
Modes of Operation
(using block ciphers)

Outline

• One-Time Key
• Semantic Security

• Electronic Code Book (ECB)

• Deterministic Counter Mode (DETCTR)

• Many-Time Key
• Semantic Security for Many-Time Key:

Semantic Security under Chosen-Plaintext Attack (CPA)

• Cipher Block Chaining (CBC)
• Randomized

• Nonce-based

Review: PRPs and PRFs

Block Ciphers

E, D CT Block

n bits

PT Block

n bits

Key k bits

Canonical examples:

• DES: n= 64 bits, k = 56 bits

• 3DES: n= 64 bits, k = 168 bits

• AES: n=128 bits, k = 128, 192, 256 bits

Abstractly: PRPs and PRFs

• Pseudo Random Function (PRF) defined over (K,X,Y):

F: K  X → Y

such that there exists “efficient” algorithm to evaluate F(k,x)

• Pseudo Random Permutation (PRP) defined over (K,X):

E: K  X → X

such that:
1. There exists “efficient” deterministic algorithm to evaluate E(k,x)

2. The function E(k, ) is one-to-one, for every k

3. There exists “efficient” inversion algorithm D(k,y)

Using block ciphers

• Don’t think about the inner-workings of AES and 3DES.

• We assume both are secure PRPs and will see how to use them

Modes of Operation

How to use a block cipher on messages consisting of more than one block

• One-Time Key
• Electronic Code Book

• Deterministic Counter Mode

• Many-Time Key
• Cipher Block Chaining

• Counter Mode

Modes of Operation
One-Time Key

(example: encrypted email, new key for every message)

Using PRPs and PRFs

Goal: build “secure” encryption from a secure PRP (e.g., AES).

This segment: one-time key

1. Adversary’s power: Adversary sees only one ciphertext (one-time key)

2. Adversary’s goal: Learn info about PT from CT (semantic security)

Next segment: many-time keys (a.k.a. chosen-plaintext security)

Incorrect use of a PRP

Electronic Code Book (ECB):

Problem: if b1 = b2 then c1 = c2

PT:

CT:

b1 b2

c1 c2

In pictures

Plain text Cipher text with ECB Cipher text with
other modes of operation

Semantic Security (one-time key)

AdvSS[A,Cipher] = | Pr[EXP(0)=1] − Pr[EXP(1)=1] | should be “negligible” for all “efficient” A

Challenger
Adversary Ak  K

m0 , m1 M : |m0| = |m1|

c  E(k,m0) b’  {0,1}
EXP(0):

Challenger
Adversary Ak  K

m0 , m1 M : |m0| = |m1|

c  E(k,m1) b’  {0,1}
EXP(1):

one time key ⇒ adversary sees only one ciphertext

ECB is not Semantically Secure
ECB is not semantically secure for messages that contain
more than one block. (known-plaintext attack)

Two blocks

Challenger

b{0,1}

Adversary Ak  K

c = (c1,c2)  E(k, mb)

m0 = “Hello World”

m1 = “Hello Hello”

If c1=c2 output 1, else output 0Then AdvSS [A, ECB] = 1

Deterministic Counter Mode (Secure Construction)

• PRF F : K × {0,1}n → {0,1}n (e.g., n=128 with AES)

• EDETCTR (k, m) =
(Encryption)

⇒ Stream cipher built from a PRF (e.g., AES, 3DES)

m[0] m[1] …

F(k,0) F(k,1) …

m[L]

F(k,L)


c[0] c[1] … c[L]

Deterministic Counter Mode (Secure Construction)

• PRF F : K × {0,1}n → {0,1}n (e.g., n=128 with AES)

• DDETCTR (k, c) =
(Decryption)

No need to invert F when decrypting

c[0] c[1] …

F(k,0) F(k,1) …

c[L]

F(k,L)


m[0] m[1] … m[L]

Deterministic Counter Mode Security

Theorem: For any L>0,

If F is a secure PRF over (K,X,X) then

DETCTR is semantically secure over (K,XL,XL).

In particular, for every efficient adversary A attacking DETCTR

there exists an efficient adversary B attacking F s.t.:

AdvSS[A, DETCTR] = 2  AdvPRF[B, F]

AdvPRF[B, F] is negligible (since F is a secure PRF)

Hence, AdvSS[A, DETCTR] must be negligible.

Modes of Operation
Many-Time Key

Examples:

• File systems: Same AES key used to encrypt many files.

• IPsec: Same AES key used to encrypt many packets.

