Asymmetric Cryptography

Public key encryption: definitions and security

Symmetric Cipher

Problems with Symmetric Ciphers

- In order for Alice & Bob to be able to communicate securely using a symmetric cipher, such as AES, they have to have a shared key in the first place.
 - What if they have never met before?
- Alice needs to keep 100 different keys if she wishes to communicate with 100 different people

Motivation of Asymmetric Cryptography

 Is it possible for Alice & Bob, who have no shared secret key, to communicate securely?

This led to Asymmetric Cryptography

Asymmetric Cryptography

Asymmetric Cryptography

Public and private keys

Public and private keys

Public and private keys

Asymmetric Cryptography

- Public key
- Private key

- E(private-key_{Alice} m) = c
- D(public-key_{Alice} c) = m

- E(public-key_{Alice.} m) = c
- D(private-key_{Alice}, c) = m

Main ideas

• Bob:

publishes, say in Yellow/White pages, his public key, and

keeps to himself the matching private key.

Main ideas (Confidentiality)

• Alice:

Looks up the phone book, and finds out Bob's public key

 Encrypts a message using Bob's public key and the encryption algorithm.

Sends the ciphertext to Bob.

Main ideas (Confidentiality)

• Bob:

Receives the ciphertext from Alice.

 Decrypts the ciphertext using his private key, together with the decryption algorithm

Asymmetric Encryption

Main differences with Symmetric Crypto

- The public key is different from the private key.
- Infeasible for an attacker to find out the private key from the public key.
- No need for Alice & Bob to distribute a shared secret key beforehand!
- Only one pair of public and private keys is required for each user!

Let's start seriously

- define what is public key encryption - what it means for public key encryption to be secure

Public key encryption

Bob: generates (PK, SK) and gives PK to Alice

Applications

Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)

- Bob sends email to Alice encrypted using pk_{alice}
- Note: Bob needs pk_{alice} (public key management)

Public key encryption

<u>Def</u>: a public-key encryption system is a triple of algs. (G, E, D)

- G(): randomized alg. outputs a key pair (pk, sk)
- E(pk, m): randomized alg. that takes m∈M and outputs c ∈C
- D(sk,c): det. alg. that takes c∈C and outputs m∈M or ⊥

Consistency: $\forall (pk, sk)$ output by G:

 $\forall m \in M$: D(sk, E(pk, m)) = m

Security: eavesdropping

For b=0,1 define experiments EXP(0) and EXP(1) as:

Def: $\mathbb{E} = (G,E,D)$ is sem. secure (a.k.a IND-CPA) if for all efficient A:

$$Adv_{SS}[A,\mathbb{E}] = |Pr[EXP(0)=1] - Pr[EXP(1)=1]| < negligible$$

Relation to symmetric cipher security

Recall: for symmetric ciphers we had two security notions:

- One-time security and many-time security (CPA)

For public key encryption:

- One-time security ⇒ many-time security (CPA)
 (follows from the fact that attacker can encrypt by himself)
- Public key encryption must be randomized

Security against active attacks

What if attacker can tamper with ciphertext?

(pub-key) Chosen Ciphertext Security: definition

 $\mathbb{E} = (G,E,D)$ public-key enc. over (M,C). For b=0,1 define EXP(b):

Chosen ciphertext security: definition

<u>Def</u>: \mathbb{E} is CCA secure (a.k.a IND-CCA) if for all efficient A:

$$Adv_{CCA}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$$
 is negligible.

Active attacks: symmetric vs. pub-key

Recall: secure symmetric cipher provides **authenticated encryption** [chosen plaintext security & ciphertext integrity]

- Roughly speaking: attacker cannot create new ciphertexts
- Implies security against chosen ciphertext attacks

In public-key settings:

- Attacker can create new ciphertexts using pk !!
- So instead: we directly require chosen ciphertext security

Trapdoor Permutations

Trapdoor functions (TDF)

<u>**Def**</u>: a trapdoor func. $X \rightarrow Y$ is a triple of efficient algs. (G, F, F⁻¹)

- G(): randomized alg. outputs a key pair (pk, sk)
- $F(pk,\cdot)$: det. alg. that defines a function $X \longrightarrow Y$
- $F^{-1}(sk,\cdot)$: defines a function $Y \to X$ that inverts $F(pk,\cdot)$

More precisely: $\forall (pk, sk)$ output by G

$$\forall x \in X$$
: $F^{-1}(sk, F(pk, x)) = x$

Secure Trapdoor Functions (TDFs)

