
Lesson 7

Convolutional Neural Networks
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Filters and convolutions
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Loose connectivity and shared weights

I the activation of a neuron is not influenced from all neurons
of the previous layer, but only from a small subset of adjacent
neurons: his receptive field

I every neuron works as a convolutional filter. Weights are
shared: every neuron perform the same trasformation on
different areas of its input

I with a cascade of convolutional filters intermixed with
activation functions we get complex non-linear filters
assembing local features of the image into a global structure.
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A parenthesis

About the relevance of convolutions

for image processing
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Images are arrays

An image is coded as a numerical matrix (array)
grayscale (0-255) or rgb (triple 0-255)


207 190 176 204 204 208
110 108 114 112 123 142
94 100 96 121 125 108
95 86 81 84 88 88
69 51 36 72 78 81
74 97 107 116 128 133


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Images as surfaces
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Interesting points

Edges, angles, ...: points where there is a discontinuity, i.e. a fast
variation of the intensity

We measure variations of intensitites by means of derivatives and
we can compute discrete approximations of derivatives
convolving simple linear filters
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Approximation of the derivative

finite central difference

f (x + h)− f (x − h)

2h
= f ′(x) + O(h2)

Usually, h = 1 pixel; neglecting the constant 1
2 we compute the

derivative with the following filter:[
−1 0 1

]
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Example

[
−1 0 1

]
−→

 −1
0
1


−→
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Linear Filters

The derivative is an example of linear filter

Idea:
create new images where each pixel
is a linear combination (defined by a
kernel) of the adjacent pixels
The same trasformation is repeatedly
applied centering the kernel on every
pixel (convolution)

Examples:
- blurring (mean)
- gaussian smoothing
- edge detection
- sharpening
- embossing
- and many others ...

relevant properties

I the output is a linear tranformation of the input

I a shift of the input results in a shift of output

I linear filter can be combined
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Demo

Vedere http://docs.gimp.org/2.8/en/plug-in-convmatrix.html

blur

 1 1 1
1 1 1
1 1 1

 sharpen

 0 −1 0
−1 5 −1
0 −1 0


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Demo

edge-detect

 0 −1 0
−1 4 −1
0 −1 0

 emboss

 −2 −1 0
−1 1 1
0 1 2


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Convolution, formally

Convolution is a mathematical operation transforming an input
matrix by means of another matrix (kernel).

The operation can be generalized to the continous case
(tranforming a function via another function)

In the binary case, given a function f (x , y) and a kernel k(x , y) the
convolution f ∗ k of f and k is defined as follow

f (x , y) ∗ k(x , y) =

{∫
u

∫
v f (x − u, y − v) · k(u, v) continuous∑

u

∑
v f (x − u, y − v) · k(u, v) discrete

Convolution is symmetric, associative, and distributive.
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Convolution and correlation

Having a kernel in the interval [−M,M],

(f ∗ k)(x) =
M∑

m=−M
f (x −m) · k(m)

Observe tat k(−M) is the multiplicative factor for f (x + M), that
is, the kernel must be flipped, before taking products.

If you do not flip the kernel, you get a different transformation
known as cross-correlation.

I not relevant if the kernel is symmetric

I not so relevant for Neural Nets, since weights are generated
by the machine
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Next Arguments

Back to CNNs
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Inferring features

Usual idea:

instead of using pre-defined filters, let the net learn
its own filters.

Particularly important in deep architectures.
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Spatial structure

A convolutional layer is defined by the following parameters

I kernel size: the dimension of the linear filter.

I stride: movement of the linear filter. With a low stride (e.g.
unitary) receptive fields largely overlap. With a higher stride,
we have less overlap and the dimension of the output get
smaller (lower sampling rate).

I padding Artificial enlargement of the input to allow the
application of filters on borders.

I depth: number of different kernels that we wish to syntesize.
Each kernel will produce a different feature map with a smae
spatial dimension.
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Layers configuration params
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Dimension of the output

The spatial dimension of each output feature map depends form
the spatial dimension of the input, the padding, and the stride.

Along each axes the dimension of the output is given by the
formula

W + P − K

S
+ 1

where:

W = dimension of the input
P = padding
K = Kernel size
S = Stride
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Example (unidimensional)

The width of the input (gray) is W=7.
The kernel has dimension K=3 with fixed weights [1, 0,−1]
Padding is zero

In the first case, the stride is S=1. We get (W − K )/S + 1 = 5
output values.
In the second case, the stride is S=2. We get (W − K )/S + 1 = 3
output values.
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Example 2D

INPUT [32× 32× 3] color image of 32× 32 pixels. The three
channels R G B define the input depth

CONV layer. Suppose we wish to compute 12 filters with kernels
6× 6, stride 2 in both directions, and zero padding. Since
(32− 6)/2 + 1 = 14 the output dimension will be [14× 14× 12]

RELU layer. Adding an activation layer the output dimension
does not change
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Padding modes

Usually, there are two main “modes” for padding:

valid no padding is applied

same you add a minimal padding enabling the
kernel to be applied an integer number of
times
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Important remark

Unless stated differently (e.g. in separable convolutions), a filter
operates on all input channels in parallel.

So, if the input layer has depth D,
and the kernel size is NxM, the ac-
tual dimension of the filter will be

NxMxD

The convolution kernel is tasked with simultaneously mapping
cross-channel correlations and spatial correlations
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Pooling

In deep convolutional networks, it is common practice to
alternate convolutional layers with pooling layers, where each
neuron simply takes the mean or maximal value in its receptive
field.

This has a double advantage:

I it reduces the dimension of the output

I it gives some tolerance to translations
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Max Pooling example

Immagine tratta da
http://cs231n.github.io/convolutional-networks/
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Receptive field

The receptive field of a (deep, hidden)
neuron is the dimension of the input
region influencing it.

It is equal to the dimension of an input
image producing (without padding)
an output with dimension 1.

A neuron cannot see anything outside its receptive field!
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Next arguments

Parameters and Flops
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Parameters

The number of parameters of a Dense layer depends from the
spatial dimension Sin of the input and the spatial dimension Sout of
the output:

params = Sin × Sout + Sout

The number of parameters of a Convolutional layer depends from
the spatial dimension of the kernel (say, K1 × K2) times the
input-depth Cin (this product is the size of each kernel), times the
output-depth (this is the number of different kernels that are
syntesized)

params = K1 × K2 × Cin × Cout + Cout

(each kernel potentially has its own bias)
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Floating Point Operations (Flops)

The number of Flops required to apply a Dense layer it
proportional to its parameters:

flops ∼ Sin × Sout

The number of flops required to apply a Convolutional layers is
proportional to the kernel parameters, multiplied by the number of
applications of each kernel, that is equal to the output spatial
dimensions

flops ∼ K1 × K2 × Cin × Cout ×Wout × Hout
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Flops as a Cost measure

Flops are not a good cost measure:

On GPU-like arichitectures, convolutions are easily and cheaply
paralllelized along the spatial dimension (same for dense layers
along batchsize).

The right measure is between params and flops, depending on the
architecture, see:
Dissecting FLOPs along input dimensions for GreenAI cost
estimations
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