
Introduction Number Theory



Background

We will use a bit of number theory to construct:

• Key exchange protocols

• Digital signatures

• Public-key encryption



Notation

From here on:   

• N denotes a positive integer. 

• p denote a prime.

Notation: = {0, 1,… ,𝑁 − 1}

Can do addition and multiplication modulo N   



Modular arithmetic

Examples:      let    N = 12

9 + 8  =   5       in    

5 × 7  =  11      in    

5 − 7  =   10     in    

Arithmetic in       works as you expect, e.g x⋅(y+z) = x⋅y + x⋅z in  
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Greatest common divisor
Def:   For ints.  x,y:     gcd(x, y)   is the greatest common divisor of  x,y

Example: gcd( 12, 18 )  =   6

Fact:   for all ints.   x,y there exist ints.   a,b such that

a⋅x + b⋅y = gcd(x,y)

a,b can be found efficiently using the extended Euclid alg. 

If  gcd(x,y)=1 we say that x and y are relatively prime

Example: 2 x 12 -1 x 18 = 6



Modular inversion
Over the rationals, inverse w.r.t. the moltiplication of 2 is  ½ .   
What about       ?

Def: The inverse of x in       is an element y in       s.t. 𝑥 ⋅ 𝑦 = 1

y is denoted  x-1  .

Example:    let N be an odd integer.

The inverse of 2 in        is 
𝑁+1

2
since 2 ⋅

𝑁+1

2
= 𝑁 + 1 = 1



Modular inversion

Which elements have an inverse in ℤ𝑁 ?

Lemma:     x in ℤ𝑁 has an inverse if and only if gcd(x,N) = 1 

Proof:

gcd(x,N)=1   ⇒ ∃ a,b:   a⋅x + b⋅N = 1 ⇒ a⋅x = 1 in ℤ𝑁
⇒ x-1  = a in ℤ𝑁

gcd(x,N) > 1     ⇒ ∀a:  gcd( a⋅x, N ) > 1    ⇒ a⋅x ≠ 1  in ℤ𝑁



More notation

Def: =  (set of invertible elements in        )   =

=   {  x∈ :   gcd(x,N) = 1 }

Examples:   

1. for prime p, 

2. = { 1, 5, 7, 11}

For  x in       , can find  x-1 using extended Euclid algorithm.
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Solving modular linear equations

Solve:         a⋅x + b = 0     in    

Solution:      x = −b⋅a-1   in 

Find  a-1 in        using extended Euclid.      Run time:   O(log2 N)

What about modular quadratic equations?

next segments



Fermat’s theorem    (1640)

Thm:     Let p be a prime

∀ x ∈ (Zp)* :      xp-1 =  1  in Zp

Example:    p=5.         34 = 81 = 1    in   Z5

Example of application:

So:     x ∈ (Zp)* ⇒ x⋅xp-2 =  1      ⇒ x−1 = xp-2 in  Zp

another way to compute inverses, but less efficient than Euclid



Application:  generating random primes

Suppose we want to generate a large random prime

say, prime  p  of  length 1024 bits    ( i.e.   p ≈ 21024 )

Step 1:     choose a random integer  p ∈ [  21024 ,  21025-1 ]

Step 2:     test if   2p-1 = 1   in  Zp

If so, output  p  and stop.    If not, goto step 1 .

Simple algorithm (not the best).       Pr[ p not prime ] < 2-60



The structure of   (Zp)*

Thm (Euler):       (Zp)* is a cyclic group, that is

∃ g∈(Zp)*     such that    {1, g, g2, g3, …, gp-2} = (Zp)*

g is called a generator of  (Zp)*

Example:    p=7.      {1, 3, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5} = (Z7)*

Not every elem. is a generator:     {1, 2, 22, 23, 24, 25} = {1, 2, 4} 



Order
For  g∈(Zp)* the set   {1 , g , g2, g3, … }  is called 

the group generated by g,   denoted  <g>

Def:    the order of   g∈(Zp)* is the size of <g>

ordp(g)    =    |<g>|    =   (smallest a>0 s.t. ga = 1 in Zp)

Examples:     ord7(3) = 6    ;   ord 7(2) = 3   ;  ord7(1) = 1

Thm (Lagrange):   ∀g∈(Zp)*   :     ordp(g)   divides    p-1



Euler’s generalization of Fermat  (1736)

Def:  For an integer N define   ϕ (N) = |(ZN)*|       (Euler’s ϕ func.)

