(x^{\prime}\right)^{\mathrm{e}}=\mathrm{c}$ in Z_{p} but $\left(\mathrm{x}^{\prime}\right)^{\mathrm{e}} \neq \mathrm{c}$ in $\mathrm{Z}_{\mathrm{q}} \Rightarrow \operatorname{gcd}\left(\left(\mathrm{x}^{\prime}\right)^{\mathrm{e}}-\mathrm{c}, \mathrm{N}\right)=\square$

RSA Key Generation Trouble [Heninger e al./Lenstra et al.]

OpenSSL RSA key generation (abstract):

$$
\begin{aligned}
& \text { prng.seed(seed) } \\
& p=\text { prng.generate_random_prime() } \\
& \text { prng.add_randomness(bits) } \\
& q=\text { prng.generate_random_prime() } \\
& N=p^{*} q
\end{aligned}
$$

Suppose poor entropy at startup:

- Same p will be generated by multiple devices, but different q
- N_{1}, N_{2} : RSA keys from different devices $\Rightarrow \operatorname{gcd}\left(N_{1}, N_{2}\right)=p$

RSA Key Generation Trouble [Heninger e ta./Lenstra et al.]

Experiment: factors 0.4% of public HTTPS keys !!

Lesson:

- Make sure random number generator is properly seeded when generating keys

Digital Signatures

Digital Signature

Digital Signature (based on RSA)

Public Key Directory (Yellow/White Pages)

Plain Text m

RSA Signature - small example

- Bob (keys generation):
- chooses 2 primes: $\quad p=5, q=11$
- multiplies p and $q: \quad n=p \times q=55$
- chooses a number $\mathbf{e}=3$ s.t. $\operatorname{gcd}(\mathbf{e}, 40)=1$
- compute $d=27$ that satisfy $(3 \times d) \bmod 40=1$
- Bob's public key: $(3,55)$
- Bob's private key: 27

RSA Signature - small example

- Bob:
- has a document $m=19$ to sign:
- uses his private key $\mathbf{d = 2 7}$ to calculate the digital signature of $m=19$:

$$
\begin{aligned}
\mathrm{s} & =\mathrm{m}^{\mathrm{d}} \bmod \mathrm{n} \\
& =19^{27} \bmod 55 \\
& =24
\end{aligned}
$$

- appends 24 to 19.

Now $(m, s)=(19,24)$ indicates that the doc is 19, and Bob's signature on the doc is 24.

RSA Signature - small example

- Cathy, a verifier:
- receives a pair $(\mathrm{m}, \mathrm{s})=(19,24)$
- looks up the phone book and finds out Bob's public key (e, n) $=(3,55)$
- calculates

$$
\begin{aligned}
\mathrm{t} & =\mathrm{s}^{\mathrm{e}} \bmod \mathrm{n} \\
& =24^{3} \bmod 55 \\
& =19
\end{aligned}
$$

- checks whether $\mathrm{t}=\mathrm{m}$
- confirms that $(19,24)$ is a genuinely signed document of Bob if $t=m$.

How about Long Documents ?

- In the previous example, a document has to be an integer in [0,...,n)
- To sign a very long document, we need a so called one-way hash algorithm
- Instead of signing directly on a doc,
- we hash the doc first,
- and sign the hashed data which is normally short.

Hash Functions

- Hash functions:
- Input: arbitrary length
- Output: fixed length (generally much shortern than the input)

Hash value for the document (fixed length, e.g. 256 bit)

Digital Signature (for long docs)

Public Key Directory (Yellow/White Pages)

Plain Text

Bob

Why Digital Signature?

- Unforgeable
- takes 1 billion years to forge!
- Un-deniable by the signatory
- Universally verifiable
- Differs from doc to doc

Digital Signature - summary

- Three (3) steps are involved in digital signature
- Setting up public and private keys
- Signing a document
- Verifying a signature

Setting up Public \& Private Keys

- Bob does the following
- prepares a pair of public and private keys
- Publishes his public key in the public key file (such as an on-line phone book)
- Keeps the private key to himself
- Note:
- Setting up needs only to be done once!

