Stream Ciphers

Outline

* One-Time Pad

e Perfect Secrecy

* Pseudorandom Generators (PRGs) and Stream Ciphers
* Attacks

* Security of PRGs

* Semantic Security

Symmetric Ciphers

Definition.

A (symmetric) cipher defined over (K, M, C)

is a pair of “efficient” algorithms (E,D) where
*E: KxM—>C

°D: KxC > M

such that VmeM, VkeK : D(k, E(k,m)) =m

 E is often randomized.
* D is always deterministic.

The One-Time Pad

First example of a “secure” cipher

eK=M=C={0,1}"
*E(k, mM)=k&@ m
*D(k,c) =k &P c

* k used only once

(Vernam 1917)

/m: 0110111 .
k: 1011010
c: 1101101

* kis a random key (i.e., uniform distribution over K)

The One-Time Pad (Vernam 1917)

The one-time pad is a cipher:

* D(k, E(k,m)) = . L
One-time pad definition:

*Dlk, k@ m) = E(k, m)=k @ m

*k D (kb m) = * D(k,c) =k D c

* (k D k) D m =

0P m-=

‘m

The One-Time Pad (Vernam 1917)

* Pro:
* Very fast encryption and decryption

 Con:

* Long keys (as long as the plaintext),
If Alice wants to send a message to Bob,
she first has to transmit a key of the same length to Bob in a secure way.
If Alice has a secure mechanism to transmit the key, she might use that same
mechanism to transmit the message itself!

Is the OTP secure? What is a secure cipher?

What is a secure cipher?

Attacker’s abilities: CT only attack (for now)

Possible security requirements:
attempt #1: attacker cannot recover secret key
E(k, m) =m would be secure

attempt #2: attacker cannot recover all of plaintext
E(k, my|| my)=m, || k@ m; would be secure

Shannon’s idea:
CT should reveal no “info” about PT

Information Theoretic Security (Shannon 1949)

Definition.
A cipher (E, D) over (K, M, C) has perfect secrecy if

Vm,, m,; € M with len(m,) =len(m,) and Vc € C

Pr[E(k, my)=c] = Pr[E(k, m,)=c]

where k is uniform in K (k «— K)

Information Theoretic Security

* Given CT, can’t tell if PT is my or m, (for all mg, m,)
 Most powerful adversary learns nothing about PT from CT

 No CT only attack! (but other attacks are possible...)

s OTP “secure’?

OTP has perfect secrecy.
Proof:

#keys k € K s.t. E(k,m) = c
K]

Vm, c]Zr[E(kz,m) =c| =

So if Vm,c #{k € K : E(k,m) = ¢} = const.

= Cipher has perfect secrecy

Let me€ M and c € C.
How many OTP keys map m to c¢?

*None m: 0110111 .
1l — kK: 2222227
.?

eIt depends on m c: 1101101

s OTP “secure’?

OTP has perfect secrecy.

Proof:
1

Vm,c F;T[E(k,m) =c| = |

So if Vm,c #{k € K : E(k,m) = ¢} = const.

= Cipher has perfect secrecy

The bad news ...

* OTP drawback: key-length=msg-length

* Are there ciphers with perfect secrecy that use shorter keys?

Theorem: perfect secrecy = |K| = |M]|

i.e. perfect secrecy = key-length > msg-length

* Hard to use in practice!!!l

Pseudorandom Generators
and Stream Ciphers

Review

Cipher over (K,M,C): a pair of “efficient” algorithms (E, D) s.t.
VmeM,VkeK: Dk, E(k, m)) =m

Weak ciphers: substitution cipher, Vigener, ...
A good cipher: OTP M=C=K={0,1}"
E(k, m)=k@®m , D(kc)=kDc

OTP has perfect secrecy (i.e., no CT only attacks)

Bad news: perfect-secrecy = key-len 2 msg-len

Stream Ciphers: making OTP practical

ldea: replace “random” key by “pseudorandom” key

Pseudorandom Generator (PRG):

PRG is a function G:{0,1}°F - {0,1} n>>s
W_J

seed space

(efficiently computable by a deterministic algorithm)

Stream Ciphers: making OTP practical

e k must be random
* k must not be used
G G “~._multiple times
> pe— o R

E(k, m) = G(k) @& m D(k, c) = G(k) @ c

Can a stream cipher have perfect secrecy?

