
Lesson 17

Recurrent Neural Networks
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Modelling sequences

Typical problems:

• turn an input sequence into an output sequence (possibly
in a different domain):
I - translation between different languages
I - speech/sound recognition
I - ...

• predict the next term in a sequence
The target output sequence is the input sequence with an
advance of 1 step. Blurs the distinction between supervised
and unsupervised learning.

• predict a result from a temporal sequence of states
Typical of Reinforcement learning, and robotics.
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Memoryless approach

Compute the output as a result of a fixed number of elements in
the input sequence

input(t−2)input(t−3) input(t−1) input(t)...

NN

... output(t)

Used e.g. in

I - Bengio’s (first) predictive natural language model

I - Qlearning for Atari Games

Difficult to deal with very long-term dependencies.
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Simple problems requiring memory
arithmetical sum

←−
. . . 1 1 0 1 1 1 1
. . . 0 1 1 1 0 1 0

. . . 0 1 0 1 0 0 1

the T-maze

✙

✗

✔
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Recurrent Neural Networks

In presence of backward connections, hidden states depend on the
past history of the net
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The hidden state may be updated in complex ways, according to
the usual non-linear dynamics of neural nets.
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Temporal unfolding
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Weights are updated at precise
times steps

The recurrent net is just a lay-
ered net that keeps reusing the
same weights
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Sharing weights through time

It is easy to modify the backprop
algorithm to incorporate equality
constraints between weights.

We compute the gradients as
usual, and then average gradients
so that they induce a same update.

If the initial weights started satis-
fied the constraints, they will con-
tinue to do.

To constrain w1 = w2

we need ∆w1 = ∆w2

compute
∂E

∂w1
and

∂E

∂w2

and use
∂E

∂w1
+

∂E

∂w2

to update both w1 and w2
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Backpropagation through time - BPTT

• think of the recurrent net as a layered, feed-forward net with
shared weights and train the feed-forward net with weight
constraints

• reasoning in the time domain:

- the forward pass builds up a stack of the activities of all the
units at each time step

- the backward pass peels activities off the stack to compute the
error derivatives at each time step

- finally we add together the derivatives at all the different times
for each weight.
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Hidden state initialization

We need to specify the initial activity state of all the hidden and
output units.

The best approach is to treat them as parameters, learning them in
the same way as we learn the weights:

- start off with an initial random guess for the initial states

- at the end of each training sequence, backpropagate through
time all the way to the initial states to get the gradient of the
error function with respect to each initial state

- adjust the initial states by following the negative gradient
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Next Arguments

Why training
Recurrent Neural Nets

is difficult

(based on Hinton’s course)
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https://www.coursera.org/learn/neural-networks/lecture/kTsBP/why-it-is-difficult-to-train-an-rnn


The backward pass is linear

There is a big difference between the for-
ward and backward passes

In the forward pass we use squashing func-
tions (like the logistic) to prevent the ac-
tivity vectors from exploding

The backward pass is linear. If you double
the error derivatives at the final layer, all
the error derivatives will double.

The forward pass determines the slope of

the linear function used for backpropagat-

ing through each neuron
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Vanishing or exploding gradients

What happens to the magnitude of the gradients as we
backpropagate through many layers?

- if the weights are small, the gradients shrink exponentially

- if the weights are big the gradients grow exponentially

Typical feed-forward neural nets can cope with these exponential
effects because they only have a limited number of layers.

In an RNN trained on long sequences (e.g. 100 time steps) the
gradients can easily explode or vanish.
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Next Arguments

Long-Short Term Memory (LSTM)

Largely based on Colah’s blog
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Unrolling recurrent nets

In the following, we shall mostly depict RNN in unrolled form.

A forward link between two units muts be understood as a looping
connection.
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A simple, traditional RNN

The content of the memory cell Ct , and the input xt are combined
through a simple neural net to produce the output ht that
coincides with the new content of the cell Ct+1.

Why Ct+1 = ht? Better trying to preserve the memory cell, letting
the neural net learn how and when to update it.
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The overall structure of a LSTM
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C-line and gates

The LSTM has the ability to re-
move or add information to the
cell state, in a way regulated by
suitable gates.

Gates are a way to optionally let
information through: the prod-
uct with a sigmoid neural net
layer simulates a boolean mask.

the C-line

a gate
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The forget gate

The forget gate decides what part of the memory cell to preserve
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The update gate

The input gate decides what part of the input to preserve.

The tanh layer creates a vector of new candidate values C̃t to be
added to the state.
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Cell updating

We multiply the old state by the boolean mask ft .

Then we add it ∗ C̃t .
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output gate

The output ht is a filtered version of the content of the cell.

The output gate decides what parts of the cell state to output.

The tanh function is used to renormalize values in the interval
[−1, 1].
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Thousands of variants
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