
Lesson 4

Training

Andrea Asperti 1



The goal of training

We have a loss function L = L(x , θ) depending on data x and
parameters θ.

The goal is to minimize it.

Changing what?

We cannot change data: we have a fixed data set of examples.
We can only change the parameters of the model.

For the purposes of training, you must uniquely think of the loss
function as a function of the parameters: L = L(θ)

Andrea Asperti 2



The goal of training

We have a loss function L = L(x , θ) depending on data x and
parameters θ.

The goal is to minimize it.

Changing what?

We cannot change data: we have a fixed data set of examples.
We can only change the parameters of the model.

For the purposes of training, you must uniquely think of the loss
function as a function of the parameters: L = L(θ)

Andrea Asperti 3



A naif approach: learning by trials

Evolutionary approach: randomly perturb weights
and see if we get better results.
If so, save the change, else discharge.

I akin to reinforcement learning

I very inefficient

I high probability to make things worse

Andrea Asperti 4



Predicting the adjustment

Instead of making a random adjustement of the parameters, can
we predict it?

loss function

w

if the aim is to decrease the loss, should we move left or right?

Andrea Asperti 5



Using derivatives

loss function

w

tangent at w

α

The mathematical tool we need are derivatives. The derivative is
the tangent of the angle α

Andrea Asperti 6



Sign and magnitude

The sign of the derivative provides orientation: it is positive if
α < 90◦ and negative if 90◦ < α < 180◦.

If the derivative is positive we must decrease the parameter, if it is
negative we must increase it (since we are descending).

The magnitude of the derivative is the related the steepness of the
tangent: it is close to 0 if the angle is flat, and high when the
angle is almost right.

Andrea Asperti 7



Why binary threshold is no good for learning

w

loss function for thresholded output

?

Derivative is 0 everywhere (and infinite in correspondence of the
jump).

Andrea Asperti 8



The gradient

If we have many parameters, we have a different derivative for
each of them (the so called partial derivatives).

The vector of all partial derivatives is called the gradient of the
function.

∇w [L(w)] = [
∂L(w)

∂w1
, . . . ,

∂L(w)

∂wn
]

With multiple parameters, the
magnitude of partial derivatives
becomes relevant, since it gov-
erns the orientation of gradient.

The gradient points in the di-
rection of steepest ascent.

Andrea Asperti 9



Next arguments

The gradient descent technique

Andrea Asperti 10



The overall technique

1. start with a random configuration for the parameters

2. compute the gradient of the loss function

3. make a “small step” in the direction opposite to the gradient

4. iterate from step 2 until the loss is “sufficiently small”

- what is a small step?
- when should we stop iterating?

Andrea Asperti 11



The overall technique

1. start with a random configuration for the parameters

2. compute the gradient of the loss function

3. make a “small step” in the direction opposite to the gradient

4. iterate from step 2 until the loss is “sufficiently small”

- what is a small step?
- when should we stop iterating?

Andrea Asperti 12



Learning rate

The dimension of the step in the direction of the gradient is the so
called learning rate, traditionally denoted with µ.

w ⇐ w − µ∇L(w)

The learning rate is an hyperparameter that can be configured by
the user.

Its evolution during training is governed by software components
called optimizers (more about them later).

Andrea Asperti 13



Next arguments

Examples

Andrea Asperti 14



Example 1: fitting a line

We want to fit a line through a set of points 〈xi , yi 〉

• Model: a line y = ax + b

• Loss: 1/2 ∗
∑

i (yi − (axi + b))2

• ∂L
∂a = −

∑
i ((yi − axi − b)xi )

• ∂L
∂b = −

∑
i (yi − axi − b)

Demo

Andrea Asperti 15



Why don’t we solve it analytically?

The previous problem is a linear optimization problem, that
can be easily solved analytically. Why taking a different
approach?

I the analytic solution only works in the linear case, and for
fixed error functions

I usually, it is not compatible with regularizers

I the backpropagation method can be generalized to
multi-layer non-linear networks

Andrea Asperti 16



Example 2: a general technique, but ...

Gradient descent is a general mini-
mization technique, but it can

- end up in local minima

- get lost in plateau

Only guaranteed to work if the surface
is concave

Demo

Andrea Asperti 17



Next arguments

Optimizations

- Stochastic Gradient Descent

- Momentum

Andrea Asperti 18



Optimizations

How often to update the weights

- Online: for each training sample
- Full batch: full sweep through the training data
- Mini-batch: for a small random set of training cases

How fast to update

- Use a fixed learning rate?
- Adapt the global learning rate?
- Adapt the learning rate on each connection separately?
- Use momentum?

suggested lecture: Geoffrey Hinton’s lecture

Andrea Asperti 19

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


Stochastic Gradient Descent

The gradient of the Loss function should be computed over all
training samples (fullbatch).

This can be expensive, since the size of the dataset can be huge.

What happens if instead we use a small random subset?
(minibatch)

I the direction of the gradient could be less precise

I in the limit case, it converges to the same value of the
fullbatch case

Andrea Asperti 20



Stochastic Gradient Descent

The gradient of the Loss function should be computed over all
training samples (fullbatch).

This can be expensive, since the size of the dataset can be huge.

What happens if instead we use a small random subset?
(minibatch)

I the direction of the gradient could be less precise

I in the limit case, it converges to the same value of the
fullbatch case

Andrea Asperti 21



Online vs Batch learning

Fullbatch on all training samples:
gradient points to the direction of
steepest descent on the error surface
(perpendicular to contour lines of
the error surface)

Online (one sample at a time)
gradient zig-zags around the
direction of the steepest descent.

Minibatch (random subset of training samples): a good
compromise.

Andrea Asperti 22



Momentum

If, during consecutive training steps, the gradient seems to follow a
stable direction, we could improve its magnitude, simulating the
fact that it is acquiring a momentun along that direction, similarly
to a ball rolling down a surface.

The hope is to reduce the risk
to get stuck in a local mini-
mum, or a plateau.

No theoretical justification

Andrea Asperti 23



parameters updating with momentum

The momentum corrects the update at time t with a fraction of
the update at time t − 1.

Calling v t the vector of updates at time t, we have the rules:

v t = µ ∗ ∇L(w)︸ ︷︷ ︸
gradient step

+ α ∗ v t−1︸ ︷︷ ︸
momentum

Andrea Asperti 24



Nesterov momentum

Nesterov momentum is a variant of the previous technique.
The difference is just the position at which the gradient is
computed: before or after the momentum step:

Andrea Asperti 25


