
Lesson 17

Recurrent Neural Networks

Andrea Asperti 1



Modelling sequences

Typical problems:

• turn an input sequence into an output sequence (possibly
in a different domain):
I - translation between different languages
I - speech/sound recognition
I - ...

• predict the next term in a sequence
The target output sequence is the input sequence with an
advance of 1 step. Blurs the distinction between supervised
and unsupervised learning.

• predict a result from a temporal sequence of states
Typical of Reinforcement learning, and robotics.

Andrea Asperti 2



Memoryless approach

Compute the output as a result of a fixed number of elements in
the input sequence

input(t−2)input(t−3) input(t−1) input(t)...

NN

... output(t)

Used e.g. in

I - Bengio’s (first) predictive natural language model

I - Qlearning for Atari Games

Difficult to deal with very long-term dependencies.

Andrea Asperti 3



Simple problems requiring memory
arithmetical sum

←−
. . . 1 1 0 1 1 1 1
. . . 0 1 1 1 0 1 0

. . . 0 1 0 1 0 0 1

the T-maze

✙

✗

✔

Andrea Asperti 4



Recurrent Neural Networks

In presence of backward connections, hidden states depend on the
past history of the net

w
4

2w

w
3

1
w

The hidden state may be updated in complex ways, according to
the usual non-linear dynamics of neural nets.

Andrea Asperti 5



Temporal unfolding

w
4

2w

w
3

1
w

Weights are updated at precise
times steps

The recurrent net is just a lay-
ered net that keeps reusing the
same weights

2w

w
41

w

t=0

2w

2w

w
3

w
3

w
3

w
41

w

w
41

w

w
41

w

t=1

t=2

t=3

Andrea Asperti 6



Sharing weights through time

It is easy to modify the backprop
algorithm to incorporate equality
constraints between weights.

We compute the gradients as
usual, and then average gradients
so that they induce a same update.

If the initial weights started satis-
fied the constraints, they will con-
tinue to do.

To constrain w1 = w2

we need ∆w1 = ∆w2

compute
∂E

∂w1
and

∂E

∂w2

and use
∂E

∂w1
+

∂E

∂w2

to update both w1 and w2

Andrea Asperti 7



Backpropagation through time - BPTT

• think of the recurrent net as a layered, feed-forward net with
shared weights and train the feed-forward net with weight
constraints

• reasoning in the time domain:

- the forward pass builds up a stack of the activities of all the
units at each time step

- the backward pass peels activities off the stack to compute the
error derivatives at each time step

- finally we add together the derivatives at all the different times
for each weight.

Andrea Asperti 8



Hidden state initialization

We need to specify the initial activity state of all the hidden and
output units.

The best approach is to treat them as parameters, learning them in
the same way as we learn the weights:

- start off with an initial random guess for the initial states

- at the end of each training sequence, backpropagate through
time all the way to the initial states to get the gradient of the
error function with respect to each initial state

- adjust the initial states by following the negative gradient

Andrea Asperti 9



Next Arguments

Why training
Recurrent Neural Nets

is difficult

(based on Hinton’s course)

Andrea Asperti 10

https://www.coursera.org/learn/neural-networks/lecture/kTsBP/why-it-is-difficult-to-train-an-rnn


The backward pass is linear

There is a big difference between the for-
ward and backward passes

In the forward pass we use squashing func-
tions (like the logistic) to prevent the ac-
tivity vectors from exploding

The backward pass is linear. If you double
the error derivatives at the final layer, all
the error derivatives will double.

The forward pass determines the slope of

the linear function used for backpropagat-

ing through each neuron

Andrea Asperti 11



Vanishing or exploding gradients

What happens to the magnitude of the gradients as we
backpropagate through many layers?

- if the weights are small, the gradients shrink exponentially

- if the weights are big the gradients grow exponentially

Typical feed-forward neural nets can cope with these exponential
effects because they only have a limited number of layers.

In an RNN trained on long sequences (e.g. 100 time steps) the
gradients can easily explode or vanish.

Andrea Asperti 12



Next Arguments

Long-Short Term Memory (LSTM)

Largely based on Colah’s blog

Andrea Asperti 13

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Unrolling recurrent nets

In the following, we shall mostly depict RNN in unrolled form.

A forward link between two units muts be understood as a looping
connection.

Andrea Asperti 14



A simple, traditional RNN

The content of the memory cell Ct , and the input xt are combined
through a simple neural net to produce the output ht that
coincides with the new content of the cell Ct+1.

Why Ct+1 = ht? Better trying to preserve the memory cell, letting
the neural net learn how and when to update it.

Andrea Asperti 15



The overall structure of a LSTM

Andrea Asperti 16



C-line and gates

The LSTM has the ability to re-
move or add information to the
cell state, in a way regulated by
suitable gates.

Gates are a way to optionally let
information through: the prod-
uct with a sigmoid neural net
layer simulates a boolean mask.

the C-line

a gate

Andrea Asperti 17



The forget gate

The forget gate decides what part of the memory cell to preserve

Andrea Asperti 18



The update gate

The input gate decides what part of the input to preserve.

The tanh layer creates a vector of new candidate values C̃t to be
added to the state.

Andrea Asperti 19



Cell updating

We multiply the old state by the boolean mask ft .

Then we add it ∗ C̃t .

Andrea Asperti 20



output gate

The output ht is a filtered version of the content of the cell.

The output gate decides what parts of the cell state to output.

The tanh function is used to renormalize values in the interval
[−1, 1].

Andrea Asperti 21



Thousands of variants

Essential bibliography

• S.Hochreiter, J. Schmidhuber. ”Long short-term memory”. Neural
Computation. 9 (8): pp.1735-1780. 1997

• F.A.Gers, Jürgen Schmidhuber, F.Cummins. ”Learning to Forget:
Continual Prediction with LSTM”. Neural Computation. 12 (10),
pp.2451-2471. 2000.

• F.A.Gers, E.Schmidhuber. ”LSTM recurrent networks learn simple
context-free and context-sensitive languages”. IEEE Transactions
on Neural Networks. 12 (6): pp. 1333-1340. 2001.

• Y.Chung, C.Gulcehre, K.Cho, Y.Bengio. ”Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling”.
arXiv:1412.3555. 2014

Andrea Asperti 22


