Lesson 15

Generative Adversarial Networks

Suggested reading:
NIPS 2016 Tutorial: Generative Adversarial Networks



https://arxiv.org/abs/1701.00160
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Generative Models

A Generative Adversarial Network (GAN) is a
(similarly to VAE).

Generative Model: a model that tries to learn the actual
distribution pga, of real data from available samples (training set).

Goal: build probaility distribution ppoder close to pyata.

We can either try to
> explicitly estimate the distribution
» build a generator able to sample according to pmodel

Generative modles mostly focus on sample generation.
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Why studying Generative Models?

e improve our knowledge on the of data
and the encoding of complex high-dimensional distributions

e generative models, and GANs in particular, allow us to work

with , forcing a choice instead of
averaging
e find a way to from a given

probability distribution

e generative models can be incorporated into reinforcement
learning, e.g. to predict possible futures
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Multi-modal output

The output of generative models is intrinsically D eg.
generate “a car”

Even if suitably constrained (model, orientation, color, ...), there
are a lot of possible outputs.

If we base learning on minimizing an average distance with all
elements in the training set with the “expected features”, we could
end up with
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Regions of high probability

Patches from the natural image manifold (red) and super-resolved
patches obtained with MSE (blue) and GAN (orange).

Pixel-wise average of possible solu- _

. . . Natural Image Manifold
tions could produce images outside ) MSE-based Solution
the actual data manifold.

GAN drives the reconstruction to-
wards the natural image manifold
producing perceptually more con-

vincing solutions.

picture from Photo-Realistic Single Image Super-Resolution. C.Ledig et al., 2016.
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https://arxiv.org/abs/1609.04802

Average of possible outputs

Example: generating the next frame in a video.

Averaging on all possible outputs could produce a blurred image

Unsupervised Learning of Visual Structure using Predictive
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Generative Networks. W.Lotter, G.Kreiman and D.Cox, 2015.
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https://arxiv.org/abs/1511.06380
https://arxiv.org/abs/1511.06380

Another application: super-resolution

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)
=~ v

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4x upscaling]

Forcing to operate a choice - instead of mediating - could result in
sharper images

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial

Network. C.Ledig et al., 2016. - = -
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https://arxiv.org/abs/1609.04802
https://arxiv.org/abs/1609.04802

The GAN approach: a two player game

A game between the generator and the discriminator

/ O real data _—
ey r sigmoi
’l @ pduta( ) function
9 | Discriminator 1
Network
Generator D(x)
Network ]
generated
data

Generative Adversarial Networks |.J.Goodfellow et al., 2014
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https://arxiv.org/abs/1406.2661

A Min Max game

Min(;MaxD V(D, G)

V(Dv G) = EXdiata(x)[log D(X)] + EZNPZ(Z)[IOg (1 - D(G(Z)))]

> By pyu(x)log D(x)] = negative cross entropy of the
discriminator w.r.t the true data distribution

> E,p.(s)llog (1 — D(G(z)))] = negative cross entropy of the
“false” discriminator w.r.t the fake generator
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An example

. a

Y/ Y/ /i

(a) (b) (c) (dy

Figure 1: Generative adversarial nets are tained by simultaneously updating the discriminative distribution
(2, blue, dashed line) so that it discriminates between ples from the data generating distribution (black,
dotted line} pa from those of the generative distribution p, (G) (green, solid line). The lower horizontal line is
the domain from which = is sampled. in this case uniformly. The horizontal line above is part of the domain
of @. The upward arrows show how the mapping @ = Gz} imposes the non-uniform distribution p, on
transformed samples. (7 contracts in regions of high density and expands in regions of low density of p,. (a)
Consider an adversarial pair near convergence: py is similar to pae and D) is a partially accurate classifier.
b} In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D (x) =
(¢} After an update to (7. gradient of 12 has guided () to flow to regions that are more likely
as data. (d) After several steps of training. if (7 and [) have enough capacity, they will reach a
point at which both cannot improve because p; = juw. The discriminator is unable to differentiate between
the two distributions, i.e. Dix) = %
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Training

Alternately train the discriminator, freezing the generator, and the
generator freezing the discriminator:

for number of training iterations do
for & steps do

 Sample minibatch of 1 noise samples {z), | zi™1Y from noise prior py(z).
» Sample minibatch of m examples {=, | 2™} from data generating diswibution
Ptan ().

» Update the discriminator by ascending its stochastic gradient:

Lo
Voum 2 el () +108 (1-0 (6 (=)))].
i Z; og T + log z
end for
» Sample minibatch of m noise samples { z' N zr"‘]} from noise prior p, (z).

» Update the generator by descending its stochastic gradient:
Lo
Vo,— Ylog(1-D (6 (29))).
[P gl: og z

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
Lum in our experiments.
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A simple demo

A short video!

Demo!

Another demo!

HHC p
&8935 Andrea Asperti
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https://www.youtube.com/watch?v=deyOX6Mt_As
http://cs.stanford.edu/people/karpathy/gan/
http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/

Training problems

Andrea Asperti
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Other Problems with gans

» the fact that the discriminator get fooled does not mean the
fake is good (neural networks are easily fooled)

» problems with counting, perspective, global structure, ...

» mode collapse: generative specialization on a good, fixed
example

See lan Goodfellows' slides
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http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf

Problems with counting

GANs fail to differentiate how many of a particular object should
occur at a location.

Problems with Counting
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Problems with perspective

Problems to adapt to 3D objects. It doesn't understand
perspective, i.e. difference between frontview and backview.