* Yes, if the PRG is really “secure”

* No, there are no ciphers with perfect secrecy
* Yes, every cipher has perfect secrecy

* No, since the key is shorter than the message

Can a stream cipher have perfect secrecy?

* Yes, if the PRG is really “secure”

* No, there are no ciphers with perfect secrecy

* Yes, every cipher has perfect secrecy

* No, since the key is shorter than the message - <¢——

Stream Ciphers: making OTP practical

Stream ciphers cannot have perfect secrecy !!
* Need a different definition of security

 Security will depend on specific PRG

Weak PRGs

(do not use for crypto)

r[O] := seed

(I++

(a, b are integers, p is a prime)

" r[i] & ar[i-1] + bmod p
output few bits of r[i]

(inear congruential generator with parameters a, b, p: W

has some good statistical properties
But it’s easy to predict

" glibc random():

rli] < (r
output r

o

i-3] + r[i-31]) % 232

i] >>1

)
w

Do not use random() for crypto

(e.g., Kerberos v4)

Attacks on OTP and
Stream Ciphers

Review

* One-time pad:
E(k,m)=k&@® m

* D(k,c) =k D c * k is random (uniform)

* k used only once

e Stream ciphers
making OTP practical using a PRG G: K — {0,1}"
* E(k,m)=G(k) @ m
* D(k,c) = G(k) & c

Attack 1: two time pad isinsecure !l

Never use stream cipher key more than once !!

c, < m; ® PRG(k)
c, <~ m, @ PRG(k)

Eavesdropper does:

Enough redundancy in English and ASCII encoding that:
m®m, - m;, m,

Real-world examples

* Project Venona (1941 — 1946)

Real-world examples

* Project Venona (1941 — 1946)

e MS-PPTP (windows NT):

k = (kC—>s; ks—>c)
ml > Sl TD\ 1
<€

m, S,
M3 Sg J\\\)/
[my || m,] my] B|PRG(K)] [s.11s,11s;] ®PRG(K)]

Need different keys for C—S and S—C

Real-world examples

k: LONG-TERM KEY
802.11b WEP:

_____m] CRc(m)

kE @ ||k

\Y; ciphertext

Client Access Point

Length of IV: 24 bits
* Repeated IV after 224 = 16M frames
* On some 802.11 cards: 1V resets to O after power cycle

Avoid related keys

802.11b WEP:

_____m] CRc(m)

kg @ Hk

ciphertext

24 bits 104 bits

The PRG used in WEP (called RC4) is

N
key for frame #1: (11l k) not secure for such related keys

key for frame #2: (2l k) * Attack that can recover k after 10°
. frames (FMS 2001)
o Very related keys!! Recent attack => 40.000 frames

Not random keys!

A better construction

key for key for key for
frame #1 frame#2 frame #3

= now each frame has a pseudorandom key

better solution: use stronger encryption method (as in WPA2)

Yet another example: disk encryption

—

/*72-. B ob

F et |,

J— T

LL—)\

Changed

The same

T Eve l { A

Encr.

N > (el | -

Two time pad: summary

Never use stream cipher key more than once !!

* Network traffic: negotiate new key for every session (e.g. TLS)
* One key (or “sub-key’’) for traffic from Client to Server
* One key (or “sub-key’’) for traffic from Server to Client

* Disk encryption: typically do not use a stream cipher

Attack 2: nointegrity (OTP is malleable)

Alice
m . c=k&m_ ... =& . ;
ko c* =
C c* K@cHp=
kbkdOmop-=
m(@® p

ck=cl@dp

Modifications to ciphertext are undetected and
have predictable impact on plaintext

Attack 2: nointegrity (OTP is malleable)
Alice Bob

c* =cP|???

e Alice has to answer yes (1) or no (0) to Bob’s invitation. She’ll encrypt the answer with OTP.
* The attacker cannot recover Alice’s answer from CT.
 Still, can the attacker “flip’’ Alice’s answer?

