
Stream Ciphers

Outline

• One-Time Pad

• Perfect Secrecy

• Pseudorandom Generators (PRGs) and Stream Ciphers

• Attacks

• Security of PRGs

• Semantic Security

Symmetric Ciphers

Definition.

A (symmetric) cipher defined over (K, M, C)

is a pair of “efficient” algorithms (E,D) where

• E: K × M → C

• D: K × C →M

such that ∀m∈M, ∀k∈K : D(k, E(k,m)) = m

• E is often randomized.
• D is always deterministic.

The One-Time Pad (Vernam 1917)

First example of a “secure” cipher

• K = M = C = {0,1}n

• E(k, m) = k ⊕m

• D(k, c) = k ⊕ c

• k used only once

• k is a random key (i.e., uniform distribution over K)

m: 0 1 1 0 1 1 1

k : 1 0 1 1 0 1 0

c : 1 1 0 1 1 0 1

⊕

The One-Time Pad (Vernam 1917)

The one-time pad is a cipher:

•D(k, E(k,m)) =

•D(k, k ⊕m) =

• k ⊕ (k⊕m) =

• (k ⊕ k) ⊕m =

• 0 ⊕m =

•m

One-time pad definition:
• E(k, m) = k ⊕m
• D(k, c) = k ⊕ c

The One-Time Pad (Vernam 1917)

• Pro:
• Very fast encryption and decryption

• Con:
• Long keys (as long as the plaintext),

If Alice wants to send a message to Bob,
she first has to transmit a key of the same length to Bob in a secure way.
If Alice has a secure mechanism to transmit the key, she might use that same
mechanism to transmit the message itself!

Is the OTP secure? What is a secure cipher?

What is a secure cipher?

Attacker’s abilities: CT only attack (for now)

Possible security requirements:
attempt #1: attacker cannot recover secret key

attempt #2: attacker cannot recover all of plaintext

Shannon’s idea:
CT should reveal no “info” about PT

E(k, m) = m would be secure

E(k, m0 || m1) = m0 || k ⊕m1 would be secure

Information Theoretic Security (Shannon 1949)

Definition.

A cipher (E, D) over (K, M, C) has perfect secrecy if

∀m0, m1 ∈M with len(m0) = len(m1) and ∀c ∈ C

Pr[E(k, m0)=c] = Pr[E(k, m1)=c]

where k is uniform in K (k ⟵ K)

Information Theoretic Security

• Given CT, can’t tell if PT is m0 or m1 (for all m0, m1)

• Most powerful adversary learns nothing about PT from CT

• No CT only attack! (but other attacks are possible…)

Is OTP ‘’secure’’?

OTP has perfect secrecy.

Proof:

Let m∈M and c∈ C.

How many OTP keys map m to c ?

•None
•1
•2
• It depends on m

m: 0 1 1 0 1 1 1

k : ? ? ? ? ? ? ?

c : 1 1 0 1 1 0 1

⊕

Is OTP ‘’secure’’?

OTP has perfect secrecy.

Proof:

1

The bad news …

• OTP drawback: key-length=msg-length

• Are there ciphers with perfect secrecy that use shorter keys?

Theorem: perfect secrecy⇒ |K| ≥ |M|

i.e. perfect secrecy⇒ key-length ≥ msg-length

• Hard to use in practice!!!!

Pseudorandom Generators
and Stream Ciphers

Review

Cipher over (K,M,C): a pair of “efficient” algorithms (E, D) s.t.
∀m ∈M, ∀ k ∈ K: D(k, E(k, m)) = m

Weak ciphers: substitution cipher, Vigener, …

A good cipher: OTP M = C = K = {0,1}n

E(k, m) = k ⊕m , D(k, c) = k ⊕ c

OTP has perfect secrecy (i.e., no CT only attacks)

Bad news: perfect-secrecy ⇒ key-len ≥ msg-len

Stream Ciphers: making OTP practical

Idea: replace “random” key by “pseudorandom” key

Pseudorandom Generator (PRG):
PRG is a function G: {0,1}s → {0,1}n n>>s

seed space

(efficiently computable by a deterministic algorithm)

Stream Ciphers: making OTP practical

E(k, m) = G(k) ⊕m D(k, c) = G(k) ⊕ c

k

G(k)
⊕

m

c

G

• k must be random
• k must not be used

multiple times

k

G(k)
⊕

c

m

G

Can a stream cipher have perfect secrecy?