(G, F, F^{-1}) is secure if $F(pk, \cdot)$ is a "one-way" function: can be evaluated, but cannot be inverted without sk

Def: (G, F, F⁻¹) is a secure TDF if for all efficient A:

$$Adv_{OW}[A,F] = Pr[x = x'] < negligible$$

Hash Functions

Hash functions:

Input: arbitrary length

- Output: fixed length (generally much shortern than the

input)

Hash value for the document (fixed length, e.g. 256 bit)

One-Way Hash Algorithm

- A one-way hash algorithm hashes an input document into a condensed short output (say of 256 bits)
 - Denoting a one-way hash algorithm by H(.), we have:
 - Input: m a binary string of any length
 - Output: H(m) a binary string of L bits, called the "hash of m under H".
 - The output length parameter L is fixed for a given one-way hash function H,
 - Examples:
 - The one-way hash function "MD5" has L = 128 bits
 - The one-way hash function "SHA-1" has L = 160 bits

Properties of One-Way Hash Algorithm

- A good one-way hash algorithm H needs to have these properties:
 - 1. Easy to Evaluate:
 - The hashing algorithm should be fast
 - 2. Hard to Reverse:
 - There is no feasible algorithm to "reverse" a hash value,
 - That is, given any hash value **h**, it is computationally infeasible to find any document **m** such that **H(m)** = **h**.
 - 3. Hard to find Collisions:
 - There is no feasible algorithm to find two or more input documents which are hashed into the same condensed output,
 - That is, it is computationally infeasible to find any two documents m1,
 m2 such that H(m1)= H(m2).
 - 4. A small change to a message should change the hash value so extensively that the new hash value appears uncorrelated with the old hash value

Public-key encryption from TDFs

- (G, F, F⁻¹): secure TDF $X \rightarrow Y$
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $X \rightarrow K$ a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

- (G, F, F⁻¹): secure TDF $X \rightarrow Y$
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $X \rightarrow K$ a hash function

```
E(pk, m):

x \stackrel{R}{\leftarrow} X, y \leftarrow F(pk, x)

k \leftarrow H(x), c \leftarrow E_s(k, m)

output (y, c)
```

```
\frac{D(sk, (y,c))}{x \leftarrow F^{-1}(sk, y),}
k \leftarrow H(x), \quad m \leftarrow D_s(k, c)
output m
```

In pictures: $E_s(H(x), m)$ header body

Security Theorem:

If (G, F, F^{-1}) is a secure TDF, (E_s, D_s) provides auth. enc. and $H: X \longrightarrow K$ is a "random oracle" then (G,E,D) is CCA^{ro} secure.

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

```
E( pk, m):

output c \leftarrow F(pk, m)
```

```
\frac{D(sk, c)}{\text{output } F^{-1}(sk, c)}
```

Problems:

- Deterministic: cannot be semantically secure !!
- Many attacks exist (next segment)

The RSA trapdoor permutation

- One of the first practical responses to the challenge posed by Diffie-Hellman was developed by *Ron Rivest, Adi Shamir*, and *Len Adleman* of MIT in 1977
- Resulting algorithm is known as RSA
- Based on properties of *prime numbers* and results from *number theory*

Review: trapdoor permutations

Three algorithms: (G, F, F⁻¹)

- G: outputs pk, sk. pk defines a function $F(pk, \cdot): X \to X$
- F(pk, x): evaluates the function at x
- F⁻¹(sk, y): inverts the function at y using sk

Secure trapdoor permutation:

The function $F(pk, \cdot)$ is one-way without the trapdoor sk

Review: arithmetic mod composites

Let
$$N = p \cdot q$$
 where p,q are prime where p,q $\approx N^{1/2}$
$$Z_N = \{0,1,2,...,N-1\} \quad ; \quad (Z_N)^* = \{\text{invertible elements in } Z_N \}$$

Facts:
$$x \in Z_N$$
 is invertible \iff $gcd(x,N) = 1$

- Number of elements in $(Z_N)^*$ is $\varphi(N) = (p-1)(q-1) = N-p-q+1$

Euler's thm:
$$\forall x \in (Z_N)^* : x^{\phi(N)} = 1$$

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:

- SSL/TLS: certificates and key-exchange
- Secure e-mail and file systems

... many others

The RSA trapdoor permutation

G(): choose random primes $p,q \approx 1024$ bits. Set **N=pq**. choose integers **e**,**d** s.t. **e**·**d** = **1** (mod ϕ (**N**)) output pk = (N, e), sk = (N, d)

