Introduction Number Theory



Background

We will use a bit of number theory to construct:
* Key exchange protocols

e Digital signatures

* Public-key encryption



Notation

From here on:
* N denotes a positive integer.
 pdenote a prime.

Notation: ZN= {0,1,...,N — 1}

Can do addition and multiplication modulo N



Modular arithmetic

Examples: let N=12

9+8 =5 In Zs

. in Zjs

5_7= . |n le

5x7

Arithmetic in Z works as you expect, e.g x:(y+z) =xy+x:z in Zy



Modular arithmetic

Examples: let N=12

9+8 = 5 In Zs
5 X 7 = 11 |n Zl?
5-7 =10 In Zlg

Arithmetic in Z works as you expect, e.g x:(y+z) =xy+x:z in Zy



Greatest common divisor

Def: Forints. x,y: gecd(x,y) isthe greatest common divisor of x,y

Example: gcd(12,18) = 6
Fact: forallints. x,y there existints. a,b such that
a:x + b-y = gcd(x,y)

a,b can be found efficiently using the extended Euclid alg.

If gcd(x,y)=1 we say that x and y are relatively prime

Example: 2x12-1x18=6




Modular inversion

Over the rationals, inverse w.r.t. the moltiplication of 2 is %.
What about Zy?

Def: The inverse of xinZnis an elementyinZyst.x-y =1
y is denoted x*.

Example: let N be an odd integer.

The inverse of 2 in ZNis% since 2 - %:N+1 =1



Modular inversion

Which elements have an inverse in Zy ?

Lemma: xin Zy has aninverse if and only if gcd(x,N) =1

Proof:
gcd(x,N)=1 = Fa,b: ax+b-N=1=>ax=1inZy
=>x!t=ainZy

gcd(x,N)>1 = Va: gcd(ax,N)>1 = axzlinZy



More notation

Def: Z}k\] = (set of invertible elementsin Zy ) =
= { x€ Zy: gcd(x,N)=1}
Examples:
1. for prime p, Z; — Zp\{()} _ {1’2’._.727_ 1}

-
2. 77, =

For xin Z3, can find x! using extended Euclid algorithm.



More notation
Def: Z?\f = (set of invertible elementsin Zy ) =
= { Xx€ Zy: gcd(x,N)=1}
Examples:
1. forprimep, Z 5 =7Z,\{0} ={1,2,...,p—1}
2. Zj5 ={1,5,7,11}

For xin Z3, can find x! using extended Euclid algorithm.



Solving modular linear equations

Solve: ax+b=0 in Zy
Solution: x=-b-al in Zy
Find a?in Zy using extended Euclid.  Run time: O(log? N)

What about modular quadratic equations?
next segments



Fermat’s theorem (1640)

Thm: Letp beaprime

VXE(Z) : xP1 =1 in Z,

Example: p=5. 39=81=1 in Z

Example of application:

So: x€(Z) = xx?=1 = x!'=xP? inZ

another way to compute inverses, but less efficient than Euclid



Application: generating random primes

Suppose we want to generate a large random prime

say, prime p of length 1024 bits (i.e. p=210%%)

/Step 1: choose arandom integer p € [ 21024 | 2102571 ] A
Step 2: testif 2P1t=1 in Z
. If so, output p and stop. If not, gotostep 1. y

Simple algorithm (not the best).  Pr[ p not prime ] < 290



The structure of (z)’

Thm (Euler):  (Z))" is a cyclic group, that is

3 g€(Z,)" suchthat {1,g, g2¢g3 .. 82 =(Z)

g is called a generator of (Z,)’

Example: p=7. {1,3,3233343%={1,3,2,6,4,5}=(Z,)

Not every elem. is a generator: {1, 2, 22, 23, 24, 2°} ={1, 2, 4}



Order

For g€(Z)" theset {1,g,g?% g3 ..} iscalled

the group generated by g, denoted <g>

Def: the order of g€(Z))" is the size of <g>
ord (8) = |<g>] = (smallesta>0s.t. g2=1inZ2)

Examples: ord,(3)=6 ; ord,(2)=3 ; ord,(1)=1

Thm (Lagrange): VgE(Zp)*: ord (g) divides p-1



Euler’s generalization of Fermat s

(Euler’s ¢ func.)

