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Deep Learning 

Art of extracting patterns from data using NN 

 

 

Notes are compiled by keeping the lecture slides as priority. 

There are additional material from over the internet that will reduce the browsing 

costs. I have mentioned important links for further reading. 

 

Compiled by: 

Sandeep Kumar Kushwaha 

LinkedIn 

 

Exam pattern: 

3-5 topics: explain in detail everything that you know. 

One topic: self-choice, explain. 

Professor can ask in between, about processes & tricky questions.  

Experience: Good. Easy. Can score obtain a score of 26-28 within preparation of ~ 25 

hours. You need to get out of the slides to add extra information to get that. 

Note: I have used repetitive topics like Neural Network as NN, Backpropagation as 

BP, etc to make notes more compact. 

 

All the best.  

 

 

https://www.linkedin.com/in/xandie985/
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Image Processing 

• MNIST 

o Grayscale images – 28*28 pixels 

o 60k train + 10k test images 

• ImageNet 

o 15 million 22k objects high resolution images 

• Image Detection 

Expressiveness 

THE PERCEPTRON: 
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It is an algorithm that is used for supervised learning of the binary classifiers. It 

enables the neurons to learn and process the training set elements with time. There 

are two type of P  

- Single Layer – it can only learn linear 

functions.  

- Multilayer that contains more than 1 

hidden layer apart form input and output 

layer. It can also learn non-linear functions.  

 

 

 

 

 

 

Why need activation functions? 

It works as an intermediate gateway between the neuron input and output 

being passed to the next layer. To introduce non linearities into network. 
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• Hyperplanes: 

o These are decision boundaries that help classify the data points.  

o The dimension of hyperplane depends upon the number of features. 

o If the number of input features is 2, then the hyperplane is just a line. 

 

• Shallow nets are complete, why choose Deep nets? 

o Because it computes the same function with less neural units. 

o Activation functions play important role. They are the source of non-

linearity. 

 

• Every continuous function can be approximated by NN. 

 

 

• Expressive Power of Deep Learning 

 

o Text and images can be more efficiently represented by deep 

hierarchical networks than the shallow ones. 

Loss 

• Loss: its measure of the cost we had to bear because of incorrect predictions. If 

predictions deviates too much from actual results, loss function would cough up 

a very large number.  
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➢ Empirical loss: total loss over entire dataset- 

 
 

Binary Cross Entropy Loss:  

 
 

Mean squared error loss: 
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Training: process to find the best weights that achieve the lowest loss 

 
Loss optimization: Gradient Descent 

- Optimization algorithm to find a local minimum of a differentiable function. 

- We perform GD by taking repeated steps in the opposite direction of 

the gradient of the function at the current point, because that will be the 

direction of steepest descent. 

 

 

minimize Loss. How can we do it? 

• By changing the parameters of the model. 

• So, we can change parameters using a Naive approach- Learning by trials 

• Similar to Reinforcement Learning that has a reward based action model. 

• Inefficient. 

• So instead of randomly adjusting the parameters, lets predict them, 

• We use derivatives to know where we are going. 

• If angle is <90 then derivative is positive; we must decrease the parameter.  

• Magnitude of derivative is related to the steepness of tangent.  

•  

• Why binary thresholding is not good for 

learning? Coz the derivative is always 0. 

 

THE GRADIENT DESCENT 
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• Gradient descent is a general-purpose algorithm that numerically finds minima 

of multivariable functions. 

•  it finds local minima, but not by setting \nabla f = 0∇f=0del, f, equals, 0 like 

we've seen before. Instead of finding minima by manipulating symbols, gradient 

descent approximates the solution with numbers. 

• When we have many parameters, we have different derivatives for each – partial 

derivative. 

• The vector of all partition derivatives is called gradient of the function.  

•  

•  

•  

•  

• The gradient points in the direction of steepest ascent. Magnitude of partial 

derivatives are relevant to govern the orientation of the gradient. 

•  

• The Gradient Descent Technique 

• Start with random parameters. 

• Compute gradient of loss function. 

• Make a “small step” in the direction of gradient (maximise); 

OR 

• Make a “small step” against the direction of gradient 

(minimize) 

Algorithms: GD model 

 
Stochastic Gradient Descent: we compute the Gradient on single data point i 
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Instead of picking a point, we choose a batch of points  

 
Mini batches while training: 

 More accurate estimation of gradients 

 Smoother convergence 

 Can be used for large Learning Rates 

 Leads to fast training 

 Can perform parallel computation – increased speed performance on GPU. 

 

• How to avoid getting stuck at local minima? 

• We can use momentum gradient descent 

• Limitations of GD: 

• It only finds a local minima (rather than global). 

• each valley, it would trap the GD algorithm. 

• We can never distinguish the global and local minima in a go. 

• The function should be differentiable everywhere. No breaks in the graph. 
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• What  is step size? 

• It controls the rate of 

convergence 

• A step size too large, may 

never converge to a local 

minimum since it will 

overshoot.  

• Good step size moves towards minimum rapidly, and converges slowly  

 

 

Learning Rate (µ) 

 

The dimension of the step in the 

direction of the gradient is LR.  

• A small positive value between 0 and 1. 

• LR controls how quickly the model adopts 

to the problem. 

 
How to deal with this? 

Adaptive Learning Rates: 
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Linear Optimization Problem 

 

• Backpropagation Method 

• Can be generalized to multilayer non-linear networks 

•  

• Optimizations 

• How to update the weights: 

o Online - 

o after each training sample. 

o GD zigzags around the direction of steepest descent. 

• Full batch –  

• full sweep through training data 

• GD points to direction of steepest descent on the error surface 

• Mini batch – 

• for a small random set of training cases 

• good compromise for GD 

•  

• There are three variations of Gradient Descent: 

•  
•  
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• Stochastic Gradient Descent 

• SGD performs parameter update for each example 

• Performs frequent updates with high variance that causes objective function to 

fluctuate heavily. 

• The fluctuation can helps to find better local minima, also causes 

overshooting. 

• When learning rate is decreased, it behaves like a batch GD with good 

convergence. 

• The gradient of loss function should be computed over all training samples in 

case of full batch and small set in case of mini batch. 

• Can be expensive, if dataset is huge 

•  

•  

• Momentum- 

• If GD moves in a stable direction, we can improve its magnitude. 

• We try to reduce the risk of getting stuck at 

a local minima, just like a ball rolling down. 

• The momentum can be updated wrt time here: 

• vt is vector of updates at time t. 

•  

• Nesterov momentum 

•  

• Similar to previous method 

• Only difference is the position at which gradient is computed 

• Here the gradient term is not computed from the current position θtθt in parameter space but instead 

from a position θintermediate=θt+μvtθintermediate=θt+μvt. This helps because 

while the gradient term always points in the right direction, the momentum term may not. If the 

momentum term points in the wrong direction or overshoots, the gradient can still "go back" and 

correct it in the same update step. 
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============================================================= 

THE BACKPROPAGATION THEOREM  

- It can be expressed as backward propagation of errors.  

- In an artificial neural network and an error function, the method calculates the 

gradient of the error function with respect to the neural network's weights.  

- It propagates the total loss back into the neural network to know how much of 

the loss every node is responsible for, and subsequently updating the weights 

in such a way that minimizes the loss. This is done by giving the nodes with 

higher error rates lower weights and vice versa. 

- Iteratively computes partial derivatives of loss function to each parameter of 

the n/w. 

- To terminate the backpropagation on the network we can use multiple 

methods. 

o Training the network with fixed number of epochs – iteration 

o Setting a threshold for error, if the error goes below that level we can 

stop training the NN. 

o Creating a validation of sample data. After each iteration we can 

validate our model with this validation set & choose the highest 

accuracy model as final. 

 

 

 

❖ Computing the Gradient: 
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➢ In NN we compute gradient of complex function due to numerous layers of 

NN. 

➢ How can we compute gradient wrt specific parameter? 

▪ Use chain rule 

 

 

 

 

 

 

❖ Forward propagation calculates & stores the intermediate variables in the NN. 

The direction of flow if from the left and towards the right.  

❖ When training the model, fwd propagation & bP are inter dependent.  

 

❖ BP algorithm explained. 

❖ Derivatives of the common activation function 

•  
•  

❖ NN from scratch 

➢ Using BP in NN  
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•  
• The data in yellow was obtained after training, we started with only input and 

O/P values. Hidden values are new representation of data. 

➢ Shannon theory 

•  

❖ Learning Issues 

➢ Why is learning slow?  

▪ If either its i/p is low, or o/p is saturated (close of 1/0) 

▪ The GD can be slow, and may point to the local minimum 

▪ In BP, when activations are low, weights learn/change slowly. 

▪ In BP, we can get saturated neurons as well.  

•  

➢ Vanishing gradient problem 

Solution: The simplest solution is to use other activation functions, such as 

ReLU, which doesn't cause a small derivative. Residual networks are another 

solution, as they provide residual connections straight to earlier layers. 

➢ Optimization rules 

 



15 | P a g e   s x a n d i e  

 

These notes are not a substitute to the original slides provided by professor but shall only be considered as additional material for 
the course.  

 
• ===========================================================

============= 

 

• SLIDE 7 

• Overfitting 

➢ Here the model fits exactly according to the training data. It is too complex 

and has many extra parameters. Such kind of model is not generalised to our 

data instead it is more specified towards the training set. 