F(pk, x):
$$\mathbb{Z}_N^* \to \mathbb{Z}_N^*$$
 ; RSA(x) = x^e (in Z_N)

$$F^{-1}(sk, y) = y^{d};$$
 $y^{d} = RSA(x)^{d} = x^{ed} = x^{k\phi(N)+1} = (x^{\phi(N)})^{k} \cdot x = x$

RSA - small example

- Bob (**keys generation**):
 - chooses 2 primes: p=5, q=11
 - multiplies p and q: $n = p \times q = 55$
 - chooses a number e=3 s.t. gcd(e, 40) = 1
 - compute d=27 that satisfy $(3 \times d) \mod 40 = 1$

- Bob's public key: (3, 55)
- Bob's private key: 27

RSA - small example

- Alice (encryption):
 - has a message m=13 to be sent to Bob
 - finds out Bob's public encryption key (3, 55)
 - calculates c as follows:

```
c = m<sup>e</sup> mod n
= 13<sup>3</sup> mod 55
= 2197 mod 55
= 52
```

sends the ciphertext c=52 to Bob

RSA - small example

- Bob (decryption):
 - receives the ciphertext c=52 from Alice

uses his matching private decryption key 27 to calculate m:

```
m = 52^{27} \mod 55
```

= 13 (Alice's message)

The RSA assumption

RSA assumption: RSA is one-way permutation

For all efficient algs. A: $Pr \Big[A(N,e,y) = y^{1/e} \Big] < negligible$ where $p,q \xleftarrow{R} n$ -bit primes, $N \leftarrow pq$, $y \xleftarrow{R} Z_N^*$

Review: RSA pub-key encryption (ISO std)

(E_s, D_s): symmetric enc. scheme providing auth. encryption.

H: $Z_N \rightarrow K$ where K is key space of (E_s, D_s)

- G(): generate RSA params: pk = (N,e), sk = (N,d)
- **E**(pk, m): (1) choose random x in Z_N (2) $y \leftarrow RSA(x) = x^e$, $k \leftarrow H(x)$
 - (3) output (y , E_s(k,m))

• **D**(sk, (y, c)): output $D_s(H(RSA^{-1}(y)), c) -> m$

Textbook RSA is insecure

Textbook RSA encryption:

- public key: (N,e) Encrypt: $\mathbf{c} \leftarrow \mathbf{m}^{\mathbf{e}}$ (in Z_N)
- secret key: (N,d) Decrypt: $c^d \rightarrow m$

Insecure cryptosystem!!

Is not semantically secure and many attacks exist

⇒ The RSA trapdoor permutation is not an encryption scheme!

A simple attack on textbook RSA

Suppose k is 64 bits: $k \in \{0,...,2^{64}\}$. Eve sees: $c = k^e$ in Z_N

If
$$\mathbf{k} = \mathbf{k_1} \cdot \mathbf{k_2}$$
 where $\mathbf{k_1}$, $\mathbf{k_2} < 2^{34}$ (prob. $\approx 20\%$) then $\mathbf{c/k_1}^e = \mathbf{k_2}^e$ in Z_N

Meet-in-the-middle attack:

Step 1: build table: $c/1^e$, $c/2^e$, $c/3^e$, ..., $c/2^{34e}$. time: 2^{34}

Step 2: for $k_2 = 0,..., 2^{34}$ test if k_2^e is in table. time: 2^{34}

Output matching (k_1, k_2) . Total attack time: $\approx 2^{40} << 2^{64}$

Is RSA a one-way function?

Is it really hard to invert RSA without knowing the trapdoor?

Is RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute: x from $c = x^e$ (mod N).

How hard is computing e'th roots modulo N??

Best known algorithm:

- Step 1: factor N (hard)
- Step 2: compute e'th roots modulo p and q (easy)

Shortcuts?

Must one factor N in order to compute e'th roots?

To prove no shortcut exists show a reduction:

Efficient algorithm for e'th roots mod N

 \Rightarrow efficient algorithm for factoring N.

Oldest problem in public key cryptography.

Some evidence no reduction exists: (BV'98)

- "Algebraic" reduction \Rightarrow factoring is easy.

How **not** to improve RSA's performance

To speed up RSA decryption use small private key d ($d \approx 2^{128}$)

$$c^d = m \pmod{N}$$

Wiener'87: if $d < N^{0.25}$ then RSA is insecure.

