
Lesson 7

Convolutional Neural Networks

Andrea Asperti 1



Filters and convolutions

Andrea Asperti 2



Filters and convolutions

input

output

filter

1

0 1 0

0

1

10

6 2 3 1 0

9 115 3

62 5

38443

−2

8 7

−4

Andrea Asperti 3



Filters and convolutions

input

output

filter

1

0 1 0

0

1

10

6 2 3 1 0

9 115 3

62 5

38443

−2

−4

10

8 7

Andrea Asperti 4



Filters and convolutions

input

output

filter

1

0 1 0

0

1

10

6 2 3 1 0

9 115 3

62 5

38443

−2

−4

10 9

8 7

Andrea Asperti 5



Filters and convolutions

input

output

filter

1

0 1 0

0

1

10

6 2 3 1 0

9 15 3

62 5

38443

−2

−4

10 9

8 7 −8

1

Andrea Asperti 6



Filters and convolutions

input

output

filter

1

0 1 0

0

1

10

6 2 3 1 0

9 115 3

62 5

38443

−2

−4

10 9

8 7 −1−8

Andrea Asperti 7



Filters and convolutions

input

output

filter

1

0 1 0

0

1

10

6 2 3 1 0

9 115 3

62 5

38443

−2

−4

10 9

−118 7 −1−8

Andrea Asperti 8



Loose connectivity and shared weights

I the activation of a neuron is not influenced from all neurons
of the previous layer, but only from a small subset of adjacent
neurons: his receptive field

I every neuron works as a convolutional filter. Weights are
shared: every neuron perform the same trasformation on
different areas of its input

I with a cascade of convolutional filters intermixed with
activation functions we get complex non-linear filters
assembing local features of the image into a global structure.

Andrea Asperti 9



A parenthesis

About the relevance of convolutions

for image processing

Andrea Asperti 10



Images are arrays

An image is coded as a numerical matrix (array)
grayscale (0-255) or rgb (triple 0-255)


207 190 176 204 204 208
110 108 114 112 123 142
94 100 96 121 125 108
95 86 81 84 88 88
69 51 36 72 78 81
74 97 107 116 128 133



Andrea Asperti 11



Images as surfaces

Andrea Asperti 12



Interesting points

Edges, angles, ...: points where there is a discontinuity, i.e. a fast
variation of the intensity

We measure variations of intensitites by means of derivatives and
we can compute discrete approximations of derivatives
convolving simple linear filters

Andrea Asperti 13



Approximation of the derivative

finite central difference

f (x + h)− f (x − h)

2h
= f ′(x) + O(h2)

Usually, h = 1 pixel; neglecting the constant 1
2 we compute the

derivative with the following filter:[
−1 0 1

]

Andrea Asperti 14



Example

[
−1 0 1

]
−→

 −1
0
1


−→

Andrea Asperti 15



Linear Filters

The derivative is an example of linear filter

Idea:
create new images where each pixel
is a linear combination (defined by a
kernel) of the adjacent pixels
The same trasformation is repeatedly
applied centering the kernel on every
pixel (convolution)

Examples:
- blurring (mean)
- gaussian smoothing
- edge detection
- sharpening
- embossing
- and many others ...

relevant properties

I the output is a linear tranformation of the input

I a shift of the input results in a shift of output

I linear filter can be combined

Andrea Asperti 16



Demo

Vedere http://docs.gimp.org/2.8/en/plug-in-convmatrix.html

blur

 1 1 1
1 1 1
1 1 1

 sharpen

 0 −1 0
−1 5 −1
0 −1 0



Andrea Asperti 17

http://docs.gimp.org/2.8/en/plug-in-convmatrix.html


Demo

edge-detect

 0 −1 0
−1 4 −1
0 −1 0

 emboss

 −2 −1 0
−1 1 1
0 1 2



Andrea Asperti 18



Convolution, formally

Convolution is a mathematical operation transforming an input
matrix by means of another matrix (kernel).

The operation can be generalized to the continous case
(tranforming a function via another function)

In the binary case, given a function f (x , y) and a kernel k(x , y) the
convolution f ∗ k of f and k is defined as follow

f (x , y) ∗ k(x , y) =

{∫
u

∫
v f (x − u, y − v) · k(u, v) continuous∑

u

∑
v f (x − u, y − v) · k(u, v) discrete

Convolution is symmetric, associative, and distributive.

Andrea Asperti 19



Convolution and correlation

Having a kernel in the interval [−M,M],

(f ∗ k)(x) =
M∑

m=−M
f (x −m) · k(m)

Observe tat k(−M) is the multiplicative factor for f (x + M), that
is, the kernel must be flipped, before taking products.

If you do not flip the kernel, you get a different transformation
known as cross-correlation.

