Key Exchange

Outline

• Trusted 3rd Parties

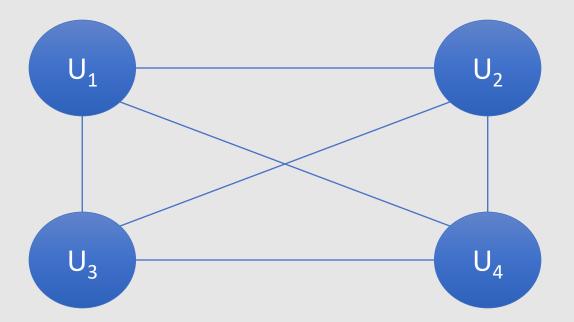
Merkle Puzzles

• The Diffie-Hellman Protocol

Trusted 3rd Parties

Key Management

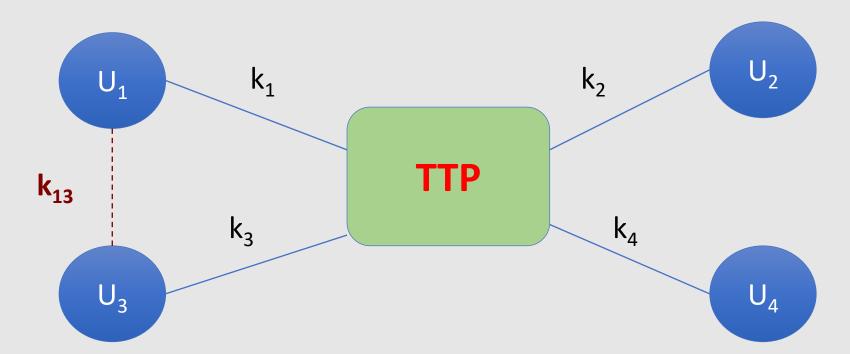
Problem: n users. Storing mutual secret keys is difficult



O(n) keys per user **O(n²)** keys in total

A Better Solution

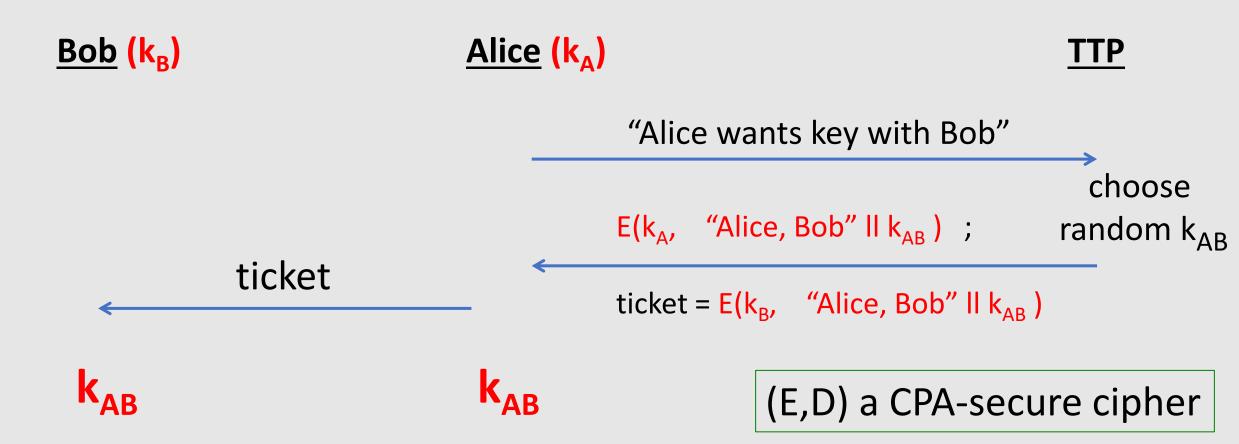
Online Trusted 3rd Party (TTP)



Every user only remembers **ONE key**

Generating keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.