• Yes, if the PRG is really “secure”

• No, there are no ciphers with perfect secrecy

• Yes, every cipher has perfect secrecy

• No, since the key is shorter than the message

Can a stream cipher have perfect secrecy?

• Yes, if the PRG is really “secure”

• No, there are no ciphers with perfect secrecy

• Yes, every cipher has perfect secrecy

• No, since the key is shorter than the message

Stream Ciphers: making OTP practical

Stream ciphers cannot have perfect secrecy !!

•Need a different definition of security

• Security will depend on specific PRG

Weak PRGs (do not use for crypto)

glibc random():

r[i] ← (r[i-3] + r[i-31]) % 232

output r[i] >> 1

Linear congruential generator with parameters a, b, p:
(a, b are integers, p is a prime)

r[0] := seed
r[i] ← a r[i-1] + b mod p
output few bits of r[i]
i++

has some good statistical properties
But it’s easy to predict

Do not use random() for crypto
(e.g., Kerberos v4)

Attacks on OTP and
Stream Ciphers

Review

• One-time pad:
• E(k,m) = k ⊕m
• D(k,c) = k⊕ c

• Stream ciphers
making OTP practical using a PRG G: K ⟶ {0,1}n

• E(k,m) = G(k) ⊕m
• D(k,c) = G(k) ⊕ c

• k is random (uniform)
• k used only once

Attack 1: two time pad is insecure !!

Never use stream cipher key more than once !!

c1 m1 PRG(k)

c2 m2 PRG(k)

Eavesdropper does:

c1 c2 → m1 m2

Enough redundancy in English and ASCII encoding that:

m1 m2 → m1 , m2

Real-world examples

• Project Venona (1941 – 1946)

Real-world examples

• Project Venona (1941 – 1946)

• MS-PPTP (windows NT):

k k
m1

m2

m3

s1

s2

s3

[m1 || m2 || m3] ⊕ PRG(k) [s1 || s2 || s3] ⊕ PRG(k)

Need different keys for C⟶S and S⟶C

k = (kC⟶S , kS⟶C)

Real-world examples

802.11b WEP:

Length of IV: 24 bits

• Repeated IV after 224 ≈ 16M frames

• On some 802.11 cards: IV resets to 0 after power cycle

k k

m CRC(m)

PRG(IV ll k)

ciphertextIV

Client Access Point

⊕

k: LONG-TERM KEY

Avoid related keys

802.11b WEP:

key for frame #1: (1 ll k)

key for frame #2: (2 ll k)

k k

m CRC(m)

PRG(IV ll k)

ciphertextIV

⋮

24 bits 104 bits

Very related keys!!
Not random keys!

The PRG used in WEP (called RC4) is
not secure for such related keys
• Attack that can recover k after 106

frames (FMS 2001)
• Recent attack => 40.000 frames

⊕

A better construction

⇒ now each frame has a pseudorandom key

better solution: use stronger encryption method (as in WPA2)

k k
PRG

key for
frame #1

key for
frame #2

key for
frame #3

Yet another example: disk encryption

To: Bob

To: Eve

Encr.

Encr.

The sameChanged

Two time pad: summary

Never use stream cipher key more than once !!

• Network traffic: negotiate new key for every session (e.g. TLS)
• One key (or ‘’sub-key’’) for traffic from Client to Server

• One key (or ‘’sub-key’’) for traffic from Server to Client

• Disk encryption: typically do not use a stream cipher

Attack 2: no integrity (OTP is malleable)

Alice

E
m c = k ⊕ m

Bob

D
c*

k

c

c* = c ⊕ p

c*

k

k ⊕ c* =

k ⊕ c ⊕ p =

k ⊕ k ⊕ m ⊕ p =

m ⊕ p

Modifications to ciphertext are undetected and
have predictable impact on plaintext

Attack 2: no integrity (OTP is malleable)
Alice

E
m c = k ⊕ m

Bob

D
c*

k

c

c* = c ⊕ ???

c*

k

k ⊕ c* =

not m

• Alice has to answer yes (1) or no (0) to Bob’s invitation. She’ll encrypt the answer with OTP.
• The attacker cannot recover Alice’s answer from CT.
• Still, can the attacker ‘’flip’’ Alice’s answer?