➢ Even the noise and fluctuations are picked up & learned as concepts by the 

model. 

❖ How to know when we are overfitting? 

➢ By checking validation metrics such as accuracy and loss.  

➢ Overfitting when model’s error on training set is very low but large on the test 

set.  
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❖ Ways to handle overfitting: 

➢ Using Dropout layers - randomly remove certain features by setting them to 

zero. 

 
➢ Reduce model capacity – remove the layers or else we can reduce the number 

of elements in the hidden layers. 

➢ Regularization/weight decay– we can add cost to the loss functions with large 

weights. Regularization helps in improving the generalization of our model 

when new data arrives. Types of Regularization: L1, L2, dropout, early 

stopping, and data augmentation. 

➢ Model averaging - using several models at once for making predictions 

➢ Data augmentation - technique of increasing the size of data used for training 

a model. Can be done two ways – position augmentation [scaling, cropping, 

flipping, rotation ] OR Colour augmentation[Brightness, Contrast, Hue] 

 

❖ Regularization 1:  

L1 & L2 regularization 

We add regularization term  with  the loss to obtain total cost function.  

Cost function = Loss + Regularization term  

▪ L2 [ridge regularization]-  it forces the weight to reduce but never makes 

them zero. in L2 the square of the weights are penalised. 

 
▪ L1 [Lasso regularization] - where weights are never reduced to zero, in L1 

the absolute value of the weights are penalised. 

 
Dropout 



17 | P a g e   s x a n d i e  

 

These notes are not a substitute to the original slides provided by professor but shall only be considered as additional material for 
the course.  

▪ Cripple the NN by randomly removing hidden units. It means that they are 

temporarily obstructed from influencing or activating the downward 

neuron in a forward pass, and none of the weights updates is applied on 

the backward pass. 

▪ Hidden units cannot co-adapt with other and they become self reliant. 

▪ So neurons are randomly dropped out of the network during training, the 

other neurons step in and make the predictions for the missing neurons. 

Due to this, there is the network becomes less sensitive to the specific 

weight of the neurons. 

Early Stopping 

▪ It is a kind of cross-validation strategy where one part of the training set is 

used as a validation set, and the performance of the model is tested against 

this set. So, as soon as the performance on validation set gets worse, the 

training is immediately stopped. 

 

 
 

Underfitting 

- The model is too simple and is unable to capture the relationship between the 

input and output variables accurately. 

- It generates a high error rate on both the training set and unseen data. 

- Good fitting is not the goal instead generalization. 

- Handling Underfitting: 

o By decreasing Regularization – Regularization reduces the variance of 

the model by applying penalty on the input parameters with large coeff. 
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When we decrease the regu, the complexity and variation in the model 

increases.  

o By increasing the duration of training. 

o Feature selection – We should focus of features of more importance. The 

features we are choosing are not sufficient to portray the relations 

between the data, so we need to consider important features.  

 

• Activation of loss functions for Classification 

❖ Sigmoid 

➢ When the n/w is a value b/w 0 

and 1 (binary classification 

problem) we use sigmoid function 

❖ Softmax 

➢ Used when result of network is a 

probability distribution over k 

different categories.  

➢ Sum equals upto 1 

❖ Softmax vs Sogmoid 

➢ Softmax is multiclass/Sigmoid is two-class logistic regression 

➢ Softmax is extension of Sigmoid.  

 

• Cross Entropy 

❖ Loss Functions: maps decisions to their associated costs. [link] 

➢ Gradient Descent is optimization strategy that reduces the loss 

➢ Difference between Loss function and Cost Function: Loss function 

is error function calculated over single training instance, whereas 

cost function is average loss over the entire TrainSet. Optimization 

deals with minimizing the costFunc. 

➢ Regression loss functions: 

▪ Squared Error Loss 

▪ Absolute EL 

https://www.analyticsvidhya.com/blog/2019/08/detailed-guide-7-loss-functions-machine-learning-python-code/
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▪ Huber 

➢ Binary Classification Loss Function 

▪ Binary cross Entropy loss: entropy ~ disorder/uncertainty 

▪ Hinge Loss: used with SVM 

 

➢ Multi Class Classification Loss F 

▪ Multi Class Cross Entropy Loss 

▪ KL Divergence – measure of how 

a probability distribution differs 

from another distribution. KL 

divergence of 0 means, 

distributions are equal. 

• -It’s a measure of information loss due to approximation P and Q. 

• - This function is not symmetric 

• - the cross entropy b/w P and Q: 

•  
•  

❖ Minimizing the cross entropy 

➢ We can consider learning objective to be - minimizing KL 

divergence: 

• Since the entropy H(P) is constant – minimizing DKL(P||Q) is 

equivalent to minimizing cross entropy H(P,Q) between P & Q. 

•  

❖ Cross Entropy & log likelihood 
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➢ Log likelihood measures the goodness of fit of statistical model to 

sample of 

data for 

given 

values of 

the 

unknown 

parameters.  

➢  
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•  
• ====================================================

========== 

CNN 

❖ A class of deep neural networks, most applied to analyse visual images. The conv 

nets reduce the images into a form that is easier to process, without losing 

features that are critical for getting a good prediction. 

❖ Working of CNN:- 

➢ Let’s talk about images first. An RGB image is nothing but a matrix of pixel 

values having three planes whereas a grayscale image is the same but it has a 

single plane. Images can be represented as arrays. Interesting points in the 

images- where there is sharp change on intensity, calculated by derivatives. 

➢ The activation of neuron is not influenced form all neurons of the previous 

layer BUT only from subset of adjacent neurons called as filter - the receptive 

field  

➢ Every neuron works as convolution filter. 

➢  Weights are shared – evey N perform the same transformation on different 

areas of i/p 

➢ Conv is symmetric, associative and distributive. 

➢ In the end we are left with assembling local featues of image into global 

structure.  

➢ To perform the Convolution, we take a filter also known as kernel and process 

the operation on batch of these pixels and in result we a new convolved image 

with desired features. 
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➢ In ConvNet, each layer generates several activation functions that are passed 

on to the next layer. 

➢ The first layer usually extracts basic features such as horizontal or diagonal 

edges. This output is passed on to the next layer which detects more complex 

features such as corners or combinational edges. As we move deeper into the 

network it can identify even more complex features such as objects, faces, etc. 

➢ Pooling Layer: is responsible for reducing the spatial size of the Convolved 

Feature. Once the dimensions are reduced, there is decrease in the 

computational power required to process the data. It discards the noisy 

activations altogether and also performs de-noising along with dimensionality 

reduction. 

▪ Max pooling: find the maximum value of a pixel from a portion of the 

image covered by the kernel. 

▪ Average Pooling: average of all the values from the portion of the image 

covered by the Kernel. Max Pooling performs a lot better than Average 

Pooling. 

 

•  
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•  

 

•  

 

 

❖ Linear filters 
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➢ Derivatives are example of linear filters 

➢ Blurring (mean), gaussian smoothing, edge detection, sharpening, embossing 

++ 

➢ Properties- 

▪ O/P is a linear transformation 

▪ Shift of input results in shifts of O/P 

▪ Linear filter can be combined 
❖ Convolution and Correlation 

➢ Correlation - Correlation is measurement of the similarity between two 

signals/sequences. 

➢ The kernel is flipped before taking products ~ cross correlation. 

➢ if kernel is symmetric – Conv and correlation are same. 

 

❖ Gaussian smoothening 

➢ Filters for CNN that is used for removing Noise via smoothening. The 

weightages of the kernels are distributed in such a way that the central pixels 

get maximum weightage while the pixels are the corner receive minimum 

weightage.  

➢ Good in removing noise, sharper than the box filter (average filter) 

▪  
❖ Kernel Convolution to detect Edges 

Sharp changes in color indicate the edges. We use Sobel to detect the edges 

➢ Sobel operator 

• The pixels are in X and Y directions. So we have special filters for the X 

directions and Y directions. Left is in -, middle in 0, right in +ve for X 

direction filter. It can detect edges horizontally. 

• Now similarly we can calculate for Y axis.  
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• To get information about the edges as hypotenuse, we can calculate the 

square root of sum of squares of values obtained from the X and Y filters. 

We can even get the direction of the edge in terms of angle if we divide the 

gradient result of Gy over Gx. 

  
• But Sobel produces edges for the noisy points also. It is very sensitive to 

such points, so it is better to take gaussian first and then perform the Sobel 

operator.  

➢ Smooth derivatives: 

▪ At the very least, this implies that the function is continuously 

differentiable (i.e. the first derivative exists everywhere and is continuous). 

▪  
❖ First order derivatives: 



26 | P a g e   s x a n d i e  

 

These notes are not a substitute to the original slides provided by professor but shall only be considered as additional material for 
the course.  

used as optimization method in deep learning is the first-order algo- rithm 

that based on gradient descent (GD). It is about finding a local minimum of a 

differentiable function. 

❖ Second order Derivatives: 

Second-order optimization technique is the next step of first-order optimization 

in neural networks which gives information about the direction. By using second 

order methods on the entire training data will give us a fairly accurate estimate of 

the descent direction and magnitude. If the secord order dervi is +ve, it means 

we are moving on convex surface. 

 

▪  
❖ In CNN: 

➢ Instead of using pre defined filters,, let them learn it’s own filters. 

➢ Important for deep architectures. 