Generating keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: $E(k_A, "A, B" \parallel k_{AB})$; $E(k_B, "A, B" \parallel k_{AB})$

(E,D) is CPA-secure \Rightarrow eavesdropper learns nothing about k_{AB}

Note: TTP needed for every key exchange, knows all session keys.

(basis of Kerberos system)

Key Question

Can we generate shared keys without an online trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

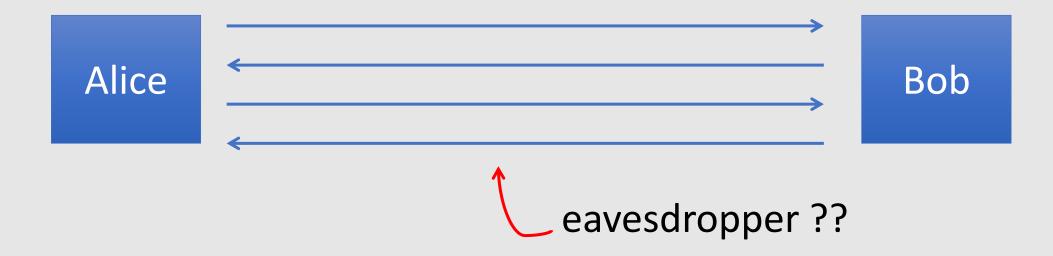
- Merkle (1974),
- Diffie-Hellman (1976),
- RSA (1977)

• ...

Merkle Puzzles

Key exchange without an online TTP?

- Goal: Alice and Bob want a shared key, unknown to eavesdropper
- Security against eavesdropping only (no tampering)



• Can this be done using generic symmetric crypto?

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: "puzzles"

- Puzzles: Problems that can be solved with "some effort"
- Example:
 - E(k,m) a symmetric cipher with $k \in \{0,1\}^{128}$
 - puzzle = E(P, "message") where P = 0⁹⁶ II b₁ ... b₃₂
 - To "solve" a puzzle, find **P** by trying all **2³²** possibilities

Merkle Puzzles

<u>Alice</u>:

- Prepare 2³² puzzles:
 - For $i = 1, ..., 2^{32}$ choose random $P_i \in \{0,1\}^{32}$ and random $x_i, k_i \in \{0,1\}^{128}$ $x_i \neq x_j$

```
Set puzzle_i \leftarrow E(0^{96} || P_i, "Puzzle #" || x_i || k_i)
```

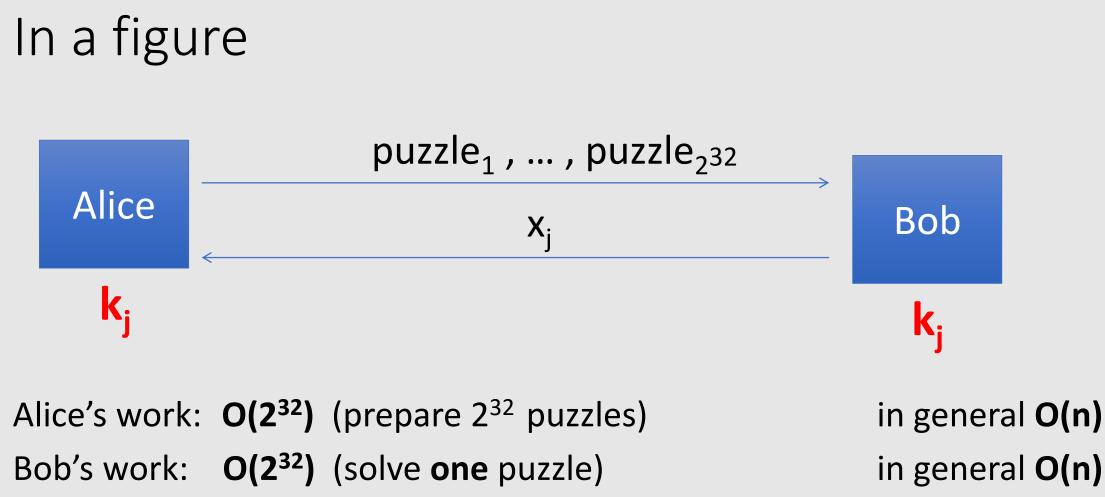
• Send **puzzle₁**, ..., **puzzle₂**³² to Bob.