Yes !! Apply⊕ 1 to the intercepted CT

Attack 2: no integrity (OTP is malleable)

Alice

E
m = 0 c = k ⊕ 0

Bob

D
c*

k

c

c* = c ⊕ 1

c*

k

k ⊕ c* =

k ⊕ c ⊕ 1 =

k ⊕ k ⊕ 0 ⊕ 1 =

0 ⊕ 0 ⊕ 1 =

1

Attack 2: no integrity (OTP is malleable)

Alice

E
m = 1 c = k ⊕ 1

Bob

D
c*

k

c

c* = c ⊕ 1

c*

k

k ⊕ c* =

k ⊕ c ⊕ 1 =

k ⊕ k ⊕ 1 ⊕ 1 =

0 ⊕ 1 ⊕ 1 =

0

Attack 2: no integrity (OTP is malleable)

Alice

E

From Alice

…

….

Bob

D

k k

m =

Attacker wants to change Alice into Maria.
Can he do that?

…

Attack 2: no integrity (OTP is malleable)

Alice

E

Bob

D

k k

m = Alice

Attacker wants to change Alice into Maria.
Can he do that?

c* = c ⊕ ???

c c*

D(k,c*) = Maria

Attack 2: no integrity (OTP is malleable)

Alice

E

Bob

D

k k

m = Alice

Attacker wants to change Alice into Maria.
Can he do that?

c* = c ⊕ Alice ⊕ Maria

c c*

D(k,c*) = Maria

Attack 2: no integrity (OTP is malleable)

Alice

E
Alice c = k ⊕ Alice

Bob

D
c*

k

c

c* = c ⊕ Alice ⊕ Maria

c*

k

k ⊕ c* =

k ⊕ c ⊕ Alice ⊕ Maria =

k ⊕ k ⊕ Alice ⊕ Alice ⊕ Maria =

0 ⊕ Alice ⊕ Alice ⊕ Maria =

0 ⊕ 0 ⊕ Maria =

Maria

Consider the bank account number in a wire transfer…

Real-world Stream Ciphers

Old example (software): RC4 (1987)

• Used in HTTPS and WEP

2048 bits
128 bits

seed

1 byte
per round

Variable size seed
(e.g., 128 bits)

RC4 PRG

The RC4 stream cipher key s is a seed for the PRG and is used to initialize the array S
to a pseudo-random permutation of the numbers 0 : : : 255. Initialization is
performed using the following setup algorithm:

During the loop the index i runs linearly through the array while the index j jumps
around. At each iteration the entry at index i is swapped with the entry at index j.

RC4 PRG

Once the array S is initialized, the PRG generates pseudo-random output one byte
at a time using the following stream generator:

The procedure runs for as long as necessary. Again, the index i runs linearly through
the array while the index j jumps around. Swapping S[i] and S[j] continuously
shuffles the array S.

Security of RC4

Weaknesses:

1. Bias in initial output: let us assume that the RC4 setup algorithm is perfect and
generates a uniform permutation from the set of all 256! permutations.
Mantin and Shamir showed that, even assuming perfect initialization, the output of
RC4 is biased: Pr[2nd byte = 0] = 2/256 → RC4-drop[n]

2. Fluhrer and McGrew: Prob. of (0,0) is 1/2562 + 1/2563

3. Related key attacks: attack on WEP

Old example (hardware): CSS (badly broken)

Linear feedback shift register (LFSR):

DVD encryption (CSS): 2 LFSRs

GSM encryption (A5/1,2): 3 LFSRs

Bluetooth (E0): 4 LFSRs

all broken

⊕ Seed = initial state of the LFSR

(Taps not for all cells)

Content Scrambling System

1 0 1 0 1

Old example (hardware): CSS (badly broken)

