
Lesson 19

Basic Reinforcement Learning

Andrea Asperti 1



Reinforcement learning

Reinforcement Learning is about learning behaviors: taking
actions and decisions in an automatic way in response to a
mutable external environment.

Andrea Asperti 2



Reinforcement learning problems

Problems involving an agent
interacting with an environ-
ment, which provides numeric
rewards

state s t+1

state s
reward r

action a t
t

t

Environment

Agent

At time step t, the agent is in state st

- agent selects action at according to some policy π(at |st)
- environment answer with a local reward rt

- and then enters into a new state st+1

A policy π(a|s) is a probability distribution of actions given states.

Andrea Asperti 3



Future Cumulative Reward

We want to learn the best way to act, that is, the best policy.

according to what objective?
we want to maximise the future comulative reward

Supposing to start at current time = 0,

R = r1 + r2 + r3 . . .

or equivalently

R =
∑
1≤i

ri

Notation: big R for cumulative reward, small r for local rewards.

Andrea Asperti 4



Future Cumulative Reward

We want to learn the best way to act, that is, the best policy.

according to what objective?
we want to maximise the future comulative reward

Supposing to start at current time = 0,

R = r1 + r2 + r3 . . .

or equivalently

R =
∑
1≤i

ri

Notation: big R for cumulative reward, small r for local rewards.

Andrea Asperti 5



Future Cumulative Reward

We want to learn the best way to act, that is, the best policy.

according to what objective?
we want to maximise the future comulative reward

Supposing to start at current time = 0,

R = r1 + r2 + r3 . . .

or equivalently

R =
∑
1≤i

ri

Notation: big R for cumulative reward, small r for local rewards.

Andrea Asperti 6



Future Cumulative Reward

We want to learn the best way to act, that is, the best policy.

according to what objective?
we want to maximise the future comulative reward

Supposing to start at current time = 0,

R = r1 + r2 + r3 . . .

or equivalently

R =
∑
1≤i

ri

Notation: big R for cumulative reward, small r for local rewards.

Andrea Asperti 7



Future Discounted Cumulative Reward

We could also take into account the fact that distant rewards are
less likely than close ones, that are more predictable.

To this aim we multiply the reward by a discount rate 0 < γ <= 1
exponentially decreasing with time:

R =
∑
1≤i

γ i ri

Andrea Asperti 8



Example: Cart-pole problem

Objective: balance a pole on
top of a movable cart

State: angle, angular speed,
position, horizontal velocity
Action: horizontal force ap-
plied on the cart
Reward: +1 at each time step
if the pole is upright

Andrea Asperti 9



3D balancing

A similar problem in 3D, using the Unity simulation framework
(the “ultimate game development platform”).

Video on you tube.

Andrea Asperti 10

https://unity3d.com/
https://www.youtube.com/watch?v=ZnBfvARKXeo


Mathematical formulation

How can we formalize the RL problem?

state s t+1

state s
reward r

action a t
t

t

Environment

Agent

Andrea Asperti 11



Markov Decision Process

Markov property: Current state completely characterises the
state of the world: future actions only depend on the current state.

Defined by a tuple (S,A,R,P, γ)
S: set of possible states
A: set of possible actions
R: reward probability given (state, action) pair
P: transition probability to next state given (state, action) pair
γ: discount factor

Andrea Asperti 12



The optimal policy

At time step t = 0, the environment in state s0.
Then, for t = 0 until done:

- agent selects action at according to some policy π(at |st)
- environment samples reward rt ∼ R(rt |st , at)
- environment samples next state st+1 ∼ P(st+1|st , at)

A policy produces trajectories (or paths) s0, a0, r1, s1, a1, r2, s2, . . .

We want to find an optimal policy, that is

π∗ = argmaxπ E
∑
t≥0

γtrt

where the average is taken over all possible trajectories.

Andrea Asperti 13



Model-free vs. model-based

The transition from state st to state st+1 is not always
determinstic, but governed by some probability P(st+1|st , at).

If the learning model needs to learn this probability P(st+1|st , at),
then it is called model-based.

In model-free approaches, this information is left implicit: you learn
to take actions from past experience relying on trial-and-error.

We shall mostly investigate model free approaches.

Andrea Asperti 14



Model-based, planning, simulation

Having knowledge of the model (transitions and rewards) we can
build a simulator.

Having a simulator, we can do planning (e.g. explore trajectories
up to a certain horizon and select the one with maximum return)

But building a simulator is a complex task, and in some cases an
impossible one.

Andrea Asperti 15



Model-free approaches

Do we really need knoweldge of the model to decide the best
action?

When we drive, do we have a precise comprehension of the effect
that our actions will have on the dymamics of the car?

Frequently, we are not even aware of the current speed of the car.

What we learn (in an almost unconscious way) is that given the
road ahead we need to re(act) in given way.

Andrea Asperti 16



Model-free approaches

Do we really need knoweldge of the model to decide the best
action?

When we drive, do we have a precise comprehension of the effect
that our actions will have on the dymamics of the car?