<u>Bob</u>:

- Choose a random puzzle_i and solve it. Obtain (x_i, k_i) and use k_i as shared secret.
- Send **x**_j to Alice.

<u>Alice</u>:

- Lookup puzzle with number **x**_i.
- Use k_i as shared secret.



Eavesdropper's work: **O(2⁶⁴)** (solve **2³²** puzzles)

in general **O(n)** in general **O(n²)**

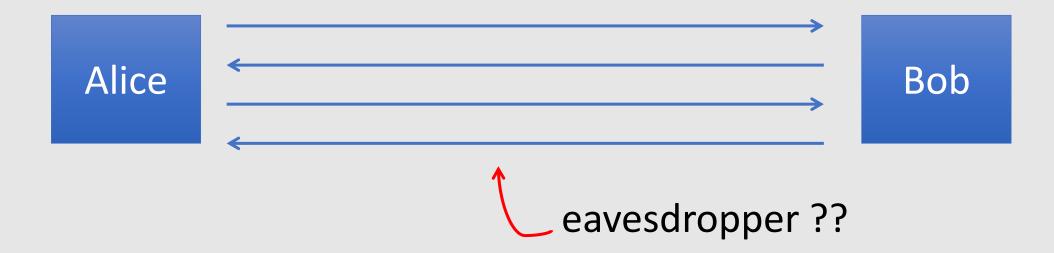
Impossibility Result

Can we achieve a better gap using a general symmetric cipher?

Answer: unknown

Key exchange without an online TTP?

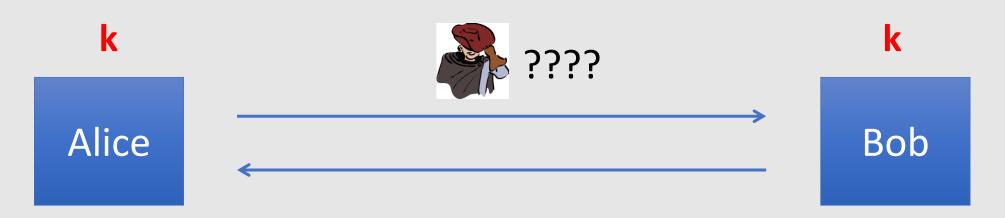
- Goal: Alice and Bob want a shared key, unknown to eavesdropper
- Security against eavesdropping only (no tampering)



• Can this be done with an **exponential gap**?

High-level idea:

- Alice and Bob do NOT share any secret information beforehand
- Alice and Bob exchange messages
- After that, Alice and Bob have agreed on a shared secret key k
- k unknown to eavesdropper



(Security) Based on the **Discrete Logarithm** Problem: **Given**

•g •p •g^k mod p Find k

```
Fix a large prime p (e.g., 600 digits)
Fix an integer g in {2, ..., p-2}
```

<u>Alice</u>		<u>Bob</u>
Choose random a in {1,,p-2}	g ^a (mod p)	Choose random b in {1,,p-2}
	g ^b (mod p)	
Alice computes (g ^b) ^a (mod p) =	g ^{ab} (mod p)	Bob computes = (g ^a) ^b (mod p)
	SECRET KEY	

Security

Eavesdropper sees: **p**, **g**, **g**^a (mod **p**), and **g**^b (mod **p**) Can she compute **g**^{ab} (mod **p**) ??

How hard is the DH function mod p?

Suppose prime **p** is **n** bits long. Best known algorithm (GNFS): run time exp($\tilde{O}(\sqrt[3]{n})$)

Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

