Expressiveness

Andrea Asperti

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

1

What can we compute with a NN?

- the single layer case

●●● Ⅲ ▲田▼ ▲田▼ ▲国▼ ▲日▼

The perceptron

Binary threshold:

Remark: the bias set the position of threshold.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ○へ⊙

The set of points

$$\sum_i w_i x_i + b = 0$$

defines a hyperplane in the space of the variables x_i

The hyperplane

$$\sum_i w_i x_i + b = 0$$

divides the space in two parts: to one of them (above the line) the perceptron gives value 1, to the other (below the line) value 0.

"above" and "below" can be inverted by just inverting parameters:

$$\sum_{i} w_{i} x_{i} + b \leq 0 \iff \sum_{i} -w_{i} x_{i} - b \geq 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

Computing logical connectives: NAND

Can we implement this function (NAND) with a perceptron?

<i>x</i> ₁	<i>x</i> ₂	output
0	0	1
0	1	1
1	0	1
1	1	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Computing logical connectives: NAND

Can we implement this function (NAND) with a perceptron?

<i>x</i> ₁	<i>x</i> ₂	output
0	0	1
0	1	1
1	0	1
1	1	0

Can we find two weights w_1 and w_2 and a bias b such that

$$nand(x_1, x_2) = \begin{cases} 1 & if \sum_i w_i x_i + b' \ge 0 \\ 0 & otherwise \end{cases}$$

・ロト ・日 ・ モ ・ モ ・ 日 ・ つらぐ

Graphical representation

Same as asking:

can we draw a straight line to separate green and red points?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lines, planes, hyperplanes

Yes!

NAND

line equation: $1.5 - x_1 - x_2 = 0$ or $3 - 2x_1 - 2x_2 = 0$

・ロト・日本・ヨト・ヨー シック

The NAND-perpceptron

10

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

The NAND-perpceptron

Can we compute any logical circuit with a perceptron?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ○へ⊙

The XOR case

Can we draw a straight line separating red and green points?

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへ⊙

The XOR case

Can we draw a straight line separating red and green points?

No way!

Single layer perceptrons are not complete!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Can we recognize these patterns with a perceptron (aka binary threshold)?

Can we recognize these patterns with a perceptron (aka binary threshold)?

No Each pixel should individually contribute to the classification, that is not the case (more in the next slides)

・ロト ・日・・ヨ・ ・日・ ・ロ・

XOR in image processing

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへ⊙

16

XOR in image processing

Let us e.g. consider the first pixel, and suppose it is **black** (the white case is symmetric)

does this improve our knowledge for the purposes of classification?

XOR in image processing

we have still the same probability to have a good or a bad example.

・ロト・日本・ヨト・ヨー ショー

Example MNIST

Can we address digit recognition with linear tools? (perceptrons, logistic regression, \ldots)

Does the intensity of each pixel contribute to classify digits?

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ >

Example MNIST

Does the intensity of each pixel contribute to classify digits?

- + weighted sum over a large number of features
- need of preproceesing (centering, rotating, normalizing, etc)
- different ways to write a same digit (e.g. 1,4,7,...)

classification results are modest: error rate $\ 7\text{-}8\ \%$

Multi-layer perceptrons

Question

- we know we can compute nand with a perceptron
- we know that nand is logically complete (i.e. we can compute any connective with nands)

so:

why perceptrons are not complete?

●●● Ⅲ ▲田▼ ▲田▼ ▲国▼ ▲日▼

Question

- we know we can compute nand with a perceptron
- we know that nand is logically complete (i.e. we can compute any connective with nands)

so:

why perceptrons are not complete?

answer:

because we need to compose them and consider Multi-layer perceptrons

Example: Multi-layer perceptron for XOR

Can we compute XOR by stacking perceptrons?

Multilayer perceptrons are logically complete!

• shallow nets are already complete

Why going for deep networks? With deep nets, the same function may be computed with less neural units (<u>Cohen, et al.</u>)

• Activation functions play an essential role, since they are the only source of nonlinearity, and hence of the expressiveness of NNs.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● のへの

Formal expressiveness in the continuous case

approximating functions with logistic neurons

Approximation by step functions

steepness varies with w

・ロト・日本・ヨト・ヨー シック

Sum of step functions

We can thus form "bumps" of arbitrary height and width

Approximations via bumps

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

- Every continuous function $\mathcal{R} \rightarrow [0,1]$ can be approximated by neural networks
- a single hidden layer is enough (shallow net)

Why using deep nets?

Andrea Asperti

- Every continuous function $\mathcal{R} \to [0,1]$ can be approximated by neural networks
- a single hidden layer is enough (shallow net)

Why using deep nets?

fewer neurons suffice

see e.g. Cohen et al. On the Expressive Power of Deep Learning: A Tensor Analysis

[demo]

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへ⊙