
Lesson 13

Object detection
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Object detection

Similar to segmentation, but we are supposed to return a boundary
box containing the object.

I pro: no need to strive about borders
I cons: multiple outputs of unknown number

- difficult to train end-to-end
- no evident loss function
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Intersection over Union

Typically, the quality of each individual bounding box is evaluated
vs. the corresponding ground truth using Intersection over Union

IoU(A,B) =
|A ∩ B|
|A ∪ B|

Then, these must be summed up for all detections, and suitably
combined with classification errors.
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Datasets for object detection

Many datasets for semantic segmentation also provide ground
truth for object detection, and viceversa, e.g.

• PASCAL Visual Object Classes

• Coco: a large-scale object detection, segmentation, and
captioning dataset composed of over 200K labeled images,
spanning 80 categories.
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http://host.robots.ox.ac.uk/pascal/VOC/
http://cocodataset.org


Deep Object Detection

Two main approaches:

I Region Proposals methods (R-CNN, Fast R-CNN, Faster
R-CNN). Region Proposals are usually extracted via Selective
Search algorithms, aimed to identify possible locations of
interest. These algorithms typically exploit the texture and
structure of the image, and are object independent.

I Single shots methods (Yolo, SSD, Retina-net, FPN). We
shall mostly focus on these really fast techniques.
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https://arxiv.org/abs/1311.2524
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013/UijlingsIJCV2013.pdf
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013/UijlingsIJCV2013.pdf


Detectron 2

Detectron2 is a pytorch library developed by Facebook AI Research
(FAIR) to support rapid implementation and evaluation of novel
computer vision research.

It includes implementations of the following object detection
algorithms:

- Mask R-CNN

- RetinaNet

- Faster R-CNN

- RPN

- Efficent Det

- Fast R-CNN

- TensorMask

- PointRend

- DensePose

and more ...
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https://ai.facebook.com/tools/detectron2/


YOLO

YOLO: Real-Time Object Detection

First release in 2016. Now at version 5.

Suggested reading: YOLO v4 or YOLO v5 or PP-YOLO?
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https://pjreddie.com/darknet/yolo/
https://towardsdatascience.com/yolo-v4-or-yolo-v5-or-pp-yolo-dad8e40f7109


Speed and accuracy

Source PP YOLO repo
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https://github.com/PaddlePaddle/PaddleDetection/


Next argument

YOLO’s architecture

Suggested reading: Yolo-tutorial in pytorch
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https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/


Yolo network

Yolo is a Fully Convolutional Net-
works. The input is progressively
downsampled by a factor 25 = 32.

For instance, an input image of
dimension 416x416 would be re-
duced to a grid of neurons of di-
mension 13x13: the feature map
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Who’s in charge?

Detection of an object may concern
all neurons inside the bounding box.

So, who’s in charge for detection?

The answer crucially influences the
way the network should be trained.

In YOLO, a single neuron is responsible for detection: the one
whose grid-cell contains the center of the bounding box.

This neuron makes a finite number of predictions (e.g. 3).
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Predictions

We have 13x13 neurons in the feature
map.

Depth-wise, we have (B x (5 + C))
entries, where B represents the num-
ber of bounding boxes each cell can
predict (say, 3), and C is the number
of different object categories.

Each bounding box has 5 + C at-
tributes, which describe the center co-
ordinates (2), the dimensions (2), the
objectness score (1) and C class con-
fidences.
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Anchor Boxes

Trying to directly predict width and the height of the bounding box
leads to unstable gradients during training.

Most of the modern object detectors predict log-space affine
transforms for pre-defined default bounding boxes called anchors.

Then, these transforms are applied to the anchor boxes to obtain
the prediction. YOLO v3 has three anchors, which result in
prediction of three bounding boxes per cell.

The bounding box responsible for detecting the object is one
whose anchor has the highest IoU with the ground truth box.
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Anchor Boxes

Anchors are choosed by K-means clustering on the training set,
reflecting the most likely shapes of bounding boxes.

Picture from Object Detection Part 4: Fast Detection Models
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https://lilianweng.github.io/lil-log/2018/12/27/object-detection-part-4.html


Making predictions

We get bounding box predictions from the network outputs
tx , ty , tw , th relative to the cell at coordinates cx , cy for an anchor
of dimensions pw , ph according to the following formula:

bx = cx + σ(tx)
by = cy + σ(ty)
bw = pw ∗ etw

bh = ph ∗ eth
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Center Coordinates

YOLO does not predict the absolute coordinates of the bounding
box’s center, but offsets which are:

• relative to the top left corner of the grid cell which is
predicting the object

• normalised by the dimensions of the cell from the feature
map, which is, 1 (that motivates the use of the sigmoid)

For example, consider the case of our dog image. The red cell has
coordinates cx = 6, cy = 6.
If the prediction for center is (0.4, 0.7), this means that the center
lies at bx = 6.4, by = 6.7 on the 13 x 13 feature map.
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Dimensions of the Bounding Box
The dimensions of the bounding box are predicted by applying a
log-space transform to the output and then multiplying with the
dimensions of the anchor.

The resultant predictions, bw and bh, are normalised by the height
and width of the image: training labels are chosen this way.