 

❖ Parameters of Convolutional layers 

➢ Kernel size – dimension of linear filter 

➢ Stride – movement of the linear filter  |  Stride ↑, overlap ↓ 

➢ Padding- at the borders to allow application of filters 

➢ Depth – number of filters we wish to synthesize. Each neuron will be 

connected to same portion of I/P 
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•  
 

❖ Dimension of O/P 

➢  width , padding, kernel , stride 

➢ Addition of Activation function does not change the dimensions of 

the O/P 

❖ Padding 

➢ Valid – no padding 

➢ Same – apply minimal to enable calculations 

•  

❖ Filter operates on all i/p channels in || 

❖ i/p depth – D, kernel size – NxM: 

➢ the dimension of filter is NxMxD 

➢ the convolution kernel maps cross-channel and spatial correlations 

•  
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POOLING 

➢ In deep cnn, we alternate convolution layers with the pooling layers, 

neach neuron takes the mean or maximal value in its receptive field 

▪ Double advantage- reduces the dimension of o/p + tolerance to 

translations 

❖ Max Pooling example 

➢  
•  

•  

❖ Receptive Field 

➢ Dimension of the i/p region influencing it 

➢ A neuron cannot see anything outside itss receptive field 

•  

❖ Real examples of CNNs 

➢ AlexNet 

➢ VGG 

➢ Inception V3 

▪ Normal conv kernels are 3D simulateously mapping cross-

channel correlations and spatial correlations. 
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▪ Inception modules – intermediate steps b/w a regular conv and 

depthwise separable convolution. [depthwise conv followed by 

pointwise conv] 

•  

❖ Depthwise seperable convolutions 

➢  
➢ Traditional conv: 

▪ 3x3 kernel  

▪ 16 i/p channel 

▪ 32 o/p channel 

• So i/p is convolved 32 times with different kernels of dimension 

3x3x16 = 144. 

• So total parameters = 32*144 = 4608. 

➢ Depth wise Separable conv: 

▪ 3x3 kernel  

▪ 16 i/p channel 

▪ 32 o/p channel 

• We apply 32 different kernels with dimension 1x1x16 = 16 

• So total parameters = 16x3x3 + 32x1x1x16 = 656 
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•  

❖ Xception and MobileNet 

❖ Residual Learning – instead of 

learning F(x) we learn F(x) + x 

➢ We add residual connection 

every 2-3 layers 

➢ Example: Inception Resnet 

➢ Working: 

▪ During BP, the gradient at higher layers can easily pass to lower 

layers without interacting wth the weight layers that might cause 

vanishing gradient/exploding gradient problem. 

 

❖ Exploding gradients are a problem where large error gradients add up and 

result in very large updates to neural network model weights during training. 

This causes the model to become unstable and unable to learn from your training 

data. 

➢ Common solution to exploding gradients is to change the error derivative 

before propagating it backward through the network and using it to update 

the weights. By rescaling the error derivative, the updates to the weights will 

also be rescaled, dramatically decreasing the likelihood of an overflow or 

underflow. 

 

•  
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❖ Efficient Net 

➢ ConvNets 

essentially grow 

in 3 directions 

▪ Layers 

▪ Channel 

▪ Resolution 

➢ Does scaling 

ConvNets 

improves 

accuracing and 

efficiency : 

https://arxiv.org/pdf/1905.11946.pdf 

 

• ====================================================

===========WEEK 9 - CNN + BP + Transposed conv + transfer 

learning 

 

BP FOR CNN 

➢ Study material : link  

https://arxiv.org/pdf/1905.11946.pdf
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
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➢ I/p and O/p are unrolled into vectors from L to R.  

➢ Operation performed by the conv can be seen as 

single dense n/w with 16 i/p and 4 outputs. Wi,j 

is kernel weight.  

➢ In BP, we compute weights updates as usual. 

Updates relative to same 

kernels must be shared eg. 

Take mean among all updates 

[blue boxes] 

 

 

 

 

 

 

 

TRANSPOSED CONVOLUTIONS (DECONVOLUTION): 

Before we talk about TC, lets know about Upsampling and 

Downsampling first 

A downsampling convolutional neural attempts to compress the input, 

while an upsampling one tries to expand the input. 

There are various waus to perform these actions: 

padding, strides & dilations. 

 

Generally the CNN are downsample the image when 

performed.  
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❖ To increase output dimensions, padding is usually 

used.  

❖ Strides control how many units the kernel slides at a 

time. A high stride value can be used to further 

compress the output. The stride is usually and 

implicitly set to 1.  

❖ Dilations can be used to control the output size, 

but their main purpose is to expand the range of 

what a kernel can see to capture larger patterns. 

 

 

Lets talk about TC now, It is a method of 

unsampling. We use TC in auto encodes and 

GANs, or generally any network that deals with 

reconstructing images. 

➢ Transpose- switching the places between 

each other and when we talk about 

convolution NN, the input and output 

dimensions are switched. 

➢ Here, when the TC is performed the input of 

img is larger than the output. 

➢ The input is padded in such a way that the corner kernel are just in 

touch with the corner of the  input. 

❖ TC as fractionally strided 

➢ TC (deconvolution) ~ normal convo with sub unitarian stride 
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➢  
➢ By simple transposing the matrix we may convert the dimesionsion 

of i/p  into the dimension of o/p.  

➢ So kernel defines a conv matrix. the way matrix is applied decides 

whether direct convolution or transposed convolution.  

 

❖ Dilated Convolutions – Atrous Convolution: link 

➢ Atrous convolution is an alternative for the down sampling layer. It 

increases the receptive field whilst maintains the spatial dimension 

of feature maps. We deal with rate and pads here. When pad = 2, we 

pad 2 zeros at both L & R sides. When rate = 2 then we sample the 

input signal every 2 input for convolution.  

➢ Useful in the first layers while on high resolution images 

 

❖ Temporal CN 

- It uses casual convolutions and dilations so that it is adaptive for 

sequential data. This way it can handle long ip sequences with its 

temporality and large receptive fields. 

 

TRANSFER LEARNING 

https://arxiv.org/abs/1706.05587


35 | P a g e   s x a n d i e  

 

These notes are not a substitute to the original slides provided by professor but shall only be considered as additional material for 
the course.  

➢ It is a machine learning process used, that focuses on storing the 

knowledge gained while solving one problem and then applying it 

to a different problem. We should remember that both the problems 

should be related to each other. For example, knowledge gained 

while learning to recognize cars could apply when trying to 

recognize trucks. 

➢ Why do we do so? When we have less data of our specific problem, 

we use transfer learning. Since the model we will use is already 

trained on similar kind of data, it can move on with lesser amount of 

data.  

➢ Transfer learning can be used to accelerate the training of neural 

networks as either a weight initialization scheme or feature 

extraction method. 

➢ The weights in re-used layers can  be used as the starting point for 

the training process for the new problem. This is also called as 

transfer learning as a type of weight initialization scheme. More 

useful when the first related problem has a lot more labelled data 

than the our problem which is similar to the first.  

 

•  

 

• ====================================================

=========== 

• SLIDE 10 

• How CNN see the world : link 

•  

❖ Pattern: 

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
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•  
➢ Complex (deep) patterns 

▪ Neurons at the higher layers should recognize complex patters – 

combination of previous patterns – over large receptive field.  

▪ In the highest layer, neurons start recognizing patters similar to 

the features of objects in dataset ~ eyes, house, feathers. 

➢ Visualization of hidden layers 

▪ Hidden layers allow for the function of a neural network to be 

broken down into specific transformations of the data. Each 

hidden layer function is specialized to produce a defined output. 

▪ We need the hidden layers are required if and only if the data 

needs to be separated non-linearly. 

 

❖ The Gradient Ascent technique: 

- If instead one takes steps proportional to the positive of the gradient, 

one approaches a local maximum of that function; the procedure is 

then known as gradient ascent. Since in gradient Descent we had an 

aim to minimize the loss function. Here we look forward to 

maximising a particular function. 

- Why do we need this? When we are treading the surface of function, 

we can face a convex or concave surface. If it is convex we use 

Gradient Descent and if it is concave we use we use Gradient 

Ascent. When we use the convex one we use gradient descent and 
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when we use the concave one we use gradient ascent. One 

interesting point is that, if I add a minus before a convex function it 

becomes concave and other way around  is also true. 

❖ VGG 

- The network has 41 layers. There are 16 layers with learnable 

weights: 13 convolutional layers, and 3 fully connected layers. 

- The number of filter we use is roughly doubling on every step 

❖ Emphasization though deconvolution 

➢ Instead of synthesizing an img maximizing the activation of the 

neuron, emphasize in real img what caused the activation. 

➢ LINK 

➢ Deconvolution- convolution with sub-unitarian stride 

➢ Unpooing via switches – Boolean maps 

•  

 

Deconvolution: In the deconvnet, 

the unpooling operation uses these 

switches to place the 

reconstructions from the layer 

above into appropriate locations, 

preserving the structure of the 

stimulus.  

❖ Deconv architecture 

➢ Select img with strong 

activation  for given neuron 

➢ Zero out all activations for different neurons 

➢ Go back to the img space, via deconv net. 

➢ Conv kernel must be TRANSPOSED,  

• Flipped horizontally and vertically.  

 

https://arxiv.org/abs/1311.2901
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❖ Unpooling: In the convnet, the max pooling operation is non-

invertible, however we can obtain an approximate inverse by 

recording the locations of the maxima within each pooling region in a 

set of switch variables. 