I not relevant if the kernel is symmetric

I not so relevant for Neural Nets, since weights are generated
by the machine

Andrea Asperti 20



Next Arguments

Back to CNNs

Andrea Asperti 21



Inferring features

Usual idea:

instead of using pre-defined filters, let the net learn
its own filters.

Particularly important in deep architectures.

Andrea Asperti 22



Spatial structure

A convolutional layer is defined by the following parameters

I kernel size: the dimension of the linear filter.

I stride: movement of the linear filter. With a low stride (e.g.
unitary) receptive fields largely overlap. With a higher stride,
we have less overlap and the dimension of the output get
smaller (lower sampling rate).

I padding Artificial enlargement of the input to allow the
application of filters on borders.

I depth: number of different kernels that we wish to syntesize.
Each kernel will produce a different feature map with a smae
spatial dimension.

Andrea Asperti 23



Layers configuration params

6 2 3 1 0

9 115 3

62 5 8 7

38443

padding

size: 3x3

stride

Andrea Asperti 24



Layers configuration params

6 2 3 1 0

9 115 3

62 5 8 7

38443

padding

size: 3x3
depth

stride

Andrea Asperti 25



Dimension of the output

The spatial dimension of each output feature map depends form
the spatial dimension of the input, the padding, and the stride.

Along each axes the dimension of the output is given by the
formula

W + P − K

S
+ 1

where:

W = dimension of the input
P = padding
K = Kernel size
S = Stride

Andrea Asperti 26



Example (unidimensional)

The width of the input (gray) is W=7.
The kernel has dimension K=3 with fixed weights [1, 0,−1]
Padding is zero

In the first case, the stride is S=1. We get (W − K )/S + 1 = 5
output values.
In the second case, the stride is S=2. We get (W − K )/S + 1 = 3
output values.

Andrea Asperti 27



Example 2D

INPUT [32× 32× 3] color image of 32× 32 pixels. The three
channels R G B define the input depth

CONV layer. Suppose we wish to compute 12 filters with kernels
6× 6, stride 2 in both directions, and zero padding. Since
(32− 6)/2 + 1 = 14 the output dimension will be [14× 14× 12]

RELU layer. Adding an activation layer the output dimension
does not change

Andrea Asperti 28



Padding modes

Usually, there are two main “modes” for padding:

valid no padding is applied

same you add a minimal padding enabling the
kernel to be applied an integer number of
times

Andrea Asperti 29



Important remark

Unless stated differently (e.g. in separable convolutions), a filter
operates on all input channels in parallel.

So, if the input layer has depth D,
and the kernel size is NxM, the ac-
tual dimension of the filter will be

NxMxD

The convolution kernel is tasked with simultaneously mapping
cross-channel correlations and spatial correlations

Andrea Asperti 30



Pooling

In deep convolutional networks, it is common practice to
alternate convolutional layers with pooling layers, where each
neuron simply takes the mean or maximal value in its receptive
field.

This has a double advantage:

I it reduces the dimension of the output

I it gives some tolerance to translations

Andrea Asperti 31



Max Pooling example

Immagine tratta da
http://cs231n.github.io/convolutional-networks/

Andrea Asperti 32

http://cs231n.github.io/convolutional-networks/


Receptive field

The receptive field of a (deep, hidden)
neuron is the dimension of the input
region influencing it.

It is equal to the dimension of an input
image producing (without padding)
an output with dimension 1.

A neuron cannot see anything outside its receptive field!

Andrea Asperti 33



Next arguments

Parameters and Flops

Andrea Asperti 34



Parameters

The number of parameters of a Dense layer depends from the
spatial dimension Sin of the input and the spatial dimension Sout of
the output:

params = Sin × Sout + Sout

The number of parameters of a Convolutional layer depends from
the spatial dimension of the kernel (say, K1 × K2) times the
input-depth Cin (this product is the size of each kernel), times the
output-depth (this is the number of different kernels that are
syntesized)

params = K1 × K2 × Cin × Cout + Cout

(each kernel potentially has its own bias)

Andrea Asperti 35



Floating Point Operations (Flops)

The number of Flops required to apply a Dense layer it
proportional to its parameters:

flops ∼ Sin × Sout

The number of flops required to apply a Convolutional layers is
proportional to the kernel parameters, multiplied by the number of
applications of each kernel, that is equal to the output spatial
dimensions

flops ∼ K1 × K2 × Cin × Cout ×Wout × Hout

Andrea Asperti 36



Flops as a Cost measure

Flops are not a good cost measure:

On GPU-like arichitectures, convolutions are easily and cheaply
paralllelized along the spatial dimension (same for dense layers
along batchsize).

The right measure is between params and flops, depending on the
architecture, see:
Dissecting FLOPs along input dimensions for GreenAI cost
estimations

Andrea Asperti 37

https://arxiv.org/abs/2107.11949
https://arxiv.org/abs/2107.11949