CSS: seed = 5 bytes = 40 bits

17-bit LFSR

25-bit LFSR

+ (mod 256)

8 bits (in 8 cycles)

8 bits

8 bits

Carry from
previous block

Easy to break in time ≈ 217

One byte at a time

1 || [first 2 bytes of the seed]

1 || [last 3 bytes of the seed]

Modern stream ciphers: eStream

PRG: {0,1}s × R ⟶ {0,1}n n>>s

Nonce: a non-repeating value for a given key, that is

a pair (k,r) is never used more than once

=> can re-use the key as long as the nonce changes

E(k, m , r) = m ⊕ PRG(k , r)

Seed Nonce

eStream: Salsa 20 (SW+HW)

Salsa20: {0,1} 128 or 256 × {0,1}64 ⟶ {0,1}n (max n = 273 bits)

Salsa20(k, r) := H(k , (r, 0)) ll H(k , (r, 1)) ll …

h: invertible function. designed to be fast on x86 (SSE2)

τ0

k
τ1

r
i

τ2

k
τ3

64 bytes

k
r
i

32 bytes

64 byte
output

⊕h

(τi’s: fixed 4-byte constants)

H:
(16 bytes)

(8 bytes)

(8 bytes)

h h h
…

(Apply h 10 times)

64 bytes

addition

Performance: Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

PRG Speed (MB/sec)

RC4 126

Salsa20/12 643

Sosemanuk 727
eStream

When is a PRG ‘‘secure’’?

When is a PRG ‘‘secure’’?

1. Unpredictable PRG

2. Secure PRG

We’ll see that they are equivalent notions

PRG must be unpredictable

Suppose PRG is predictable:

⊕
c

m

G(k)

Even

is a problem

PRG must be unpredictable

We say that G: K ⟶ {0,1}n is predictable if:

PRG is unpredictable if it is not predictable

⇒ ∀i: no “efficient” adversary can predict bit (i+1) for “non-neg” ε

• Suppose G:K ⟶ {0,1}n is such that for all k: XOR(G(k)) = 1

• Is G predictable ??

1. Yes, given the first bit I can predict the second

2. No, G is unpredictable

3. Yes, given the first (n-1) bits I can predict the n-th bit

4. It depends

• Suppose G:K ⟶ {0,1}n is such that for all k: XOR(G(k)) = 1

• Is G predictable ??

1. Yes, given the first bit I can predict the second

2. No, G is unpredictable

3. Yes, given the first (n-1) bits I can predict the n-th bit

4. It depends

One more definition of ‘‘secure’’ PRG

Let G:K ⟶ {0,1}n be a PRG

Goal:

define what it means that

is “indistinguishable” from

G: {0,1}10 ⟶ {0,1} 1000

[k ⟵ {0,1}10, output G(k)]

[r ⟵ {0,1}1000, output r]

Note

A minimum security requirement for a PRG is that

the length s of the random seed should be sufficiently large

so that a search over 2s elements (the total number of possible seeds)
is infeasible for the adversary.

Statistical Tests

Statistical test on {0,1}
n
:

An algorithm A s.t. A(x) outputs “0” or “1”,
that is A : {0,1}n⟶{0,1}

Examples:

1. A(x)=1 iff |#0(x) - #1(x)| ≤ 10 √n

2. A(x)=1 iff |#00(x) – n/4| ≤ 10 √n

3. A(x)=1 iff max-run-of-0(x) < 10 log2(n)

…..

Advantage

• Let G:K ⟶{0,1}
n

be a PRG

• Let A: {0,1}
n
⟶ {0,1} be a statistical test on {0,1}

n

Define:

• Adv close to 0 => A cannot distinguish G from random

• Adv non-negligible => A can distinguish G from random

• Adv close to 1 => A can distinguish G from random very well

A silly example: A(x) = 0 ⇒ AdvPRG [A,G] = 0 – 0 = 0

Example of Advantage

• Suppose G:K ⟶{0,1}n satisfies msb(G(k)) = 1 for 2/3 of keys in K

• Define statistical test A(x) as:

if [msb(x)=1] output “1” else output “0”