➢ Nearest neighbour method à 

➢ Bed of nails:  

•  

➢ Max unpooling: 

• Remember the positions while pooling: 

 
 

❖ Matched filter: 

➢ Applying transposed kernel we emphasize the portion of img that 

caused activation. 

➢ Transpose of kernel -> matched filter. 
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•  

• As we move towards higher levels we observe 

• -Growing structural complexity 

• -More semantic grouping 

• -Greater invariance to scale and rotation 

=========== 

❖ Comparison to other works: 

➢ Objective is similar to encoding but 

▪ It works with a arbitrary n/w (classifier) not an encoder 

▪ We don’t train NN, BP is used to reconstruct the image 

▪ Loss is measured on internal representation. 

➢  
➢ Results: 

➢ The layers are invertible code, progressively become fuzzier. 

▪ Last layers invert back to multiple copies of object parts at 

different positions and scales. 

❖ Fooling NN 

➢ We can use gradient ascent to generate weird-looking images to 

maximize activation of a given unit 

➢ This technique increase the score of whatever class we want 
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➢ We should be able to automatically sunthesize img of any kinds 

under consideration. 

➢ Out of the many pixels, a tiny deviation is enough to fool the 

classifier; link 

•  

➢ Rather than searching for the smallest possible perturbation, it is 

easier to take small gradient steps in desired direction  

➢ Is it possible to obtain similar result using network as black box 

 

❖ DNN are easily fooled 

➢ Evolutionary approach 

▪ Start with random population of images 

▪ Alternately apply selection (keep best) and mutation (random 

perturbation/crossover) 

https://arxiv.org/abs/1312.6199
http://www.evolvingai.org/files/DNNsEasilyFooled_cvpr15.pdf
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• When tested the results can be astonishing since the results are no 

where near the expectations. 

 
 

❖ Imgage encoding:  

➢ Direct encoding- explicit representation of img as array of pixel 

➢ Indirect encoding – implicit representation of img as composition of 

regular function – sine, gaussian, sigmoid,  linear etc 

 

 

MANIFOLD 

➢ manifold is an object of dimensionality d that is embedded in some 

higher dimensional space. Imagine a set of points on a sheet of 

paper. If we crinkle up the paper, the points are now in 3 

dimensions. Many manifold learning algorithms seek to "uncrinkle" 

the sheet of paper to put the data back into 2 dimensions. 
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▪ Natural imgs have many manifold with low dimensionality. 

▪ In high dimensional space – easy to move away from the 

manifold of a given category.  

▪ Once we have a manifold to describe your data, you can make 

predictions about the remaining space 

➢ Manifold issue 

▪ Due to correlation bw features, datapoints 

occupy small and specific areas of space. 

▪ Moving away from a class the probability 

to end up in a meaning point can be very 

low. 

 

❖ Inceptionism 

➢ Deep dream & Inceptionism 

▪ Intention to see what dNN is seeing when given a image 

▪ It evolved into a new form of art 

➢ Deep dreams 

▪ Train a nw for image classification 

▪ Revert the nw to slightly adjust (via BP) the original img to 

improve the activation of specific neuron 

▪ After enough reiteratins, img will be incepted by the desired 

features, creating psychedelic and surreal effects.  

▪ Generated imgs take advantage by strong regularizers privileging 

ip that have statistics similar to natural images ~ correlation b/w 

neighbouring pixels 

➢ Enhancing the content 

▪ Instead of prescribing the feature we want to amplify, we can also 

fix a layer and enhance whatever is detected.  

▪ Each level deals with diff level of abstraction 

➢ Style Transfer à 
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▪ define two distance functions, one that describes how different 

the content of two images are, Lcontent, and one that describes 

the difference between the two images in terms of their style, 

Lstyle. Then, given three images, a desired style image, a desired 

content image, and the input 

image (initialized with the 

content image), we try to 

transform the input image to 

minimize the content distance 

with the content image and its 

style distance with the style 

image. 

▪ The gradient ascent technique can also be used to mimic artistic 

style 

❖ Capturing Style 

•  
•  

❖ Combine style and content 

➢ Content and style are separable. 



44 | P a g e   s x a n d i e  

 

These notes are not a substitute to the original slides provided by professor but shall only be considered as additional material for 
the course.  

➢ Different combinations varying the reconstruction layer (Rows) and 

relevance ratio b/w styles. 

•  
❖ Other approaches to style transfer 

➢ Technique based on cycle gans 

➢ Universal transform via Feature transforms link 

▪ Takes i/p img, a style to mimic, and adapts content to given style. 

• ====================================================

======================= 

L11. SEGMENTATION  

 

• Classify each pixel of an image into a category. A group where it 

belongs to  

• For example, in an image that has many cars, segmentation will label 

all the objects as car objects. However, a separate class of models 

known as instance segmentation. 

• Instance segmentation is the task of detecting and delineating each 

distinct object of interest appearing in an image. 

• Slightly more fine-grained task of segmenting the object 

https://arxiv.org/abs/1705.08086
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•  

❖ Semantic Segmentation 

➢ the process of linking each pixel in an image to a class label.  

➢ we label specific regions of an image according to what's being 

shown.. Different categories have different colours. Used on 

Autonomous driving. Industrial inspection. 

➢ It  is different from object detection as it does not predict any 

bounding boxes around the objects. We do not distinguish between 

different instances of the same object. For example, there could be 

multiple cars in the scene and all of them would have the same label 

 

 

• Convolutionalization: 

❖ Composition of conv is conv 

❖ Stride of compound conv is product of strides of components. 

❖ Dimension of compound kernel:  

➢ Kernel dimension:  

▪ Intermediate dimension = Stride * (dimension out - 1) + K 

• Example: 

▪  ?? 

❖ What breaks convo? 

➢ If there are dense layers at the end of networks [ if maxpooling has a 

fixed pooling dimension] 

 

❖ Idea 

➢ Neurons in dense/ conv layers  

- HAVE THE same functionalities.  

- compute weighted sum of inputs  

 

➢ Dense layers are convo with large filters (= input size) 
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➢ So, each DenseLayer -> turn into -> conv layer (reuse same weights) 

-> conv network. 

 

❖ If -> img classification -> on fixed size imgs, we get DCN that: 

➢ Takes input img of arbitrary dimension. 

➢ Produces output heatmap of activation of different obj categories. 

▪ This heatmap is relative to different locations of input img upon 

which DCN was convolved.  

▪  
•  

❖ InceptionV3 as single conv 

➢ Whole convnet ~ single convo 

➢ Stride? Kernel size? 

▪ Stride is product of all strides 25 = 32 

▪ Kernel size Din = (((((Dout -1)*2+2)*2+2)*2+4)*2+4)*2+3 = 32 Dout 

+ 43 

•  

❖ Big stride we will have rough localization 

➢ Kernel = 75, stride = 32 

➢ Suppose we have ip dimension Din -> dimension of heatmap = 

((Din -75)/32) +1 

➢ stride of 32 limits the scale of details: 
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➢ Shelhamer added the skipped pixels, it combines the final prediction 

layer with lower layers of finer strides. 

•  

U-net:  

architecture had two main parts that were encoder and decoder. The 

encoder is all about the covenant layers followed by pooling operation. It 

is used to extract the factors in the image. The second part decoder uses 

transposed convolution to permit localization. It is again an F.C 

connected layers network.  

 

❖ Learns segmentation in end to end configuration 

❖ Required less training examples. [data augmentation] 

❖ Precise results 

❖ No need of classification network 

 
 



48 | P a g e   s x a n d i e  

 

These notes are not a substitute to the original slides provided by professor but shall only be considered as additional material for 
the course.  

• Here you try to downsample the image first i.e from 572*572 then you 

reduce the final to 32*32 here you have the max pool layer and conv 

layer 3*3  

Again you try to upsample the image with the help of auto encoders to 

the original image size . 

            The gray lines are the horizontal connections.  

it only contains Convolutional layers and does not contain any Dense 

layer because of which it can accept image of any size. 

 

Encoder (left side): It consists of the repeated application of two 3x3 

convolutions. Each conv is followed by a ReLU and batch normalization. 

Then a 2x2 max pooling operation is applied to reduce the spatial 

dimensions. Again, at each downsampling step, we double the number of 

feature channels, while we cut in half the spatial dimensions. 

 

Decoder path (right side): Every step in the expansive path consists of an 

upsampling of the feature map followed by a 2x2 transpose convolution, 

which halves the number of feature channels. We also have a 

concatenation with the corresponding feature map from the contracting 

path, and usually a 3x3 convolutional (each followed by a ReLU). At the 

final layer, a 1x1 convolution is used to map the channels to the desired 

number of classes. 

 

=====================================================

=========== 

L12: OBJECT DETECTION [OD] 

 

❖ Object detection is a computer vision technique that allows us to 

identify and locate objects in an image. 
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YOLO is an example of OD where an image feed it to the deep neural 

network( CNN) and the architecture is suppose to predict eight values .It 

gives you the coordinates of the box and what the box contains. 

 

• Bounding box – which network predicts –predicted value 

• Golden box – true value  

Anchor boxes are a set of predefined bounding boxes of a certain height 

and width. These boxes are defined to capture the scale and aspect ratio 

of specific object classes we want to detect and are typically chosen based 

on object sizes in our training datasets. 