Problems with Perspective
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Problems with global structure

Problems to understand a holistic structure.

Problems with Global
Structure

(Caodiallow 016)

=/ Andrea Asperti
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Next arguments

Integrating Gans with VAEs

Suggested reading:
VAEs and GANs
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http://efrosgans.eecs.berkeley.edu/CVPR18_slides/VAE_GANS_by_Rosca.pdf

Combining VAEs and GANs

problems with VAE :

the similarity metric is crucial. Pixel-wise metrics like
squared error are too sensible to local perturbations
like small translations or rotations.

problems with GAN :

the generative approach has problems to capture the
real data distribution; learning is difficult and
unstable
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The promise of VAEs-GANs Hybdris

Hybrids

GANs

Andrea Asperti
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The promise of VAEs-GANs Hybdris

improve

sample quality

improve

Hybrids

GANs
representation
learning
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The promise of VAEs-GANs Hybdris

improve _
sample qualit improve
’ ) stability
|
Hybrids GANs
i |
improve _
i improve
representation ' /
i diversity
learning
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Main approaches

Two main approaches:

e Acting in the latent space
replace KL-divergence with a Discriminator, matching the
aggregated posterior Q(z) with the expected (arbitrary) prior
distribution P(z).
= Adversarial Autoencoders

e Acting in the visible space
replacing the reconstruction loss with a Discriminator trying

to distinguish original from reconstructed images
= VAE-GAN
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https://arxiv.org/pdf/1511.05644.pdf
https://arxiv.org/pdf/1512.09300.pdf

Adversarial regularization

q(z|x)
X % ~ q(z)
/ - = /
Dr[aw sanzpl)es Adversarial cost
rom p(z) |4 for distinguishing
™1 @ positive samples p(z)
from negative samples ¢(z)
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VAE-GAN Network overview

Idea:

- replace the element-wise reconstruction metric with the
feature-wise metric learned by the discriminator

- improve the generative part of GAN with a variational

autoencoder
z
cncry Nndcﬁgcncmmr
x Z
— REAL / GEN
x discriminator
AE

GAN

Autoencoding beyond pixels using a learned similarity metric, A.B.L.Larsen,

S.K.Sonderby, H.Larochelle, O.Winther, 2016
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https://arxiv.org/pdf/1512.09300.pdf

Results on the CelebA dataset

CelebA (Liu et al. 2015): dataset of 202,599 face images
annotated with 40 binary attributes such as eye-glasses, bangs,
pale skin etc.

~ CIEEAR
- DoBan - gonns
VABGAN 1 , o, (oS 5. 7
~ GeRRA - BeaRe

generation reconstruction

Input f@ Ei‘
-~ HOERAES
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Attribute vectors

Exploit the rich labeling of CelebA to find in the latent
space corresponding to in the image space

Visual attribute vector:

For each attribute, compute the mean vector for images with the
attribute and the mean vector for images without the attribute,
and take their difference.

Use attribute vectors to modify the latent space before
reconstruction, in order to add a specific feature.
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Adding attributes

Autoencoding bevond pixels using a learned similarity metric
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Next arguments

Cycle gans

Monet _ Photos bras 7 Horses Summer T Winter

‘summer — winter

photo —>Monet horse —» zebra N winter — summer

o

Photograph Monet

Van Gogh Cezanne Ukiyo-e

Unpaired Image-to-image translation with Cycle Generative Adversarial Networks
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https://junyanz.github.io/CycleGAN/

Unpaired images

For training, we need images in two classes, but not paired images

Paired Unpaired
Z; Yi X Y

cee s

picture from article

7 Andrea Asperti 31



Cycle-consistent adversarial networks

A Generator and a Discriminator network playing against each
other. The generator tries to produce samples from the desired
distribution, based on an input of the other distibution, and the
discriminator tries to predict if the sample belongs to the actual
distribution or it was produced by the generator.

This cannot guarantee to generate an image in the target
distribution related to the original image.

To this aim, the authors introduce the constraint:
if we transform from source distribution to target and then back
again to source distribution, we would expect to obtain the original
image.
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The network architecture: forward ...

Start
Input_A
Discriminator A« "SR |- — - - — — Eamartay Decision [0,1]
A2B e !
~
~
Decision [0,1] Generated_B Discriminator B
Cyclic_A

______ Generator
B2A

Pictures from Understanding and Implementing CycleGAN in TensorFlow
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https://hardikbansal.github.io/CycleGANBlog/

and back

. Cyclic_B

Discriminator A Generated_A Decision [0,1]

~
~

~

\\
Decision [0,1] *,{ G*’QZ';“"' .

- Discriminator B

Input_B

Start

Pictures from Understanding and Implementing CycleGAN in TensorFlow
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https://hardikbansal.github.io/CycleGANBlog/

The loss function

Given mappings G : X — Y, F: Y — X and discriminators
Dy, Dx we have:

e Adversarial loss

Lean(G;i Dy) =Ey p,.)l/0g(Dy(y)]
+ Exmpun(x)[l0g(1 — Dy (G(x)))]

e Cycle consistency loss

Leye(GiF) = Evopyr (0 lIF(G(x)) = x]l1]
+ Eprdata(y)[HG(F(Y)) —YHI]
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The network structure

» each mapping is defined as a sequence of convolutions
followed by transposed convolutions

P> to improve similarity bewteen input and output, the authors
also exploit residuality
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