Yes !! Apply @ 1 to the intercepted CT

Attack 2: no integrity (OTP is malleable)

Alice

Bob

kéch1l-=
kdkdp0op1l=
0PO0OP1=

1

Attack 2: no integrity (OTP is malleable)

Alice

Bob

kéch1l-=
kdkdPp1p1l=
0P1P1=

0

Attack 2: nointegrity (OTP is malleable)

m-=
Ali
From|Alice i B.Ob
t t
k ke

Attacker wants to change Alice into Maria.
Can he do that?

Attack 2: nointegrity (OTP is malleable)

Alice Bob

>

D(k,c*) = Maria

1 1
' k

Kk P

c* =c P|???

Attacker wants to change Alice into Maria.
Can he do that?

Attack 2: nointegrity (OTP is malleable)

Alice Bob

>

D(k,c*) = Maria

1 1
' k

Kk P

c* = ¢ P|Alice @ Maria

Attacker wants to change Alice into Maria.
Can he do that?

Attack 2: nointegrity (OTP is malleable)

Alice Bob

T c. e . .
K K k @ c P Alice ® Maria =
k @ k @ Alice & Alice @ Maria =
0 @ Alice @ Alice & Maria =
0 & 0 & Maria =

Maria

c* = c @ Alice & Maria

Consider the bank account number in a wire transfer...

Real-world Stream Ciphers

Old example (software): RC4 (1987

2048 bits
128 bits

Variable size seed 1 byte
(e.g., 128 bits)) per round

seed

e Usedin HTTPS and WEP

2 25 255
RC :I P RG 203 35 | 41 | 87 | 2 23 187 | 72
;

b

Figure 3.12: An example RC4 internal state

The RC4 stream cipher key s is a seed for the PRG and is used to initialize the array S
to a pseudo-random permutation of the numbers O : : : 255. Initialization is
performed using the following setup algorithm:

input: string of bytes s

for i < 0 to 255 do: S[i| <

J<0

for i « 0 to 255 do
k< slimod [s|] // extract one byte from seed
j 4+ (j+S[i]+ k) mod 256
swap(S|i], S[j])

During the loop the index i runs linearly through the array while the index j jumps
around. At each iteration the entry at index i is swapped with the entry at index j.

RC4 PRG

Once the array S is initialized, the PRG generates pseudo-random output one byte
at a time using the following stream generator:
i+ 0, j<0
repmt
«— (i + 1) mod 256
J (;+ ‘1[])1110{12

swap(S|i], S[j])
output S| (S[i] + S[j]) mod 256 |
forever

The procedure runs for as long as necessary. Again, the index i runs linearly through
the array while the index j jumps around. Swapping S[i] and S[j] continuously
shuffles the array S.

Security of RC4

Weaknesses:

1. Bias in initial output: let us assume that the RC4 setup algorithm is perfect and
generates a uniform permutation from the set of all 256! permutations.

Mantin and Shamir showed that, even assuming perfect initialization, the output of
RC4 is biased: Pr[2"byte=0] = 2/256 —-> RC4-drop[n]

2. Fluhrer and McGrew: Prob. of (0,0) is 1/256% + 1/2563

3. Related key attacks: attack on WEP

Old example (hardware): CSS (badly broken)

Content Scrambling System

Linear feedback shift register (LFSR):

1 1 0 1 0 1 >

\ l / (Taps not for all cells)
@ Seed = initial state of the LFSR

'\
DVD encryption (CSS): 2 LFSRs
GSM encryption (A5/1,2): 3 LFSRs > all broken
Bluetooth (EO): 4 LFSRs y

Old example (hardware): CSS (badly broken)

CSS: seed =5 bytes = 40 bits

1 || [first 2 bytes of the seed]) 8 bits (in 8 cycles)
4 17-bit LFSR ‘l'