❖ Similar to segmentation, but OD returns a bounding box containing the 

object. 

❖ Training an end-to-end model -> 

difficult. 

❖ No loss function is there. 

 

Intersection over union [Jaccard index]: 

❖ A method of evaluating the bounding 

boxes: comparison between ground 

truth & calculated bounding box. 

 

• Dataset for OD: 

❖ PASCAL visual object classes 

❖ Coco 

 

Deep OD: 

❖ Region proposal methods: 

➢ Derived via Selective Search algo 

➢ Selective Search algo  

▪ identify possible locations of interests 
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▪ exploit texture and structure of img, object independent 

➢ RCNN, Fast RCNN, Faster RCNN 

❖ Single Shot methods: 

➢ Yolo, SSD, Retina-net, FPN 

•  

YOLO – YOU ONLY LOOK ONCE  

❖ In region proposal classification networks (fast RCNN) 

sometimes it perform detection on various region proposals 

and thus end up performing prediction multiple times for 

various regions in a image. 

❖  Yolo architecture is more like FCNN (fully convolutional 

neural network) and passes the image (nxn) once through the 

FCNN and output is (mxm) prediction.  

❖ This is an algorithm that detects and recognizes various 
objects in a picture (in real-time). Object detection in YOLO is 

done as a regression problem and provides the class 

probabilities of the detected images. 

Why the YOLO algorithm is important 

YOLO algorithm is important because of the following reasons: 

• Speed: This algorithm improves the speed of detection because it 

can predict objects in real-time. 

• High accuracy: YOLO is a predictive technique that provides 

accurate results with minimal background errors. 

• Learning capabilities: The algorithm has excellent learning 

capabilities that enable it to learn the representations of objects and 

apply them in object detection. 



51 | P a g e   s x a n d i e  

 

These notes are not a substitute to the original slides provided by professor but shall only be considered as additional material for 
the course.  

HOW THE YOLO ALGORITHM 

WORKS 

YOLO algorithm works using the following three techniques: 

• Residual blocks 

• Bounding box regression 

• Intersection Over Union (IOU) 

RESIDUAL BLOCKS 

First, the image is divided into various grids. Each grid has a dimension 

of S x S. The following image shows how an input image is divided into 

grids. 

 

BOUNDING BOX REGRESSION 

A bounding box is an outline that highlights an object in an image.Every 

bounding box in the image consists of the following attributes: 

• Width (bw) 

• Height (bh) 
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• Class (for example, person, car, traffic light, etc.)- This is represented 

by the letter c. 

• Bounding box center (bx,by) 

The bounding box is generally been represented by a coloured outline. 

 

YOLO uses a single bounding box regression to predict the height, width, 

center, and class of objects. It also represents the probability of an object 

appearing in the bounding box. 

INTERSECTION OVER UNION (IOU) 

Intersection over union (IOU) is a phenomenon in object detection that 

describes how boxes overlap. YOLO uses IOU to provide an output box 

that surrounds the objects perfectly. 

Each grid cell is responsible for predicting the bounding boxes and their 

confidence scores. The IOU is equal to 1 if the predicted bounding box is 

the same as the real box. This mechanism eliminates bounding boxes that 

are not equal to the real box. 
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YOLO ensures that the two bounding boxes are equal 

COMBINATION OF THE THREE TECHNIQUES 

The following image shows how the three techniques are applied to 

produce the final detection results. 

 

First, the image is divided into grid cells. Each grid cell forecasts B 

bounding boxes and provides their confidence scores. The cells predict 

the class probabilities to establish the class of each object. 

For example, if our image have three classes of objects: a car, a dog, and a 

bicycle. All the predictions are made simultaneously using a single 

convolutional neural network. 
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Intersection over union ensures that the predicted bounding boxes are 

equal to the real boxes of the objects. This phenomenon eliminates 

unnecessary bounding boxes that do not meet the characteristics of the 

objects (like height and width). The final detection will consist of 

unique bounding boxes that fit the objects perfectly. 

For example, the car is surrounded by the pink bounding box while the 

bicycle is surrounded by the yellow bounding box. The dog has been 

highlighted using the blue bounding box. 

 

 

 

 

1 convolution layer --> 2 FC layers 

➢ OD that uses features learned by DCN 

to detect objects. 

➢ Input img is processed a single time 

➢ Fully conv network. 

➢ Ip is down sampled by 25 (32 times 

smaller parts -> Feature maps) 

➢ This downgrade gives positions of objects 

as well. 

➢ Dimension of convo kernel -> Receptive Field of each neuron -> 

depends on n/w. 

➢ Detecting obj. generally involves neurons outside the building box.  

➢ Credit for detection goes to:  

▪ Single neuron is responsible for detection, it is located at the 

centre of bounding box. 

▪ Neuron makes finite no of predictions. 

➢ Predictions: 
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▪ 13*13 neurons in feature map. 

▪ Depth wise entries ->  

• bounding boxes * (5 + num. of categories) 

▪ Each bounding box has 5 + C attributes 

• 2 for centre coord. 

• 2 for dimension. 

• 1 for objectness score. 

• C for confidence score. 

➢ Anchor boxes: 

▪ We can’t directly predict the width and height of bounding boxes 

-> causes unstable gradients during training. 

 

▪ Modern OD predict log space affine transforms for pre defined 

default bounding boxes - > 

anchors 

▪ These transformations are 

applied to anchor boxes to 

get pred. 

▪ YOLO v3 has 3 anchors -> prediction of 3 bounding boxes per 

cell. 

▪  Anchors as selected by K means clustering on training set, 

reflecting the most likely shapes of bounding boxes.  

 

➢ Making predictions: 

▪ The output gives following details: 

• Tx, Ty, Tw, Th (cell coord) 

Cx, Cy (anchor dimensions) 

▪  

➢ Centre cords: 
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▪ YOLO does not print exact bounding box centre dimensions. 

Instead it gives, 

• Relative to top left corner of grid cell which is predicting the 

objects. 

• Normalised by the dimension of cell from the feature map ~ 1 

 

LIMITATIONS OF YOLO 

YOLO imposes strong spatial constraints on bounding box predictions 

since each grid cell only predicts two boxes and can only have one class. 

This spatial constraint limits the number of nearby objects that our 

model can predict. Our model struggles with small objects that appear in 

groups, such as flocks of birds. Since our model learns to predict 

bounding boxes from data, it struggles to generalize to objects in new or 

unusual aspect ratios or configurations.  

➢ Our model also uses relatively coarse features for predicting 

bounding boxes since our architecture has multiple down sampling 

layers from the input image. Finally, while we train on a loss 

function that approximates detection performance, our loss 

function treats errors the same in small bounding boxes versus 

large bounding boxes. A small error in a large box is generally okay 

but a small error in a small box has a much greater effect on IOU. 

Our main source of error is incorrect localizations. 
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➢ Dimension of BoundingBoxes; 

▪ Predicted by applying log space transform to output & 

multiplying with anchor dimension. 

▪ Results: bw, bh, [normalised by height and width of img] 

▪ Training labels are chosen this way. 

•  

➢ Objectness Score 

▪ Prob of object contained inside the bouding box. 

▪ Obj score is passed through sigmoid -> to be interpreted as a 

probability. 

•  

➢ Class confidences 

▪ Probability of detected obj belonging to particular class. 

▪ Before v3, YOLO class scores were computed via Softmax. 

▪ Since, YOLOv3 multiple  sigmoid function are used (considering 

possibility of objects belonging to multiple hierarchical 

categories). 

•  

❖ Yolo Loss Function: 

➢ Two parts- 

▪ Localization loss -> BB offset prediction. 

v -> true value ; v^ -> predicted one - 

 
i -> traverses cells 

j -> traverses bb 

 

▪ Classification loss -> conditional class prob. 

Relative to object confidence & actual classification 
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➢ Whole loss :  

 

Lambda coord – additional parameter that balances the contribution 

between localization loss & classification loss. 

In YOLO lambda coord = 5, lambda noObj = 0.5 

 

 

MULTI SCALE PROCESSING 

In this process we convolve the image with a Gaussian kernel at different 

σ sigma values, and in return we obtain different scale representation 

of the image. We need to do this detect the information from the image 

at different scales.  

 

❖ Image Pyramids: 

➢  used to build feature pyramids -> slow 

➢ YOLOv1 moved from high scale to low -> detection of small object is 

bad      

❖ Feature Pyramids Network: 

- feature extractor that takes a single-scale image of an arbitrary size 

as input, and outputs proportionally sized feature maps at multiple 

levels.  

- The construction of FPN involves bottom-up pathway and top-

down pathway. 

- Bottom-up pathway is feed forward computation of backbone of 

convnet. 

o It computes the feature hierarchy that contains the feature 

maps at multiple scales. Here the step size of the scales is 2. 
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o The output of last layer of each stage is used as reference set of 

feature maps. 

o The bottom up feature maps is lower level semantics but its 

activations are more accurately localized as it is subsampled 

lesser times.  

- Top-down pathway has higher resolution features. It performs un-

sampling of the features.  

o These features are later enhancement with a features from the 

bottom-up pathway via lateral connections. 

o Each connection merges the feature maps of same size from 

bottom up path and top-down path. 

o Steps: 

▪ Higher level features are unsampled. 