Picture from understanding YOLO
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http://christopher5106.github.io/object/detectors/2017/08/10/bounding-box-object-detectors-understanding-yolo.html


Objectness Score

Objectness score represents the probability that an object is
contained inside a bounding box.

The objectness score is also passed through a sigmoid, as it is to
be interpreted as a probability.
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Class Confidences

Class confidences represent the probabilities of the detected object
belonging to a particular class. Before v3, YOLO class scores were
computed via a softmax.

Since YOLOv3, multiple sigmoid functions are used instead,
considering that objects may belong to multiple (hierachical)
categories, and hence labels are not guaranteed to be mutually
exclusive.
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Next argument

YOLO’s loss function
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YOLO’s loss function

The loss consists of two parts, the localization loss for bounding
box offset prediction and the classification loss for conditional
class probabilities.

As usual, we shall use v and v̂ to denote a true value, and the
corresponding predicted one.

The lolization loss is

Lloc =
S2∑

i=0

B∑
j=0

1obj
ij [(xi−x̂i )

2+(yi−ŷi )
2+(
√
wi−

√
ŵi )

2+(
√
hi−

√
ĥi )

2]

where i ranges over cells, and j over bounding boxes.

1obj
ij is a delta function indicating whether the j-th bounding box of

the cell i is responsible for the object prediction.
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YOLO’s loss function (2)

The classification loss is the sum of two components, relative to
the objectness confidence and the actual classification:

Lcls =
∑S2

i=0

∑B
j=0(1obj

ij + λnoobj (1− 1obj
ij ))(Cij − Ĉij )

2

+
∑S2

i=0

∑
c∈C 1obj

i (pi (c)− p̂i (c))2

λnoobj is a configurable parameter meant to down-weigth the loss
contributed by “background” cells containing no objects.
This is important because they are a large majority.
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YOLO’s loss function (3)

The whole loss is:

L = λcoordLloc + Lcls

λcoord is an additional parameter, balancing the contribution
between Lloc and Lcls .

In YOLO, λcoord = 5 and λnoobj = 0.5.
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Next argument

Multi scale processing
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Image Pyramids

(a) Using an image pyramid to build a feature pyramid. Features
are computed on each of the image scales independently, which is
slow.

(b) First systems for fast object detection (like YOLO v1) opted to
use only higher level features at the smallest scale. This usually
compromises detection of small objects.
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Feature Pyramids

(c) An alternative (Single Shot Detector - SSD) is to reuse the
pyramidal feature hierarchy computed by a ConvNet as if it were a
featurized image pyramid.

(d) Modern Systems (FPN, RetinaNet, YOLOv3) recombine
features along a backward pathway. This is as fast as (b) and
(c), but more accurate. In the figures, feature maps are indicated
by blue outlines and thicker outlines denote semantically stronger
features.
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https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1708.02002
https://pjreddie.com/media/files/papers/YOLOv3.pdf


Featurized Image Pyramid

- Bottom-up pathway is the normal feedforward computation.
- Top-down pathway goes in the inverse direction, adding

coarse but semantically stronger feature maps back into the
previous pyramid levels of a larger size via lateral connections.

- First, the higher-level features are spatially upsampled.
- The feature map coming from the Bottom-up pathway

undergoes channels reduction via a 1x1 conv layer
- Finally, these two feature maps are merged (by element-wise

addition, or concatenation).
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Next argument

Non Maximum Suppression
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Non Maximum Suppression

YOLOv3 predicts feature maps at
scales 13, 26 and 52.

At the end, we have

((13×13)+(26×26)+(52×52))x3 = 10647

bounding boxes, each one of dimen-
sion 85 (4 coordinates, 1 confidence,
80 class probabilities).

How can we reduce this number to the
few bounding boxes we expect?
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Non Maximum Suppression

These operations are done algorithmically (what a shame)

Essentially they consist in

• Thresholding by Object Confidence: first, we filter boxes
based on their objectness score. Generally, boxes having scores
below a threshold are ignored.

• Non Maximum Suppression: NMS addresses the problem of
multiple detections of the same image, corresponding to
different anchors, adjacent cells in maps.
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NMS outline

Divide the bounding boxes BB according to the predicted class c.
Each list BBc is processed separately

Order BBc according to the object confidence.

Initialize TruePredictions to an empty list.

while BBc is not empy:
pop the first element p from BBc

add p to TruePredictions
remove from BBc all elements with an IoU with p > th

return TruePredictions
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Next argument

About Ablation
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Ablation

Reading articles about Object Detection it is easy to meet
discussions relative to ablative studies.

So, what is it about?

In general, ablation is removal or destruction of material from an
object.

In the context of deep learning, it consists in a progressive removal
of components of the network, aimed to asses their contribution to
the overall behaviour.
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The ablation methodology

Ablation studies are crucial for deep learning research – can’t stress this
enough. Understanding causality in your system is the most straightforward
way to generate reliable knowledge (the goal of any research). And ablation
is a very low-effort way to look into causality.

If you take any complicated deep learning experimental setup, chances are
you can remove a few modules (or replace some trained features with ran-
dom ones) with no loss of performance. Get rid of the noise in the research
process: do ablation studies.

Can’t fully understand your system? Many moving parts? Want to make
sure the reason it’s working is really related to your hypothesis? Try remov-
ing stuff. Spend at least 10% of your experimentation time on an honest
effort to disprove your thesis.

Francois Chollet
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