BD'98: if $d < N^{0.292}$ then RSA is insecure (open: $d < N^{0.5}$)

<u>Insecure:</u> priv. key d can be found from (N,e)

Wiener's attack

$$(N,e) => d \text{ and } d < N^{0.25}/3$$

Recall:
$$e \cdot d = 1 \pmod{\phi(N)}$$
 $\Rightarrow \exists k \in Z : e \cdot d = k \cdot \phi(N) + 1$

$$\left| \frac{e}{\psi(N)} - \frac{k}{d} \right| = \frac{1}{d \cdot \varphi(N)} \le \frac{1}{\sqrt{N}}$$

$$\varphi(N) = N-p-q+1 \implies |N-\varphi(N)| \le p+q \le 3\sqrt{N}$$

$$d \le N^{0.25}/3 \quad \Rightarrow \frac{1}{2d^2} - \frac{1}{\sqrt{N}} \ge \frac{3}{\sqrt{N}} \qquad \left| \frac{e}{N} - \frac{k}{d} \right| \le \left| \frac{e}{N} - \frac{e}{\varphi(N)} \right| + \left| \frac{e}{\varphi(N)} - \frac{k}{d} \right| \le \frac{1}{2d^2}$$

Continued fraction expansion of e/N gives k/d.

$$e \cdot d = 1 \pmod{k} \implies \gcd(d,k)=1 \implies \operatorname{can find } d \operatorname{from } k/d$$

RSA in Practice

RSA With Low public exponent

To speed up RSA encryption use a small e: $c = m^e \pmod{N}$

- Minimum value: **e=3** (gcd(e, $\varphi(N)$) = 1) (Q: why not 2?)
- Recommended value: **e=65537=2**¹⁶+1

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.

ElGamal (next week): approx. same time for both.

Key lengths

Security of public key system should be comparable to security of symmetric cipher:

	RSA
Cipher key-size	Modulus size
80 bits	1024 bits
128 bits	3072 bits
256 bits (AES)	15360 bits

Implementation attacks

Timing attack: [Kocher et al. 1997] , [BB'04]

The time it takes to compute c^d (mod N) can expose d

Power attack: [Kocher et al. 1999)

The power consumption of a smartcard while it is computing c^d (mod N) can expose d.

Faults attack: [BDL'97]

A computer error during c^d (mod N) can expose d.

A common defense: check output. 10% slowdown.

An Example Fault Attack on RSA (CRT)

A common implementation of RSA decryption: $x = c^d$ in Z_N

decrypt mod p:
$$x_p = c^d$$
 in Z_p combine to get $x = c^d$ in Z_N decrypt mod q: $x_q = c^d$ in Z_q

Suppose error occurs when computing x_q , but no error in x_p

Then: output is x' where
$$x' = c^d$$
 in Z_p but $x' \neq c^d$ in Z_q

$$\Rightarrow$$
 $(x')^e = c \text{ in } Z_p \text{ but } (x')^e \neq c \text{ in } Z_q \Rightarrow \gcd((x')^e - c, N) = \square$

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

OpenSSL RSA key generation (abstract):

```
prng.seed(seed)
p = prng.generate_random_prime()
prng.add_randomness(bits)
q = prng.generate_random_prime()
N = p*q
```

Suppose poor entropy at startup:

- Same p will be generated by multiple devices, but different q
- N_1 , N_2 : RSA keys from different devices \Rightarrow gcd $(N_1, N_2) = p$

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

Experiment: factors 0.4% of public HTTPS keys!!

Lesson:

 Make sure random number generator is properly seeded when generating keys

Digital Signatures

Digital Signature

Digital Signature (based on RSA)

RSA Signature - small example

- Bob (**keys generation**):
 - chooses 2 primes: p=5, q=11
 - multiplies p and q: $n = p \times q = 55$
 - chooses a number e=3 s.t. gcd(e, 40) = 1
 - compute d=27 that satisfy $(3 \times d) \mod 40 = 1$

- Bob's public key: (3, 55)
- Bob's private key: 27

RSA Signature - small example

- Bob:
 - has a document m=19 to sign:
 - uses his private key d=27 to calculate the digital signature of m=19:

```
s = m^d \mod n
= 19^{27} \mod 55
= 24
```

appends 24 to 19.

Now (m, s) = (19, 24) indicates that the doc is 19, and Bob's signature on the doc is 24.