Then

AdvPRG [A,G] = | Pr[A(G(k))=1] - Pr[A(r)=1] | =

| 2/3 – 1/2 | = 1/6

A breaks G with advantage 1/6 (which is not negligible)
hence G is not a good PRG

Secure PRGs: crypto definition

Definition:

We say that G : K ⟶ {0,1}
n

is a secure PRG if

for every “efficient” statistical test A, AdvPRG[A,G] is “negligible”

Are there provably secure PRGs? Unknown (=> P ≠ PN)

A secure PRG is unpredictable

We show: PRG predictable ⇒ PRG is insecure

Suppose A is an efficient algorithm s.t.

for non-negligible ε (e.g. ε = 1/1000)

A secure PRG is unpredictable

Define statistical test B as:

Thm (Yao’82): an unpredictable PRG is secure

Let G : K ⟶ {0,1}
n

be PRG

“Thm”: if ∀ i ∈ {0, … , n-1} G is unpredictable at position i

then G is a secure PRG.

If next-bit predictors cannot distinguish G from random
then no statistical test can !!

More Generally

Let P1 and P2 be two distributions over {0,1}n

We say that P1 and P2 are computationally indistinguishable (denoted P1 ≈p P2)

Example: a PRG is secure if { k ⟵K : G(k) } ≈p uniform({0,1}n)

Semantic Security

What is a secure cipher?

Attacker’s abilities: CT only attack: obtains one ciphertext

Possible security requirements:
attempt #1: attacker cannot recover secret key

attempt #2: attacker cannot recover all of plaintext

Shannon’s idea:
CT should reveal no “info” about PT

E(k, m) = m would be secure

E(k, m0 || m1) = m0 || k ⊕m1 would be secure

Recall Shannon’s perfect secrecy

Let (E,D) be a cipher over (K,M,C)

Shannon’s perfect secrecy:

(E,D) has perfect secrecy if ∀m0, m1 ∈M (|m0| = |m1|)

{ E(k,m0) } = { E(k,m1) } where k⟵K

Weaker Definition:

(E,D) has perfect secrecy if ∀m0, m1 ∈M (|m0| = |m1|)

{ E(k,m0) } ≈p { E(k,m1) } where k⟵K

(One more requirement) … but also need adversary to exhibit m0, m1 ∈M explicitly

• The two distributions must be
identical

• Too strong definition
• It requires long keys
• Stream Ciphers can’t satisfy it

Rather than requiring the two
distributions to be identical, we
require them to be
COMPUTATIONALLY
INDISTINGUISHABLE

Semantic Security (one-time key)

For a cipher Q = (E,D) and an adversary A define a game as follows.

For b=0,1 define experiments EXP(0) and EXP(1) as:

AdvSS[A,Q] := | Pr[EXP(0)=1] − Pr[EXP(1)=1] |

Challenger

b

Adversary A

kK
m0 , m1 M : |m0| = |m1|

c E(k, mb)

b’ {0,1}

Semantic Security (one-time key)

AdvSS[A,Q] = | Pr[EXP(0)=1] − Pr[EXP(1)=1] | should be “negligible” for all “efficient” A

Challenger Adversary A

kK

m0 , m1 M : |m0| = |m1|

c E(k,m0) b’ {0,1}
EXP(0):

Challenger Adversary A

kK

m0 , m1 M : |m0| = |m1|

c E(k,m1) b’ {0,1}
EXP(1):

Semantic Security (one-time key)

Definition:

Q is semantically secure if for all “efficient” A,

AdvSS[A,Q] is “negligible”.

Adversary B (us)

Example
Suppose efficient A can always deduce LSB of PT from CT
⇒ Q is not semantically secure.

Challenger

b{0,1}

Algorithm A
(given)

kK
c E(k, mb)

m0 s.t. LSB(m0)=0
m1 s.t. LSB(m1)=1

c

LSB(mb)=b

Then AdvSS[B,Q] = | Pr[EXP(0)=1] − Pr[EXP(1)=1] |= |0 – 1| = 1

Stream ciphers are semantically secure

Theorem:

G is a secure PRG ⇒ stream cipher Q derived from G is semantically secure

In particular:

∀ semantic security adversary A, ∃ a PRG adversary B (i.e., a statistical test) s.t.