8 bits
+ (mod 256) >
1 || [last 3 bytes of the seed] T ']‘ One byte at a time
Carry from

previous block

Easy to break in time = 21/

Modern stream ciphers: eStream

PRG: {0,1} x R — {0,1}" n>=s

[

Seed Nonce

Nonce: a non-repeating value for a given key, that is
a pair (k,r) is never used more than once

=> can re-use the key as long as the nonce changes

E(k, m,r) = m & PRG(k, r)

eStream: Salsa 20 (sw+HW)

Salsa20: {0,1}1280r256 x [0 1}¢4 — {0,1}" (max n = 273 bits)

Salsa20(k,r) := H(k,(r,0)) Il H(k,(r,1)) Il..
(Apply h 10 times)

(t/s: fixed 4-byte constants)

(16 bytes) h 64 byte
output

H: @oyes) — h @—>p
(8 bytes) () addition

32 bytes

64 bytes 64 bytes

h: invertible function. designed to be fast on x86 (SSE2)

Performance: cyotos+ 560 [Wweibai]

AMD Opteron, 2.2 GHz (Linux)

PRG Speed (MB/sec)
RC4 126
Salsa20/12 643

eStream _
Sosemanuk 727

When is a PRG “secure’?

When is a PRG “secure”?

1. Unpredictable PRG
2. Secure PRG

We'll see that they are equivalent notions

PRG must be unpredictable

Suppose PRG is predictable:
: Al
i: GE)h.. i = GE)|it1....m

¢ I sven

m GR),...i =3 G(k)]it
IS a problem
G(k)

PRG must be unpredictable
We say that G: K — {0,1}" is predictable if:

3 7efficient” algorithm A and d1 <7< n —1 s.t.

Pr |A(G(k)

17,) = G(k)|it1] > % + €

for non-negligible € (e.g., € = 2%)

PRG is unpredictable if it is not predictable

= Vi: no “efficient” adversary can predict bit (i+1) for “non-neg” ¢

e Suppose G:K — {0,1}" is such that for all k: XOR(G(k)) = 1
* |s G predictable ??

Yes, given the first bit | can predict the second

No, G is unpredictable

Yes, given the first (n-1) bits | can predict the n-th bit
It depends

o b=

e Suppose G:K — {0,1}" is such that for all k: XOR(G(k)) = 1
* |s G predictable ??

Yes, given the first bit | can predict the second

No, G is unpredictable

Yes, given the first (n-1) bits | can predict the n-th bit
It depends

o b=

One more definition of ‘““secure” PRG

Let G:K — {0,1}" bea PRG G:{0,1}°— {0,1} '

Goal:
define what it means that

k< K, output G(k)| [k« {0,1}!, output G(k)]

is “indistinguishable” from

7 < {0,1}", ouput 7] [r < {0,1}1900 output r]

Note

A minimum security requirement for a PRG is that
the length s of the random seed should be sufficiently large

so that a search over 2% elements (the total number of possible seeds)
is infeasible for the adversary.

Statistical Tests

Statistical test on {0,1}:

An algorithm A s.t. A(x) outputs “0” or “1”,
thatis A:{0,1}» —{0,1}

Examples:
1. A(x)=1 iff |#0(x) - #1(x)| < 10 Vn
2. A(x)=1 iff |#00(x) — n/4| <10 Vn

3. A(x)=1 iff max-run-of-0(x) < 10 log,(n)

Advantage

* Let G:K —{0,1}" be a PRG
e Let A:{0,1}" — {0,1} be a statistical test on {0,1}"

Define: Advpra|A,G|=| Pr |[A(G(k))=1]— Pr [A(r)=1]
k<K r<—{0,1}"

* Adv close to 0 => A cannot distinguish G from random
* Adv non-negligible => A can distinguish G from random
* Adv close to 1 => A can distinguish G from random very well

Asilly example: A(x) =0 = Advpgg [AG] = -

e 0,1

Example of Advantage

 Suppose G:K —{0,1}" satisfies for 2/3 of keys in K

* Define statistical test A(x) as:

Then
Adv, [AG] = | PrLA(G(K)=1] - PrlA(r)=1] | =

| 2/3-1/2 | = 1/6

A breaks G with advantage 1/6 (which is not negligible)
hence G is not a good PRG

Secure PRGs: crypto definition

Definition:
We say that G : K— {0,1}" is a secure PRG if
for every “efficient” statistical test A, Advp..[A,G] is “negligible”

Are there provably secure PRGs? Unknown (=> P # PN)

A secure PRG is unpredictable

We show: PRG predictable = PRG isinsecure

Suppose A is an efficient algorithm s.t.