▪ Feature map direction bottom up -> pathway undergoes 

pathway reduction via 1*1 conv layer 

▪ Finally, these two feature maps are merged 

 

 

➢ Single Shot Detector (SSD) reuse pyramid features hierarchy as 

ConvNet -> featurised image pyramids. 

➢ FPN, RetinaNet, YOLOv3 recombines features via backward 

pathway. 

▪ Fast  & Accurate 

▪ Feature maps have thin lines, semantically stronger features have 

thick outlines. 

 

 

 

Non Maximum Suppression: 
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❖ Non-max suppression is the final step of these object detection 

algorithms and is used to select the most appropriate bounding box for 

the object. It solves the problem of multiple detection of same image, 

corresponding to different anchor & adjacent cells. 

❖ [YOLO v3 predicts feature maps at 13, 26, 52 scale. 

❖ At end we have 132 + 262+ 522  = 10647 BB of dimension 85 [4 coord, 1 

conf, 80 class] 

❖ NMS takes 2 things into account- 

➢ Thresholding by Object Confidence: 

-We filter boxes based on confidence score, below threshold are 

ignored 

➢ Overlap of bounding boxes – IOU – [intersection over union] 

The non-max suppression will first select the bounding box with the 

highest objectiveness score. And then remove all the other boxes with 

high overlap. 

 

- Outline: 

 Divide BB a/c predicted classes C. 

 Each list BB is processed separately. 

 Order BBc a/c to the confidence 

 Initialize truePredictions to an empty list. 

 While BBc is not empty: 

Pop the first element p from BBc  

Add p to truePredictions 

Remove from BBc all pred with IoU s.t p>th 

Return truePrediction 

 

 

Ablation 
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- is the removal of a component of an AI system. An ablation study 

studies the performance of an AI system by removing certain 

components, to understand the contribution of the component to the 

overall system. 

 

 

 

 

=====================================================

====================== 

AUTOENCODERS: PCA 

 

❖ Autoencoder – used to reconstruct input data of learned internal 

representation. An autoencoder is a special type of neural network that 

is trained to copy its input to its output. For example, given an image 

of a handwritten digit, an autoencoder first encodes the image into a 

lower dimensional latent representation, then decodes the latent 

representation back to an image. 

Autoencoder is a type of neural network that can be used to learn a 

compressed representation of raw data. An autoencoder is 

composed of an encoder and a decoder sub-models. An autoencoder 

is a neural network model that can be used to learn a compressed 

representation of raw data. 

➢ Internal representation has lower dimensionality. So it is good for 

compression. 

 

Architecture of AE: 

Consists of Encoder, Code & Decoder. There are 3 components. 
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- Encoder: layer encodes the input image as a compressed 

representation in a reduced dimension. The compressed image is the 

distorted version of the original image. 

- Code: this part of n/w represent the compressed input which is later 

used as input to the decoder. Also known as bottleneck. It is 

designed in such a way so that it can decide which aspects of 

observed data are relevant information and what aspects can be 

discarded.  

- Decoder: decodes the encoded image back to the original 

dimension. The decoded image is a lossy reconstruction of the 

original image and it is reconstructed from the latent space 

representation. 

Properties of Autoencoders: 

• Data-specific: Autoencoders are only able to compress data similar to 

what they have been trained on. 

• Lossy: The decompressed outputs will be degraded compared to the 

original inputs. 

Learned automatically from examples: It is easy to train specialized 

instances of the algorithm that will perform well on a specific type of 

input. 

 

AutE have multiple uses: 

AEncodders Can be used for multiple purpose. 

 
❖ Compression  
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➢ Input data has regularities, we learnt the pattern between them and 

then perform the compression. 

➢ Irregular data -> [high random] no compression is possible. 

 

➢ Form of Data Compression (DC) – internal layer has fewer units of 

ip, AutoEncoders are a form Data Compresssion.  

➢ Compression types- 

▪ Data specific: works only on data with strong correlation. 

Different from traditional DC algo 

▪ Lossy: o/p is degraded wrt i/p. Different from textual 

compression algo, s.a. gZip 

 

➢ Autoencoders – pros: 

▪ Data denoising 

▪ Dimensionality reduction 

➢ Cons: They are Data-specific: Autoencoders are only able to 

compress data similar to what they have been trained on. Lossy: The 

decompressed outputs will be degraded compared to the original 

inputs. 

 

PCA:  

➢ Principal component analysis (PCA) is the process of computing the principal 

components and using them to perform a change of basis [transformation 

along certain axes] on the data, sometimes using only the first few principal 

components and ignoring the rest. 

➢ PCA is used in exploratory data analysis and for making predictive models.  

➢ commonly used for dimensionality reduction by projecting each data point 

onto only the first few principal components to obtain lower-dimensional data 

while preserving as much of the data's variation as possible.  

➢ n-dimensional space linearly projects the min lower dimensional space, 

minimizing the quadratic error of their reconstruction. 

https://en.wikipedia.org/wiki/Change_of_basis
https://en.wikipedia.org/wiki/Exploratory_data_analysis
https://en.wikipedia.org/wiki/Predictive_modeling
https://en.wikipedia.org/wiki/Dimensionality_reduction
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➢ We focus on instead of minimizing the error, it is equivalent to 

maximize the variance. 

 

Maximizing Variance 

• Since the distance of each point from 

centre remains constant, we can maximise the 

variance ~ minimizing the error. 

• For the points, we have eigen vectors as 

axes. 

• The eigenVector v, for a matrix A is such that 

there is scalar λ 
Av = λv 

 Co-variance 

• With bi-dimensional data, the variance of individual componects x & y 

don’t capture the variance of data. Why? 

Since, exchanging x1,y1 x2,y2 with x1y2, x2y1 has no change in variance 

of y & x. 

 Co-variance matrix: 

• is a square matrix giving the covariance between each pair of elements 

of a given random vector. Any covariance matrix 

is symmetric and positive semi-definite and its main diagonal 

contains variances (i.e., the covariance of each element with itself). 

• Expresses deformation of data. Way of distribution of data 

• X dataset having n data * D dimensions (features) 

• Covariance Matrix(X) – matrix (d*d) 

var(X) = E[(X − E(X))T (X − E(X))] 

var(X) = E[XT X] = 1/n XT X    when data is centered E(X) = 0 

 Eigen Vector: 

• Every square matrix A defines a linear transformation X-> AX 

• Direction of vectors representing the data distribution. 

 

PCA Algorithms: 

Application of PCA to face recognition 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Random_vector
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Positive_semi-definite_matrix
https://en.wikipedia.org/wiki/Variance
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=============================================================

===================== 

 

Variational Encoders :  

 

HTTPS://WWW.YOUTUBE.COM/WATCH?V=2M9E-

ASXTL8&T=421S&AB_CHANNEL=STATQUESTWITHJOSHSTARMERSTA

TQUESTWITHJOSHSTARMERVERIFIED 

A variational autoencoder consists of an encoder, a decoder, and a loss function. 

Dimensionality reduction is as data compression where the encoder compress the 

data (from the initial space to the encoded space, also called latent space) whereas 

the decoder decompress them. Our intension always remain to keep the maximum 

of information when encoding and, minimum of reconstruction error when 

decoding. 

 

Deterministic Autoencoder:  

❖ Encoder is net trained to reconstruct ip data 

out of learnt internal representation the 

process that produce the “new features” 

representation from the “old features” 

representation Can we use 

❖ Is decoder to generate data by sampling in latent space? 

➢ NO! Since we do not know the distribution of latent vars. 

- It can be seen as non linear extension of PCA.  

- The challenge we face with these are while generation, the latent space where 

they convert their inputs & the space where the encoded vectors lie may not 

be continuous. 

https://www.youtube.com/watch?v=2m9E-aSXtl8&t=421s&ab_channel=StatQuestwithJoshStarmerStatQuestwithJoshStarmerVerified
https://www.youtube.com/watch?v=2m9E-aSXtl8&t=421s&ab_channel=StatQuestwithJoshStarmerStatQuestwithJoshStarmerVerified
https://www.youtube.com/watch?v=2m9E-aSXtl8&t=421s&ab_channel=StatQuestwithJoshStarmerStatQuestwithJoshStarmerVerified
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-  
- the encoding part that comes after Encoder and before Decoder section, the 

graph can not deal with inputs that the encoder has never seen before because 

different classes are clustered bluntly and those unseen inputs are encoded be 

to something located somewhere in the blank. 

- To tackle this problem, the variational autoencoder was created by adding a 

layer containing a mean and a standard deviation for each hidden variable in 

the middle layer: 

-  
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Variational Autoencoders (VAE): There is an extra step of Sampling.  

❖ It is an encoder whose training is regularised to avoid overfitting. 

❖ It ensures that the latent space has good properties to enable the generative 

process. 

❖ Variational -> close relation between regularization and variational inference 

method in statistics. 

❖ LINK  

❖ We try to force latent variables to have a known distribution 

 

We have the gaussian distribution 

which is the obvious choice given the 

mean and the variance. 

 

Here we have the quadratic loss that is 

one we are pushing these points 

towards the centre i.e centre the latent 

space. 

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Why center? So the mean = 0, it prevents encoded distribution to be too far apart 

from each others.  

We need to increase the variance by covering all 

the latent space  

MNIST Case: 

➢ Regularization term -> induce Gaussian 

distribution of points in latent space. 