Signing a Document

- Once setting up is completed, Bob can sign a document (such as a contract, a cheque, a certificate, ...) using the private key
- The pair of document $\&$ signature is a proof that Bob has signed the document.

Verifying a Signature

- Any party, say Cathy, can verify the pair of document and signature, by using Bob's public key in the public key file.
- Important!
- Cathy does NOT have to have public or private key !

(Other) Asymmetric Cryptosystems

ElGamal Cryptosystem

Encryption schemes built from the Diffie-Hellman protocol

- Key Generation (for Bob)
- chooses a prime p and a number g primitive root modulo p
- i.e., for every integer a coprime to \mathbf{p}, there is an interger \mathbf{k} such that $\mathbf{g}^{\mathbf{k}}=\mathbf{a} \bmod \mathbf{p}$
- Two integers are coprime if their gcd is 1
- chooses a random exponent a in [0, p-2]
- computes A = ga mod p
- public key (published in the phone book): ($\mathrm{p}, \mathrm{g}, \mathrm{A}$)
- private key: a

ElGamal Cryptosystem

- Encryption: Alice has a message $m(0<=m<n)$ to be sent to Bob:
- finds out Bob's public key (p,g,A).
- chooses a random exponent b in [0,p-2]
- computes B = $g^{b} \bmod p$
- computes $c=A^{b} m \bmod p$.
- The complete ciphertex is (B, c)
- sends the ciphertext (B, C) to Bob.

ElGamal Cryptosystem

- Decryption: Bob
- receives the ciphertext (B, C) from Alice.
- uses his matching private decryption key a to calculate m as follows.
- Compute $x=p-1-a$
- Compute $m=B^{x} c \bmod p$

ElGamal Cryptosystem

- Randomized cryptosystem
- Based on the Diffie-Hellman key exchange
- Efficiency
- The ciphertext is twice as long as the plaintext. This is called message expansion and is a disadvantage of this cryptosystem.
- Security
- Its security depends upon the difficulty of a certain problem related to computing discrete logarithms.

Rabin Cryptosystem

Key Generation (for Bob)

- generates 2 large random and distinct primes p, q s.t.

$$
p(\bmod 4)=q(\bmod 4)=3
$$

- multiplies p and $q: n=p \times q$
- public key (published in the phone book): n
- private key: (p, q)

Rabin Cryptosystem

- Encryption: Alice has a message $m(0<=m<n)$ to be sent to Bob:
- finds out Bob's public key n .
- calculates the ciphertext $\mathrm{c}=\mathrm{m}^{2} \bmod \mathrm{n}$.
- sends the ciphertext cto Bob.

Rabin Cryptosystem

- Decryption: Bob
- receives the ciphertext c from Alice.
- uses his matching private decryption key (p, q) to calculate m as follows.
- Compute $m_{p}=c^{(p+1) / 4} \bmod p$
- Compute $m_{q}=c^{(q+1) / 4} \operatorname{modq}$
- Find y_{p} and y_{q} such that $y_{p} p+y_{q} q=1$ (Euclidean algorithm)
- Compute $r=\left(y_{p} p m_{q}+y_{q} q m_{p}\right) \bmod n$
- Compute $s=\left(y_{p} p m_{q}-y_{q} q m_{p}\right) \bmod n$
- One of $r,-r, s,-s$ must be the original message m

Rabin Cryptosystem

- Efficiency
- Encryption more efficient than RSA encryption
- Security
- The Rabin cryptosystem has the advantage that the problem on which it relies has been proved to be as hard as integer factorization
- Recovering the plaintext \boldsymbol{m} from the ciphertext \boldsymbol{c} and the public key \boldsymbol{n} is computationally equivalent to factoring
- Not currently known to be true for the RSA problem.