Semantic Security for Many-Time Key

Key used more than once ⇒ adversary sees many CTs with same key

(i.e., used for multiple messages)

Adversary’s power: Chosen-Plaintext Attack (CPA)

• Adversary can obtain the encryption of arbitrary messages of his choice
(conservative modeling of real life)

Adversary’s goal: Break semantic security

Challengerb Adversary

kK m1,0 , m1,1 M : |m1,0| = |m1,1|

c1  E(k, m1,b)

Semantic Security for Many-Time Key (CPA Security)

Q = (E,D) a cipher defined over (K,M,C). For b=0,1 define EXP(b) as:

Challenger Adversary

kK m2,0 , m2,1 M : |m2,0| = |m2,1|

c2  E(k, m2,b)

Q = (E,D) a cipher defined over (K,M,C). For b=0,1 define EXP(b) as:

b

Semantic Security for Many-Time Key (CPA Security)

Q = (E,D) a cipher defined over (K,M,C). For b=0,1 define EXP(b) as:

Definition: Q is semantically secure under CPA if for all “efficient” adversary A:

AdvCPA [A,Q] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] | is “negligible”.

Challenger Adversary

kK

b’{0,1}

mi,0 , mi,1 M : |mi,0| = |mi,1|

ci  E(k, mi,b)

CPA ⇒ if adversary wants c = E(k, m) it queries with mj,0= mj,1= m

for i=1,…,q: b

Semantic Security for Many-Time Key (CPA Security)

Ciphers Insecure under CPA

Suppose E(k,m) always outputs same ciphertext for msg m and key k. Then:

So what? an attacker can learn that two encrypted files are
the same, two encrypted packets are the same, etc.

• Leads to significant attacks when the message space M is small

Challenger Adversary

kK
m0 , m1 M

c  E(k, mb)

m0 , m0 M (chosen PT query)

c0 E(k, m0)

if c = c0 output 0
else output 1

Adv=1

Ciphers Insecure under CPA

Suppose E(k,m) always outputs same ciphertext for msg m and key k. Then:

If secret key is to be used multiple times 

given the same plaintext message twice,
encryption must produce different outputs.

Challenger

kK
m0 , m1 M

c  E(k, mb)

m0 , m0 M (chosen PT query)

c0 E(k, m0)
Adversary

if c = c0 output 0
else output 1

Adv=1

Solution 1: Randomized Encryption

• E(k,m) is a randomized algorithm:

⇒ encrypting same msg twice gives different ciphertexts (w.h.p.)

⇒ ciphertext must be longer than plaintext

Roughly speaking: CT-size = PT-size + “# random bits”

m1

m0

enc
m0

dec

m1

Solution 2: Nonce-based Encryption

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

Nonce n:

• a value that changes from msg to msg

• (k,n) pair never used more than once

• n does not need to be secret and does not need to be random

Solution 2: Nonce-based Encryption

Nonce

• Method 1: nonce is a counter (e.g., packet counter)
• used when encryptor keeps state from msg to msg

• if decryptor has same state, need not send nonce with CT

• Method 2: encryptor chooses a random nonce, n N
(It’s like randomized encryption)
(ex. Multiple devices encrypting with the same key)
• N must be large enough to ensure that the same nonce is not chosen twice

with high probability

CPA Security for Nonce-based Encryption
System should be secure when nonces are chosen adversarially.

Definition. Nonce-based Q is semantically secure under CPA if for all “efficient” adversary A:

AdvnCPA [A,Q] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] | is “negligible”.

Challenger Adversary

kK ni and mi,0 , mi,1 : |mi,0| = |mi,1|

ci  E(k, mi,b , ni) b’  {0,1}

All nonces {n1, …, nq} must be distinct.

for i=1,…,q:

b

Many-time Key Mode of Operation:

Cipher Block Chaining (CBC)

Construction 1: CBC with random IV

• PRP E : K × {0,1}n → {0,1}n

• (Encryption) ECBC(k,m): choose random IV∈{0,1}n and do:

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3]IV

 

E(k,)



c[0] c[1] c[2] c[3]IV

ciphertext

Construction 1: CBC with random IV

• D : K × {0,1}n → {0,1}n inversion algorithm of E

• (Decryption) DCBC(k,c):

D(k,) D(k,) D(k,)

m[0] m[1] m[2] m[3]

 

D(k,)



c[0] c[1] c[2] c[3]IV

(Randomized) CBC Security

Theorem: For any L>0 (length of the message we are encrypting),

If E is a secure PRP over (K,X) then

CBC is semantically secure under CPA over (K, XL, XL+1).

In particular, for every efficient q-query adversary A attacking CBC

there exists an efficient PRP adversary B attacking E s.t.