Def: For aninteger N define ¢ (N) = | (Z\)"

Examples: ¢ (12) = |{1,5,7,11}| =4 ; o¢(p) =
For N=p-q: ¢ (N)=N-p-g+1 = (p-1)(g-1)

N
Thm (Euler): Vx€(Z,) : x(p( ) - 1 inZ,

Example: 5% =54=625=1 in Z,,

Generalization of Fermat. Basis of the RSA cryptosystem



Modular e’th roots

We know how to solve modular linear equations:
ax+b=0 in Z, Solution: x=-b-al inZ,

What about higher degree polynomials?
Example: let p beaprimeand c€Z,. Can we solve:

x>*-c=0 , y>-c=0 , z¥%-c=0 in Z,



Modular e’th roots

Let p beaprimeand c€Z,.

Def: x€Z, st. x*=c inZ;, iscalledan e’throot ofc.

Examples: 713 = g7 in Tt

312 = 5 in ZM

1¥3="1 in ZM

63::'- 28 =7 tu 2”

212 does not exist in 7,




The easy case

When does c¢'/¢ in Z, exist? Canwe compute it efficiently?

The easy case: suppose gcd(e,p-1)=1

Then for all ¢ in (Zp)*: cl/e exists in Z, and is easy to find.



The case e=2: square roots

If pis an odd prime then gcd( 2, p-1) #1 X =X

Fact: in Z;, X — X? is a 2-to-1 function

/Example: in Zj, :

\_

1 10

\/

1

2 9 3 8 4 7 5 6
1 Y R Y
4 9 5 3

/

Def: xin Z, is a quadratic residue (Q.R.) if it has a square root in Zy

p odd prime = the #of Q.R.in Z,is (p-1)/2+1



Euler’s theorem

Thm: xin (Zp)* isaQ.R. & X(p_l)/2 =1 in Zp (p odd prime)

Example: in le : 15’ 25’ 35’ 45’ 55’ 65, 75’ 85, 95’ 105

= 1 -1 1 11 -1,-1,-1, 1, -1

Note: x#0 = x(P1/2= (Xp'1)1/2= 12 €{1,-1} in Z,

Def: x(P1)/2 js called the Legendre Symbol of x over p  (1798)




Computing square roots mod p

Suppose p =3 (mod 4)

Lemma: if c€(Z)" is QR. then Ve = cPtU/4 jn Z,




Solving quadratic equations mod p

Solve: ax2+bx+c=0 in Zp

Solution: x= (-btVb?-4-ac')/ 2a in Z

p

* Find (2a)*inZ, using extended Euclid.

+ Find square root of b?-4-a-c inz, (if one exists)

using a square root algorithm



Computing e’th roots mod N ??

Let N be a composite number and e>1

When does c/¢ in Z,, exist? Can we compute it efficiently?

Answering these questions requires the factorization of N
(as far as we know)



Easy problems

* Given composite Nand xinZ, find x?! inZ,

* Given prime p and polynomial f(x) in Z,[x]

find xinZ, s.t. f(x)=0inZ, (if one exists)

Running time is linear in deg(f) .

.. but many problems are difficult



Intractable problems with primes

Fix a prime p>2 and gin (Zp)* of order q.
Consider the function: x +— g* in Z,

Now, consider the inverse function:

Dlog, (g¥) = x where xin {0, ..., g-2}

Example: NIV/ATEE 1, 2, 3, 4, 5 6, 7, 8 9 10

Dlog,(): O, 1, 8 2, 4,9, 7, 3, 6 5




Intractable problems with composites

Consider the set of integers: (e.g. for n=1024)

Z(Q) (n) = { N =p-g where p,q are n-bit primes }

Problem 1: Factor a random N in Z(z) (n) (e.g. for n=1024)

Problem 2: Given a polynomial f(x) where degree(f) > 1

and a random N in Z(g)(n)

find xinZy st f(x)=0 in Zy



The factoring problem

Gauss (1805): “The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into
their prime factors is known to be one of the most
important and useful in arithmetic.”

Best known alg. (NFS):  runtime exp( O(v/n)) for n-bitinteger

Current world record: RSA-768 (232 digits)

 Work: two years on hundreds of machines

* Factoring a 1024-bit integer: about 1000 times harder
= likely possible this decade
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