 

❖ Learning latent distribution 

▪ Encoder computes σ(X) together with 

µ(X) 

▪ How to compute “apropriate” 

variance? 

• Sample around µ(X) using the 

current variance σ(X). 

• Use the resulting point to reconstruct X 

• Use the reconstruction error to tune both µ(X) and σ(X). 

❖ Sampling in latent space: 

➢ Sampling adds noise to encoding, improves robustness. 

 

KULLBACK LEIBLER REGULARIZATION 

It is is a measure of how different a specific probability distribution is from a 

reference distribution.  

In a VAE, there are two components to the loss function:  

- the reconstruction term 

- the regularization term.  

The reconstruction term measures the efficiency  of the encoder-decoder with 

respect to the initial data and output layer. When we get 0 reconstruction loss, an 

autoencoder perfectly reconstructs the input data. This is a bad sign because of 

overfitting and a lack of interpretable latent features. 
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VAEs encode their inputs as Gaussian distribution. This is where we use the K-L 

divergence. It is better that the distributions of the VAE is regularized. 

Regualarizationto increases the amount of overlap within the latent space. K-L 

divergence measures this and is added into the loss function. There is a trade-off 

between reconstruction and regularization. If we want to reduce our 

reconstruction error, this comes at the expense of K-L divergence or 

regularization. 

--- 

Averaging on all data: 

 

Why compute mean and variance?? 

- We want to push Q(z|X) close to a 

Normal N(0,1) 

- When averaging on all X, we get Q(z) ~ N(0,1) 

Latent Variable model: expressing probability of a data point X through 

marginalization over a vector of latent variables. 

 P(X) = Integration{ P(X|z, θ)P(z)dz} ≈ Ez∼P(z) P(X|z, θ) 

 

 

 

=============================================================

===================== 

GENERATIVE ADVERSINAL NETWORKS  

Generative Models: learns the actual distribution of real data from available 
samples. 

GAN- 

Suppose we have a set of data instances X and a labels Y: 
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• Generative models can generate new data instances. Generative models 

capture the joint probability p(X, Y), or just p(X) if there are no labels. 

• Discriminative models discriminate between different kinds of data instances. 
models capture the conditional probability p(labels | data instance). 

 

In pactice, DM has a line that divides space into parts while GM creates clusters in 
the data point and gives them label 

A generative model could generate new photos of animals that look like real 
animals, while a discriminative model could tell a dog from a cat.  

GANs are just one kind of generative model.  

A generative model includes the distribution of the data itself, and tells us how 
likely a given example is. I mean, what are the chances of something will come now. 
For example, when we use models to predict the next word in a sequence, these are 
generative models which are simpler than GANs because they can assign a 
probability to a sequence of words. 

A discriminative model ignores the question of whether a given instance is about to 
happen or not but instead it tells us how likely a label is to apply to the instance. 

• The generator learns to generate realistic data. The generated instances 
become negative training examples for the discriminator. 
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The generator feeds into the discriminator net, and the discriminator produces 
the output we're trying to affect. The generator loss penalizes the generator for 
producing a sample that the discriminator network classifies as fake. 

This extra chunk of network must be included in backpropagation. 
Backpropagation adjusts each weight in the right direction by calculating the 
weight's impact on the output 

backpropagation starts at the output and flows back through the discriminator 
into the generator. 

Training Generator steps: 

So we train the generator with the following procedure: 

1. Sample random noise. 
2. Produce generator output from sampled random noise. 
3. Get discriminator "Real" or "Fake" classification for generator output. 
4. Calculate loss from discriminator classification. 
5. Backpropagate through both the discriminator and generator to obtain 

gradients. 
6. Use gradients to change only the generator weights. 

 

• The discriminator learns to distinguish the generator's fake data from real 
data. The discriminator penalizes the generator for producing implausible 
results. 
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When training begins, the generator produces obviously fake data, and the 
discriminator quickly learns to tell that it's fake: 

 

It tries to distinguish real data from the data created by the generator. It could use 

any network architecture appropriate to the type of data it's classifying. 

Training data for Discriminator 

The discriminator's training data comes from two sources: 

- Real data instances, such as real pictures of people. The discriminator uses 

these instances as positive examples during training. 

- Fake data instances created by the generator. The discriminator uses these 

instances as negative examples during training.  

Training GAN: Training Discriminator + Training Generator 

GAN contains two separately trained networks, its training algorithm must address two 

complications:GAN training proceeds in alternating periods: 

1. The discriminator trains for one or more epochs. 

2. The generator trains for one or more epochs. 

3. Repeat steps 1 and 2 to continue to train the generator and discriminator networks. 

 

Click here: https://developers.google.com/machine-learning/gan/gan_structure 

THE CYCLEGAN 

https://developers.google.com/machine-learning/gan/gan_structure
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It is technique for training unsupervised image translation models via the GAN 

architecture using unpaired collections of images from two different domains. 

This method that can capture the characteristics of one image domain and figure out how 

these characteristics could be translated into another image domain, all in the absence of 

any paired training examples. CycleGAN uses a cycle consistency loss to enable training 

without the need for paired data. I mean to say the models are trained in an unsupervised 

manner using a collection of images from the source and target domain that do not need to 

be related in any way. 

This technique is powerful because it can transfer the style n domains, interestingly we can 

see conversion photographs of horses to zebra, and the reverse. 

The CycleGAN is an extension of the GAN architecture that involves the simultaneous 

training of two generator models and two discriminator models. 

 

One generator takes images from the first domain as input and outputs images for the second 

domain, and the other generator takes images from the second domain as input and generates 

images for the first domain. Discriminator models are then used to determine how good the 

generated images are and update the generator models accordingly. 

--------------- 

Generative Models-  

Goal: build probability distribution pmodel close to pdata. 
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How? 

➢ Explicitly estimate the distribution 

➢ Build generator – to sample according to pmodel 

Why? 

➢ It improves latent representation of data 

➢ Encoding of complex high dimensional distribution 

➢ We work with multi-modal outputs, where we need to choose rather than 

averaging. 

▪ We should provide constraints while data generation (color, orientation, 

etc) to get relevant results. 

 

➢ Find a way to produce realistic samples probability 

distribution. 

▪ Region of High probability – pixel wise average of 

possible solutions that could produce new imgs.  

Model learns from all the real images, creates an 

average data from those & uses it to create a new img, this produces bl.  

➢ Can be incorporated into reinforcement learning -> predicting possible future. 

➢ Another Application: Super-Resolution. Instead of averaging -> make a 

choice and create sharp results. 

Approach: 

-Interrelation b/w generator and 

discriminator. 

-Min Max Game 

 MinGMaxD(D,G) 

Between generator and Discriminator 

 

V(D,G) = NCE(D)wrt true data distribution + NCE(‘false’ D) wrt fake generator 

*NCE -> Negative cross entropy 
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Problem with GANs: 

➢ Vanishing Gradients - if our discriminator is too good, then generator 

training can fail due to vanishing gradients. So a good D, wont provide 

enough information for the generator to make progress. Can be solved using – 

Modified minmax loss 

➢ Mode collapse – when the generator prodcuces realistic output, the generator 

might learn to produce the same output again and again. Because the G is 

always trying to find the output that seems most realistic to the discriminator. 

If G produces same output again and again, D tried to reject that output. But 

the next G of D gets stuck oin local minimum and doesn’t find best strategy to 

reject that value, then it is too easy for the next G iteration to find the most 

original o/p for the current D. 

 

Each iteration of generator over-optimizes for a particular discriminator, and 

the discriminator never manages to learn its way out of the trap. As a result 

the generators rotate through a small set of output types. This form of GAN 

failure is called mode collapse. 

➢ Failure to converge- we can solve it by adding noise to the discriminator 

input. 

▪ We add noise factor as well. Suppose we have MNIST dataset, while 

generation If you remove the noise vector z, then the only input to your 

generator is the one-hot label (y). So your 1generator becomes 

deterministic. It will produce one shape per digit. In other words, your 

generator is not really a generator anymore, but rather behaves like a 

simple mapping: 10 digits map to 10 images. 

▪ Since the generator is limited to producing only 1 out of 10 possible images, 

then the discriminator job becomes super easy. It manages to differentiate 

between real and fake images without having to learn higher level 

semantics, and your training doesn't converge. 

 

--- 

➢ D gets fooled doesn’t mean fake is good. NN can be easily fooled 
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➢ Problem with counting, perspective, global structure, .. etc 

▪ They fail to differentiate how many particular objects should occur at a loc. 

▪ Have problem to adapt to 3D objects & global structure -> cant understand 

shape 

➢ Mode collapse: generative specialization on a good, fixes example. 

Integrating GANs with VAEs 

http://efrosgans.eecs.berkeley.edu/CVPR18_slides/VAE_GANS_by_Rosca.pdf 

Problems with VAE: 

➢ Similarity metric is crucial.  

➢ Pixel wise metric (squared error) are too sensitive to local small 

translations/rotations. 

Problem with GAN: 

➢ GA -> problems to capture real data distribution 

➢ Unstable & difficult learning 

 

 

 

 

 

 

Main Approches: 

❖ Acting in latent space :  

-replace KL divergence with Discreminator 

-match aggregated posterior Q(z) wit hexpected prior distribution P(z). 