AdvCPA [A, CBC]  2AdvPRP[B, E] + 2 q2 L2 / |X|

Note: CBC is only secure as long as q2L2 << |X|

(the error term should be negligible)

An example

q = # messages encrypted with k , L = length of max message

Suppose we want AdvCPA [A, CBC] ≤ 1/232 ⇐ q2 L2 /|X| < 1/ 232

• AES: |X| = 2128 ⇒ q L < 248

So, after 248 AES blocks, must change key

• 3DES: |X| = 264 ⇒ q L < 216

So, after 216 DES blocks, must change key

⇒ after 216 blocks (each of 8 bytes) need to change key ⇒ 216 × 8 = ½ MB !!!

AdvCPA [A, CBC]  2 AdvPRP[B, E] + 2 q2 L2 / |X|

Warning: an attack on CBC with rand. IV

CBC where adversary can predict the IV is not CPA-secure !!

Suppose given c ⟵ ECBC(k,m) adversary can predict IV for next message

Challenger Adversary

kK
m0 = IV*⨁ IV , m1 ≠ m0

c  [IV*, E(k, IV)] or

0  X

c0  [IV, E(k, 0⨁IV)]

if c[1] = c0[1] output 0
else output 1

predict IV*

for the next message

Bug in SSL/TLS 1.0: IV for record #i is last CT block of record #(i-1)

c  [IV*, E(k, m1⨁IV*)] Adv. 1

Construction 2: Nonce-based CBC
• key = (k, k1)

• (key, nonce) pair is used for only one message

• Encryption:

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3]

 

E(k,)



c[0] c[1] c[2] c[3]nonce

ciphertext

nonce

E(k1,)

IV

included only if unknown to decryptor

Construction 2: Nonce-based CBC

• Decryption:

D(k,) D(k,) D(k,)

m[0] m[1] m[2] m[3]

 

D(k,)



c[0] c[1] c[2] c[3]nonce

E(k1,)

An example Crypto API (OpenSSL)

void AES_cbc_encrypt(

const unsigned char *in,

unsigned char *out,

size_t length,

const AES_KEY *key,

unsigned char *ivec, ⟵ user supplies IV

AES_ENCRYPT or AES_DECRYPT);

When it is non-random need to encrypt it before use
(Otherwise, no CPA security!!)

A CBC technicality: padding

TLS: for n>0, n byte pad is

if no pad needed, add a dummy block

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3] ll pad

 

E(k,)



c[0] c[1] c[2] c[3]IV

IV

E(k1,)

IV’

n n ⋯n n removed
during
decryption16 16 ⋯16 16

	Diapositiva 1: Modes of Operation (using block ciphers)
	Diapositiva 2: Outline
	Diapositiva 3: Review: PRPs and PRFs
	Diapositiva 4: Block Ciphers
	Diapositiva 5: Abstractly: PRPs and PRFs
	Diapositiva 6: Using block ciphers
	Diapositiva 7: Modes of Operation
	Diapositiva 8: Modes of Operation One-Time Key
	Diapositiva 9: Using PRPs and PRFs
	Diapositiva 10: Incorrect use of a PRP
	Diapositiva 11: In pictures
	Diapositiva 12: Semantic Security (one-time key)
	Diapositiva 13: ECB is not Semantically Secure
	Diapositiva 14: Deterministic Counter Mode (Secure Construction)
	Diapositiva 15: Deterministic Counter Mode (Secure Construction)
	Diapositiva 16: Deterministic Counter Mode Security
	Diapositiva 18: Modes of Operation Many-Time Key
	Diapositiva 20: Semantic Security for Many-Time Key
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24: Ciphers Insecure under CPA
	Diapositiva 25: Ciphers Insecure under CPA
	Diapositiva 26: Solution 1: Randomized Encryption
	Diapositiva 28: Solution 2: Nonce-based Encryption
	Diapositiva 29: Solution 2: Nonce-based Encryption
	Diapositiva 30: CPA Security for Nonce-based Encryption
	Diapositiva 32: Many-time Key Mode of Operation: Cipher Block Chaining (CBC)
	Diapositiva 33: Construction 1: CBC with random IV
	Diapositiva 35: Construction 1: CBC with random IV
	Diapositiva 36: (Randomized) CBC Security
	Diapositiva 37: An example
	Diapositiva 38: Warning: an attack on CBC with rand. IV
	Diapositiva 39: Construction 2: Nonce-based CBC
	Diapositiva 40: Construction 2: Nonce-based CBC
	Diapositiva 41: An example Crypto API (OpenSSL)
	Diapositiva 42: A CBC technicality: padding