Pr [A(G(k)

o) = G(R)|ia] > L + e

for non-negligible € (e.g. €=1/1000)

A secure PRG is unpredictable

Define statistical test B as:

.....

B(X) = « !

Thm (Yao’82): an unpredictable PRG is secure

Let G: K — {0,1}" be PRG

“Thm”: if Vi€{0,...,n-1} G isunpredictable at position i
then G is a secure PRG.

If next-bit predictors cannot distinguish G from random
then no statistical test can !!

More Generally

Let P, and P, be two distributions over {0,1}"

We say that P, and P, are computationally indistinguishable (denoted P, =, P,)

if V 7eflicient” statistical test A

XZCDl AX)=1] - X(fi?;DQ A(X) = 1]| < negligible

Example: aPRGissecureif {k«—K: G(k)} =, uniform({0,1}")

Semantic Security

What is a secure cipher?

Attacker’s abilities: CT only attack: obtains one ciphertext

Possible security requirements:
attempt #1: attacker cannot recover secret key
E(k, m) =m would be secure

attempt #2: attacker cannot recover all of plaintext
E(k, my|| my)=m, || k@ m; would be secure

Shannon’s idea:
CT should reveal no “info” about PT

Recall Shannon’s perfect secrecy

Let (E,D) be a cipher over (K,M,C)

Shannon’s perfect secrecy: e The two distributions must be
identical
(E,D) has perfect secrecyif Vmgm, €M (|my|=|m,]|) « Too strong definition
* It requires long keys
{E(k,mg)} = {E(kmy)} where k<K e Stream Ciphers can’t satisfy it

Weaker Definition:

Rather than requiring the two
distributions to be identical, we

{ E(k,m,) } { E(k,m,) } where kK require them to be
COMPUTATIONALLY

INDISTINGUISHABLE

(E,D) has perfect secrecyif Vmgm, €M (|my| =|m,]|)

(One more requirement) ... but also need adversary to exhibit m,, m, € M explicitly

Semantic Security (one-time key)

For a cipher Q = (E,D) and an adversary A define a game as follows.

For b=0,1 define experiments EXP(0) and EXP(1) as:

i

) my, m eM: |my|=|m|

c < E(k, m,)

b’ e {0,1}
Adv.[A,Q] := | Pr[EXP(0)=1]- Pr[EXP(1)=1] |

Semantic Security (one-time key)

) my, m eM: |my|=|m,|

EXP(0): ¢ < E(k,mp) b” € {0,1}
) mo,mléM: |m0|=|m1|

EXP(1): C <« E(k’ml) b’ e {0;1}

>

Adv.[A,Q] = ‘ Pr[EXP(0)=1] - Pr[EXP(1)=1] ‘ should be “negligible” for all “efficient” A

Semantic Security (one-time key)
Definition:
Q is semantically secure if for all “efficient” A,

Adv,[A,Q] is “negligible”.

Example

Suppose efficient A can always deduce LSB of PT from CT
= Q is not semantically secure.

be{o,1}
v

m, s.t. LSB(m,)=0

Adversary B (us)
m, s.t. LSB(m,)=1

c < E(k, m,) C

LSB(m,)= -

Then Adv[B,Q] = | Pr[EXP(0)=1] - Pr[EXP(1)=1] ‘ -

Stream ciphers are semantically secure

Theorem:

G is a secure PRG = stream cipher Q derived from G is semantically secure

In particular:

YV semantic security adversary A, 3 a PRG adversary B (i.e., a statistical test) s.t.