AdvSS[A,Q] ≤ 2 ∙ AdvPRG[B,G]

	Diapositiva 1: Stream Ciphers
	Diapositiva 2: Outline
	Diapositiva 3: Symmetric Ciphers
	Diapositiva 4: The One-Time Pad (Vernam 1917)
	Diapositiva 5: The One-Time Pad (Vernam 1917)
	Diapositiva 6: The One-Time Pad (Vernam 1917)
	Diapositiva 7: What is a secure cipher?
	Diapositiva 8: Information Theoretic Security (Shannon 1949)
	Diapositiva 9: Information Theoretic Security
	Diapositiva 10: Is OTP ‘’secure’’?
	Diapositiva 11
	Diapositiva 12: Is OTP ‘’secure’’?
	Diapositiva 13: The bad news …
	Diapositiva 14: Pseudorandom Generators and Stream Ciphers
	Diapositiva 15: Review
	Diapositiva 16: Stream Ciphers: making OTP practical
	Diapositiva 17: Stream Ciphers: making OTP practical
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20: Stream Ciphers: making OTP practical
	Diapositiva 21: Weak PRGs (do not use for crypto)
	Diapositiva 22: Attacks on OTP and Stream Ciphers
	Diapositiva 23: Review
	Diapositiva 24: Attack 1: two time pad is insecure !!
	Diapositiva 25: Real-world examples
	Diapositiva 26: Real-world examples
	Diapositiva 27: Real-world examples
	Diapositiva 28: Avoid related keys
	Diapositiva 29: A better construction
	Diapositiva 30: Yet another example: disk encryption
	Diapositiva 31: Two time pad: summary
	Diapositiva 32: Attack 2: no integrity (OTP is malleable)
	Diapositiva 33: Attack 2: no integrity (OTP is malleable)
	Diapositiva 34: Attack 2: no integrity (OTP is malleable)
	Diapositiva 35: Attack 2: no integrity (OTP is malleable)
	Diapositiva 36: Attack 2: no integrity (OTP is malleable)
	Diapositiva 37: Attack 2: no integrity (OTP is malleable)
	Diapositiva 38: Attack 2: no integrity (OTP is malleable)
	Diapositiva 39: Attack 2: no integrity (OTP is malleable)
	Diapositiva 40: Real-world Stream Ciphers
	Diapositiva 41: Old example (software): RC4 (1987)
	Diapositiva 42: RC4 PRG
	Diapositiva 43: RC4 PRG
	Diapositiva 44: Security of RC4
	Diapositiva 45: Old example (hardware): CSS (badly broken)
	Diapositiva 46: Old example (hardware): CSS (badly broken)
	Diapositiva 47: Modern stream ciphers: eStream
	Diapositiva 48: eStream: Salsa 20 (SW+HW)
	Diapositiva 50: Performance: Crypto++ 5.6.0 [Wei Dai]
	Diapositiva 52: When is a PRG ‘‘secure’’?
	Diapositiva 53: When is a PRG ‘‘secure’’?
	Diapositiva 54: PRG must be unpredictable
	Diapositiva 55: PRG must be unpredictable
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58: One more definition of ‘‘secure’’ PRG
	Diapositiva 59: Note
	Diapositiva 60: Statistical Tests
	Diapositiva 61: Advantage
	Diapositiva 62: Example of Advantage
	Diapositiva 63: Secure PRGs: crypto definition
	Diapositiva 64: A secure PRG is unpredictable
	Diapositiva 65: A secure PRG is unpredictable
	Diapositiva 66: Thm (Yao’82): an unpredictable PRG is secure
	Diapositiva 67: More Generally
	Diapositiva 68: Semantic Security
	Diapositiva 69: What is a secure cipher?
	Diapositiva 70: Recall Shannon’s perfect secrecy
	Diapositiva 71: Semantic Security (one-time key)
	Diapositiva 72: Semantic Security (one-time key)
	Diapositiva 73: Semantic Security (one-time key)
	Diapositiva 74: Example
	Diapositiva 76: Stream ciphers are semantically secure