Examples:        ϕ (12) = |{1,5,7,11}| = 4      ;     ϕ (p)  =   p-1

For N=p⋅q: ϕ (N) = N-p-q+1 = (p-1)(q-1)  

Thm (Euler):   ∀ x ∈ (ZN)* :      x
ϕ(N)

=  1    in ZN 

Example:     5ϕ(12) = 54 = 625 = 1    in  Z12

Generalization of Fermat.   Basis of the RSA cryptosystem



Modular e’th roots

We know how to solve modular linear equations:

a⋅x + b = 0    in ZN Solution:      x = −b⋅a-1   in ZN

What about higher degree polynomials?

Example:     let  p  be a prime and   c∈Zp .       Can we solve:

x2 – c = 0    ,      y3 – c = 0    ,    z37 – c = 0     in   Zp



Modular e’th roots

Let  p  be a prime and  c∈Zp .

Def:     x∈Zp s.t. xe = c  in Zp is called an  e’th root of c .

Examples:  71/3 =   6    in    

31/2 =   5    in    

11/3 =   1     in    

21/2 does not exist in 



The easy case

When does   c1/e in  Zp exist?      Can we compute it efficiently?

The easy case:     suppose    gcd( e , p-1 ) = 1

Then for all  c  in (Zp)*:      c1/e exists in  Zp and is easy to find.



The case   e=2:   square roots

If p is an odd prime then   gcd( 2, p-1) ≠ 1

Fact:    in        ,    x ⟶ x2 is a 2-to-1 function

Example:   in          :

Def:  x in        is a quadratic residue (Q.R.) if it has a square root in

p odd prime  ⇒ the # of Q.R. in       is   (p-1)/2 + 1 

1 10

1

2 9

4

3 8

9

4 7

5

5 6

3

x −x

x2



Euler’s theorem

Thm: x in (Zp)* is a Q.R.      ⟺ x(p-1)/2 = 1  in Zp (p odd prime)

Example:

Note:    x≠0    ⇒ x(p-1)/2  =  (xp-1)1/2 
=  11/2  ∈ { 1, -1 }     in   Zp

Def:    x(p-1)/2 is called the Legendre Symbol of x over p    (1798)

in           :     15,   25,   35,  45,  55,  65,  75,  85,  95,  105

= 1    -1     1     1    1,   -1,  -1,  -1,   1,    -1     



Computing square roots mod p

Suppose   p = 3  (mod 4)

Lemma:    if    c∈(Zp)*  is  Q.R.   then     √c  =   c(p+1)/4 in Zp



Solving quadratic equations mod p

Solve:         a⋅x2 + b⋅x + c = 0     in   Zp

Solution:      x =    (-b ± √b2 – 4⋅a⋅c   )  /   2a     in   Zp

• Find    (2a)-1 in Zp using extended Euclid.      

• Find square root of    b2 – 4⋅a⋅c    in Zp (if one exists)

using a square root algorithm



Computing e’th roots mod N  ??

Let  N  be a composite number and e>1

When does   c1/e in  ZN exist?      Can we compute it efficiently?

Answering these questions requires the factorization of  N

(as far as we know)



Easy problems

• Given composite N and   x in ZN find   x-1 in ZN 

• Given prime p  and polynomial  f(x) in Zp[x]  

find  x in Zp s.t. f(x) = 0  in Zp (if one exists)

Running time is linear in deg(f) .

…  but many problems are difficult



Intractable problems with primes

Fix a prime p>2  and  g in (Zp)* of order  q.         

Consider the function:      x  ⟼ gx in  Zp

Now, consider the inverse function:

Dlogg (gx)  =  x      where   x in  {0, …, q-2}

Example:    in           :        1,    2,    3,    4,    5,    6,    7,    8,    9,    10

Dlog2(⋅) :       0,    1,    8,    2,    4,    9,    7,    3,    6,     5



Intractable problems with composites

Consider the set of integers:    (e.g. for n=1024)

Problem 1:   Factor a random  N in                       (e.g. for n=1024)

Problem 2:   Given a polynomial  f(x) where degree(f) > 1

and a random  N  in    

find  x in            s.t. f(x) = 0    in 

:=   { N = p⋅q where  p,q are n-bit primes }



The factoring problem

Gauss (1805):

Best known alg.   (NFS):      run time   exp(               )   for n-bit integer

Current world record:     RSA-768    (232 digits) 

• Work:  two years on hundreds of machines

• Factoring a 1024-bit integer:    about 1000 times harder

⇒ likely possible this decade

“The problem of distinguishing prime numbers from 
composite numbers and of resolving the latter into 
their prime factors is known to be one of the most 
important and useful in arithmetic.”
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