Adv[A,Q] < 2 - Advy.[B,G]

	Diapositiva 1: Stream Ciphers
	Diapositiva 2: Outline
	Diapositiva 3: Symmetric Ciphers
	Diapositiva 4: The One-Time Pad (Vernam 1917)
	Diapositiva 5: The One-Time Pad (Vernam 1917)
	Diapositiva 6: The One-Time Pad (Vernam 1917)
	Diapositiva 7: What is a secure cipher?
	Diapositiva 8: Information Theoretic Security (Shannon 1949)
	Diapositiva 9: Information Theoretic Security
	Diapositiva 10: Is OTP ‘’secure’’?
	Diapositiva 11
	Diapositiva 12: Is OTP ‘’secure’’?
	Diapositiva 13: The bad news …
	Diapositiva 14: Pseudorandom Generators and Stream Ciphers
	Diapositiva 15: Review
	Diapositiva 16: Stream Ciphers: making OTP practical
	Diapositiva 17: Stream Ciphers: making OTP practical
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20: Stream Ciphers: making OTP practical
	Diapositiva 21: Weak PRGs (do not use for crypto)
	Diapositiva 22: Attacks on OTP and Stream Ciphers
	Diapositiva 23: Review
	Diapositiva 24: Attack 1: two time pad is insecure !!
	Diapositiva 25: Real-world examples
	Diapositiva 26: Real-world examples
	Diapositiva 27: Real-world examples
	Diapositiva 28: Avoid related keys
	Diapositiva 29: A better construction
	Diapositiva 30: Yet another example: disk encryption
	Diapositiva 31: Two time pad: summary
	Diapositiva 32: Attack 2: no integrity (OTP is malleable)
	Diapositiva 33: Attack 2: no integrity (OTP is malleable)
	Diapositiva 34: Attack 2: no integrity (OTP is malleable)
	Diapositiva 35: Attack 2: no integrity (OTP is malleable)
	Diapositiva 36: Attack 2: no integrity (OTP is malleable)
	Diapositiva 37: Attack 2: no integrity (OTP is malleable)
	Diapositiva 38: Attack 2: no integrity (OTP is malleable)
	Diapositiva 39: Attack 2: no integrity (OTP is malleable)
	Diapositiva 40: Real-world Stream Ciphers
	Diapositiva 41: Old example (software): RC4 (1987)
	Diapositiva 42: RC4 PRG
	Diapositiva 43: RC4 PRG
	Diapositiva 44: Security of RC4
	Diapositiva 45: Old example (hardware): CSS (badly broken)
	Diapositiva 46: Old example (hardware): CSS (badly broken)
	Diapositiva 47: Modern stream ciphers: eStream
	Diapositiva 48: eStream: Salsa 20 (SW+HW)
	Diapositiva 50: Performance: Crypto++ 5.6.0 [Wei Dai]
	Diapositiva 52: When is a PRG ‘‘secure’’?
	Diapositiva 53: When is a PRG ‘‘secure’’?
	Diapositiva 54: PRG must be unpredictable
	Diapositiva 55: PRG must be unpredictable
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58: One more definition of ‘‘secure’’ PRG
	Diapositiva 59: Note
	Diapositiva 60: Statistical Tests
	Diapositiva 61: Advantage
	Diapositiva 62: Example of Advantage
	Diapositiva 63: Secure PRGs: crypto definition
	Diapositiva 64: A secure PRG is unpredictable
	Diapositiva 65: A secure PRG is unpredictable
	Diapositiva 66: Thm (Yao’82): an unpredictable PRG is secure
	Diapositiva 67: More Generally
	Diapositiva 68: Semantic Security
	Diapositiva 69: What is a secure cipher?
	Diapositiva 70: Recall Shannon’s perfect secrecy
	Diapositiva 71: Semantic Security (one-time key)
	Diapositiva 72: Semantic Security (one-time key)
	Diapositiva 73: Semantic Security (one-time key)
	Diapositiva 74: Example
	Diapositiva 76: Stream ciphers are semantically secure