Frequently, we are not even aware of the current speed of the car.

What we learn (in an almost unconscious way) is that given the
road ahead we need to re(act) in given way.

Andrea Asperti 17



Model-free approaches

Do we really need knoweldge of the model to decide the best
action?

When we drive, do we have a precise comprehension of the effect
that our actions will have on the dymamics of the car?

Frequently, we are not even aware of the current speed of the car.

What we learn (in an almost unconscious way) is that given the
road ahead we need to re(act) in given way.

Andrea Asperti 18



Exploration/Exploitation trade off

Reinforcement learning requires acquisition of experience
interacting with the environment.

All techniques have to deal with the exploration/exploitation
trade-off.

Exploration is finding more information about the environment,
usually requiring randomicity

Exploitation is taking advantage of the available information to
direct and possibly improve the exploration

Andrea Asperti 19



Model free approaches

Two basic techniques:

Value-based We try to evaluate color orange each state s with a
value function V (s). The policy is implicit: we shall choose the
action taking us to the next state with the best evaluation.

Policy-Based we directly try to improve the current policy,
hopefully optimizing it. Remember that the policy defines the
agent behavior at a given state:

a = π(s)

better, π(s) is the probability to perform a in state s.

Andrea Asperti 20



Next arguments

Value-based approaches

Andrea Asperti 21



Value function and Q-function

Let us assume a given policy π.
How good is a state?

V (s) = E
s0=s

∑
t≥0

γtrt

How good is action a for state s?

Q(s, a) = E
s0=s
a0=a

∑
t≥0

γtrt

Expectations are on all trajectories defined by the given strategy.

Andrea Asperti 22



Relation between V and Q

We can easily compute V from Q

V (s) =
∑
a

π(a|s) ∗ Q(s, a)

i.e. we sum every action-value weighted by the probability π(a|s)
to take that action.

However, to compute Q from V we would need (model-based!!)
knowledge of the state s ′ we are likely to end up by taking action a:

Q(s, a) =
∑
s′

P(s ′|s, a) ∗ V (s ′)

Andrea Asperti 23



Optimal policy

The optimal Q-value function Q∗(s, a) is the maximum expected
cumulative reward achievable from state s performing action a:

Q∗(s, a) = maxπ E
s0=s
a0=a

∑
t≥0

γtrt

The optimal policy π∗ consists in taking the best action in any
state as specified by Q∗

Andrea Asperti 24



Bellman equation

The Bellman equation expresses a relation between the solution for
a given problem in terms of the solutions for subproblems.

Q∗ satisfies the following Bellman equation:

Q∗(s, a) = Es′ [r0 + γmaxa′Q
∗(s ′, a′)]

Indeed, Rs′ = maxa′Q
∗(s ′, a′) = V ∗(s ′) is the optimal future

cumulative reward from s ′, and the optimal future cumulative
reward from s when taking action a is r0 + γRs′

The optimal policy π∗ consists in taking the best action in any
state as specified by Q∗

Andrea Asperti 25



Computing Q∗ via iterative update
We know that Q∗ satisfies the Bellman equation:

Q∗(s, a) = Es′ [r0 + γmaxa′Q
∗(s ′, a′)]

The idea is to use it to perform iterative update on progressive
approximations Q i of Q∗:

Q i+1(s, a)︸ ︷︷ ︸
next
estimation

← Q i (s, a)︸ ︷︷ ︸
current
estimation

+α(r0 + γmaxa′Q
i (s ′, a′)− Q i (s, a)︸ ︷︷ ︸

recursive update

)

α is a learning rate.

The recursive update is the derivative of the quadratic distance
between Q i (s, a) and r0 + γmaxa′Q

i (s ′, a′) that should be equal,
according to the Bellman equation.

Andrea Asperti 26



Q-learning pseudo code (first approx)

0. initialize the Q-table

1. repeat until termination of the episode:

2. choose action a in current state s
according to the current Q-table

3. perform action a and observe reward r and new state s’

4. update the table:

Q(s, a)← Q(s, a) + α(r0 + γmaxa′Q(s ′, a′)− Q(s, a))

Andrea Asperti 27



Q-learning transitions

Q i+1(s, a)︸ ︷︷ ︸
next
estimation

← Q i (s, a)︸ ︷︷ ︸
current
estimation

+α(r0 + γmaxa′Q
i (s ′, a′)− Q i (s, a)︸ ︷︷ ︸

recursive update

)

In order to perform an update, all the information we need is
contained in a tuple (transition):

(s, a, r ,T , s ′)

where:

- s is the current state

- a is the action done

- r is the reward obtained

- T is a boolean stating the termination of the episode

- s’ is the new state after doing the action

Andrea Asperti 28



Q-learning transitions

Transitions (s,a,r,T,s’) are collected by exploring the environment.

Each tuple is independent from the others.