RSA Signature - small example

- Cathy, a verifier:
 - receives a pair (m,s)=(19, 24)
 - looks up the phone book and finds out Bob's public key (e, n)=(3, 55)
 - calculates $t = s^e \mod n$ = $24^3 \mod 55$ = 19
 - checks whether t=m
 - confirms that (19,24) is a genuinely signed document of Bob if t=m.

How about Long Documents?

- In the previous example, a document has to be an integer in [0,...,n)
- To sign a very long document, we need a so called one-way hash algorithm
- Instead of signing directly on a doc,
 - we hash the doc first,
 - and sign the hashed data which is normally short.

Hash Functions

Hash functions:

Input: arbitrary length

Output: fixed length (generally much shortern than the

input)

Rather than signing the original document, we sign its hash value

(fixed length, e.g. 256 bit)

Digital Signature (for long docs)

Why Digital Signature?

- Unforgeable
 - takes 1 billion years to forge!
- Un-deniable by the signatory
- Universally verifiable
- Differs from doc to doc

Digital Signature - summary

- Three (3) steps are involved in digital signature
 - Setting up public and private keys
 - Signing a document
 - Verifying a signature

Setting up Public & Private Keys

- Bob does the following
 - prepares a pair of public and private keys
 - Publishes his public key in the public key file (such as an on-line phone book)
 - Keeps the private key to himself
- Note:
 - Setting up needs only to be done once!

Signing a Document

- Once setting up is completed, Bob can sign a document (such as a contract, a cheque, a certificate, ...) using the private key
- The pair of document & signature is a proof that Bob has signed the document.

Verifying a Signature

- Any party, say Cathy, can verify the pair of document and signature, by using Bob's public key in the public key file.
- Important!
 - Cathy does NOT have to have public or private key!

(Other) Asymmetric Cryptosystems

Encryption schemes built from the Diffie-Hellman protocol

- Key Generation (for Bob)
 - chooses a prime p and a number g primitive root modulo p
 - i.e., for every integer a coprime to p, there is an interger k such that g^k = a mod p
 - Two integers are coprime if their gcd is 1
 - chooses a random exponent a in [0, p-2]
 - computes A = g^a mod p
 - public key (published in the phone book): (p,g,A)
 - private key: a

 Encryption: Alice has a message m (0<=m<n) to be sent to Bob:

- finds out Bob's public key (p,g,A).
- chooses a random exponent b in [0,p-2]
- computes B = g^b mod p
- computes $c = A^b m \mod p$.
- The complete ciphertex is (B,c)
- sends the ciphertext (B,c) to Bob.

- Decryption: Bob
 - receives the ciphertext (B,c) from Alice.
 - uses his matching private decryption key a to calculate m as follows.
 - Compute **x** = **p-1-a**
 - Compute m = B^x c mod p

- Randomized cryptosystem
- Based on the Diffie–Hellman key exchange
- Efficiency
 - The ciphertext is twice as long as the plaintext. This is called message expansion and is a disadvantage of this cryptosystem.
- Security
 - Its security depends upon the difficulty of a certain problem related to computing discrete logarithms.

Key Generation (for Bob)

generates 2 large random and distinct primes p, q s.t.

```
p \pmod{4} = q \pmod{4} = 3 (other options are possible, this makes decryption more efficient)
```

- multiplies p and q: $n = p \times q$
- public key (published in the phone book): n
- private key: (p, q)

 Encryption: Alice has a message m (0<=m<n) to be sent to Bob:

finds out Bob's public key n.

calculates the ciphertext c= m² mod n.

sends the ciphertext c to Bob.

- Decryption: Bob
 - receives the ciphertext c from Alice.
 - uses his matching private decryption key (p,q) to calculate m as follows.
 - Compute $m_p = c^{(p+1)/4} \mod p$
 - Compute $m_q = c^{(q+1)/4} \mod q$
 - Find y_p and y_q such that $y_p p + y_q q = 1$ (Euclidean algorithm)
 - Compute $r = (y_p p m_q + y_q q m_p) \mod n$
 - Compute $s = (y_p p m_q y_q q m_p) \mod n$
 - One of r, -r, s, -s must be the original message m

- Efficiency
 - Encryption more efficient than RSA encryption

- Security
 - The Rabin cryptosystem has the advantage that the problem on which it relies has been proved to be as hard as integer factorization
 - Recovering the plaintext m from the ciphertext c and the public key n is computationally equivalent to factoring
 - Not currently known to be true for the RSA problem.