They can be saved into an experience replay buffer and re-executed
at leisure. Better than learning from batches of consecutive
samples because:

- consecutive samples are correlated ⇒ inefficient learning

- great risk of introducing biases during learning by exploiting
unbalanced sets of transitions

Q-learning is an off-policy techique: it does not rely on any policy,
and only needs local transitions (tuples).

Andrea Asperti 29



Exploration vs. exploitation

At start, the Q-table is not informative.

Taking actions according to it could introduce biases, and prevent
exploration.

In early stages, we want to privilege random exploration, and start
relying more on the table when more experience is acquired.

Andrea Asperti 30



epsilon greedy strategy

We specify an exploration rate ε, initially equal to 1.

This is the rate of steps that done randomly.

We generate a random number. If this number is larger then ε,
then we choose the action according to the information collected in
the Q-table (exploitation); otherwise we choose the action at
random (exploration)

We progressively reduce ε along training.

Andrea Asperti 31



epsilon greedy strategy

Andrea Asperti 32



Q-learning pseudo code (revisited)
initialize the Q-table, Replay Buffer D, ε = 1
repeat for the desired number of episodes:

initialize state s
repeat until termination of the episode:

with probability ε choose a random move a
otherwise a = maxaQ(s, a)
perform action a and observe reward r and new state s’
store transition (s, a, r ,T , s ′) in D
sample random minibatch of transitions (s, a, r ,T , s ′) from D
for each transition in the minibatch:

R =

{
r if T

r + γmaxa′Q(s ′, a′) if not T

Q(s, a)← Q(s, a) + α(R − Q(s, a))

decrement ε

Andrea Asperti 33



Next arguments

Example

Andrea Asperti 34



A simple MDP: Grid World

Actions = {
1. right

2. up

3. left

4. down

}

*

*

A negative reward
for each transition
(e.g. r = -1)

Objective: reach an exit (greyed out) in least number of steps

Andrea Asperti 35



About the Grid World

The grid world is an abstraction. Each cell is a different state and
we can pass from a state to another taking actions.

*

*

The visibility of the agent is confined to its
current cell.
He can only choose an action; it is the action
that determines the new state we end up
into.

We will see that little by little, by trial and error, the agent will
discover the good way of action that will allow him to reach a
winning position starting from any state.

Andrea Asperti 36



Policies for the Grid World

*

*

*

*

random policy optimal policy

Andrea Asperti 37



Optimal Q-value Q∗(s, a)

*

*

0

0

−1

−2

−3

−3

−1

−2 −3

−3

−2

−2

−2

−4

−2

−3

−3

−4

−3

−3 −3

−4

−1

−2

−2

−3−2−4

−2

−3

−1

−2

−2−3

−2 −2 −3

−2

−3

−3

−1

−3

If s
a−→ s ′, then (Bellman’s equation)

Q∗(s, a) = r + maxa′Q
∗(s ′, a′) = −1 + V ∗(s ′)

Andrea Asperti 38



Q-value and V-value

*

*

0

0

−1

−2

−3

−3

−1

−2 −3

−3

−2

−2

−2

−4

−2

−3

−3

−4

−3

−3 −3

−4

−1

−2

−2

−3−2−4

−2

−3

−1

−2

−2−3

−2 −2 −3

−2

−3

−3

−1

−3

−1

−1 −1

−1

−2

−2−3−2

−2

−1*

*0

0

Optimal Q-value Optimal V-value

The V-value is just the max of the Q-values, over all possible
actions:

V (s) = maxaQ(s, a)

Andrea Asperti 39



Demo

for n in range(0,episodes):

s0 = random_state()

while not term(s0):

#choose action

if np.random.random() > epsilon:

a = np.argmax(Qtable[s0]) #exploit Qtable

else:

a = np.random.randint(4) #random move

s1 = move(s0,a)

T = term(s1)

if T:

R = -1

else:

R = -1 + gamma*np.max(Qtable[s1])

Qtable[s0][a] = Qtable[s0][a] + alpha*(R-Qtable[s0][a])

s0 = s1

epsilon = epsilon * epsilon_rate #decrease epsilon

Andrea Asperti 40



Results

*

*

0

0

−1

−2

−3

−3

−1

−2 −3

−3

−2

−2

−2

−4

−2

−3

−3

−4

−3

−3 −3

−4

−1

−2

−2

−3−2−4

−2

−3

−1

−2

−2−3

−2 −2 −3

−2

−3

−3

−1

−3

Theoretical optimal Q-value Result of the algorithm

Result of algorithm after 10000 iterations.

Andrea Asperti 41



How learning works in practice

When we start, we only know the right values for terminal states.

The other states will get a random value.

Actions = {
1. right

2. up

3. left

4. down

}

*

*

0

0

A negative reward
for each transition
(e.g. r = -1)

Andrea Asperti 42



How learning works in practice

Most of the actions produce
meaningless updates, since the
current estimation of the Q-
value function is erroneous

*

*

0

0

The relevant actions are those
leading to states whose Q-value
is accurate; at the beginning
these are just terminal states

*

*

0

0

Andrea Asperti 43