-called Adversial Autoencoders 

 

❖ Acting in Visible space  

- Replace reconstruction loss with D  

http://efrosgans.eecs.berkeley.edu/CVPR18_slides/VAE_GANS_by_Rosca.pdf
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- Called VAE-GAN 

 

=============================================================

============== 

GAN VARIATIONS: PROGRESSIVE GAN & CONDITIONAL 

GENERATION 

Progressive GAN: In a progressive GAN, the generator's first layers 

produce very low resolution images, and subsequent layers add details. 

This technique allows the GAN to train more quickly than comparable 

non-progressive GANs, and produces higher resolution images. 

Conditional GAN- It was introduced by Mirza in 2014. They used 

MNIST for this approach. In Conditinal GAN we train on a labeled data 

set and let you specify the label for each generated instance. For example, 

an unconditional MNIST GAN would produce random digits, while a 

conditional MNIST GAN would let you specify which digit the GAN 

should generate. 

By providing additional information, we get two benefits: 

1. Convergence will be faster. Even the random distribution that the fake images 
follow will have some pattern. 

2. You can control the output of the generator at test time by giving the label for 
the image you want to generate. 

 

Training Conditional GAN: 

To train a conditional GAN, train both networks simultaneously to maximize the 

performance of both: 

- Train the generator to generate data that "fools" the discriminator. 

- Train the discriminator to distinguish between real and generated data. 
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▪ To maximize the performance of the generator -> maximize the loss of the 

discriminator 

▪ To maximize the performance of the discriminator -> minimize the loss of the 

discriminator when given batches of both real and generated labeled data. 

 

❖ Conditional VAE (CVAE) 

➢ Both decoders Q(z|X) P(X|x) are 

parameterized with given 

condition: Q(z|X,x) & P(X|z,c) 

➢ We can still work with - single, 

condition independent -prior 

(normal gaussian). 

▪ Simpler, but more burden on 

decoder 

➢ We can use different – possibly 

learned -prior (different gaussian) for each condtion. 

▪ Complex, not beneficial 

 

➢ Architecture---------------------------------------à 

 

Conditional GANs 

❖ G takes i/p condition as well as noise. 

❖ Discriminator: 

➢ uses conditions to discriminate fakes for real of given class (conditional GAN) 

➢ classifies wrt different conditions in addition to true/fake discrimination. 

(Auxiliary Classifier GAN) 
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AC GAN:  AUXILARY CLASSIFIER GAN 

AC-GAN for short, is a further extension of the GAN architecture 

building upon the CGAN extension. Instead of receiving the image as 

input, it changes the discriminator to predict the class label of a given 

image. This helps is stabilizing the training process and allowing the 

generation of large high-quality images. Here it can learn the 

representation in a latent space that is independent of class label.  

Inputs: class embedding and noise vector 

Outputs: binary classifier (fake/real images) and multi-class classifier 

(image classes) 

Training ACGAN: 

 

AC GAN  loss function: 

• The auxiliary classifier GAN is a type of conditional GAN that requires that the 
discriminator predict the class label of a given image. 
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AC GAN  vs InfoGAN: Information Maximizing Generative Adversarial 

Network 

 

➢ AC GAN are similar to InfoGan. 

➢ the goal is to add specific semantic meaning to the variables in the latent 

space. 

➢ When generating images from the MNIST dataset, the model chooses to 

allocate random variable to represent the numerical identity of the digit and 



81 | P a g e   s x a n d i e  

 

These notes are not a substitute to the original slides provided by professor but shall only be considered as additional material for 
the course.  

chose to have two additional variables that represent the digit’s angle and 

thickness of the digit’s stroke. 

➢ In Infogan, we only have 1st term of the 

loss function that we has in AC GAN.  

- Second term-> generate img far from 

boundaries b/w classes=> sharp img. 

Concrete Handling of condition? 

❖ We pass labels/condn as additional i/p for Conditional n/w. 

❖ Processin: 

-  to add in dense layer: concatenate label with i/p 

- To add in convo layer we have 2 ways:  

o Vectorization: repeat label on every ip neuron, & stack them as new 

channels. 

 

Feature-wise linear Modulation (FILM) 

Use condition to give diff weight to each feature. 

Use cond to generate 2 vectors γ(gamma) and β(beta) with size equal to the 

channels of the layer. 

Rescale the layes by gamma & add beta 

It is less invasive that parametrising the weights. 
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Variational AutoEncoders: are deep learning technique for learning latent 

representations.

 

❖ This is the reason we moved for VAE to Conditinal VAE, we can improve VAE 

by conditioning the encoder and decoder to another thing(s). 

❖  

 

 

 

Given an encoder and the decoder, an encoder is given with the latent variable 

given the input and the decoder with the latent space given the input.  

 

SEQUENCE MODELLING 
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RNN: RECURRENT NEURAL NETWORKS 

MIT 6.S191 (2020): Recurrent Neural Networks 

=============================================================

============== 

 

 

RNN : Recurrent NN 

https://www.youtube.com/watch?v=SEnXr6v2ifU&ab_channel=AlexanderAmini
https://www.youtube.com/watch?v=SEnXr6v2ifU&ab_channel=AlexanderAmini
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❖ All recurrent neural networks have the form of a chain of repeating modules of 

neural network. In standard RNNs, this repeating module will have a very 

simple structure, foe example - single tanh layer. 

❖ Modelling Sequences of data 

❖ Problems – 
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➢ Turn ip sequence into output seq. (translation of languages, speech sound 

recg) 

➢ Predict the next term in seq.  

➢ Predict result from a temporal sequence of states [reinforcement Learning, 

robotics] 

❖ Memoryless approach but it is very difficult to deal with very long-term 

dependencies. 

➢ Here, we Compute op as result of a fixed number of elements in ip seq. 

❖ So, we talk about RNN: 

➢ Here we have backward connections, so that hidden states depend in the 

previous values of net. 

➢ Hidden states update at each step & it is a complex process.  

➢ The process is know as Temporal Unfolding where 

▪ Weights update happens after certain steps. 

▪ RNN is layered net -> uses same weights matrix again and again. 

➢ Sharing weight through time. 

▪ Compute gradient as usual & average the gradients st. the have same 

update. 

▪ If initial weights satisfy constraints, they will keep satisfying. 

❖ BP through time: BPTT 

➢ RNN -> layered – feed fwd net with shared weights – train feed forward net 

with weight constraints. 

➢ Reasoning in the time domain: 

▪ Fwd pass keeps stack of activities of all units at each time step. 

▪ Bwd pass removes activities off the stack – compute error derivatives at 

each time step. 

▪ Finally add together derivatives at all different times for each weight. 

 

❖ Hidden state initialization 

➢ Specify initial activity state of all hidden & op units. 

➢ Treated as parameters- learned in same way as weights. 

▪ Start with random guess for initial state 

▪ @ end of each training sequence, BP through time all the waay to initial 

states- get gradient of error functions wrt each initial state 

▪ Adjust initial states by following -ve gradient. 
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Training RNN is difficult: 

❖ Backward pass is linear: 

➢ Fwd pass 

o we use squashing f() to prevent activity vecotrs from exploding. 

o What are squashing f? 

▪ There are mainly four activation functions (step, sigmoid, tanh and relu) used in 

neural networks in deep learning. These are also called squashing functions as 

these functions squash the output under certain range. We will also see various 

advantages and disadvantages of different activation functions. 

o Determine slope of linear f()  used for BP 

 

➢ Bwd pass- linear, if we double the error derivatives at the final layer – all error 

derivatives will double. Very complex process.  

 

 

Exploding gradients are a problem where large error gradients add up and 

result in very large updates to neural network model weights during training. 

This causes the model to become unstable and unable to learn from your 

training data.C 

Common solution to exploding gradients is to change the error derivative 

before propagating it backward through the network and using it to update 

the weights. By rescaling the error derivative, the updates to the weights will 

also be rescaled, dramatically decreasing the likelihood of an overflow or 

underflow. 
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How to deal with Vanishing Gradients: 
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 RNN applications: 

Music Generation 

Sentiment Analysiss 

Machine Translation of Languages 

 

 

LSTM – LONG SHORT TERM MEMORY 

RNNs might be able to connect previous information to the 

present task. Sometimes, we only need to look at recent 

information to perform the present task. For example, 

consider a language model trying to predict the next word 

based on the previous ones. If we are trying to predict the 

last word in “the clouds are in the ___,”. RNN can solve this. 

In such cases, where the gap between the relevant 

information and the place that it’s needed is small, RNNs 

can learn to use the past information. But sometimes the gap between the information becomes too large. And it is 
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difficult to keep tranck of information for RNN. So we move toLSTM.  LSTMs are explicitly designed to avoid the 

long-term dependency problem. 

LSTM have this chain like structure, but the repeating module has a different structure than RNN. Instead of having a 

single neural network layer like RNN, there are four, interacting in a very special way. 

 

Understanding LSTM Networks -- colah's blog 

❖ LSTMs don’t have this problem! 

➢ capable of learning long-term dependencies. 

 

 

1. like a conveyor belt. It runs straight down the entire 

chain, with only some minor linear interactions. Step by 

step:  

 

 

 

 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Understanding LSTM Networks -- 

colah's blog  

 

 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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=============================================================

============== 

ATTENTION & TRANSFORMERS 

Attention: 
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▪ ability to focus on different parts of the input, according to the requirements of 

the problem being solved. 

▪  In NN- attention mechanism – differentiable so we learn to focus by standard 

BP 

▪ Current approach – focus everywhere. 

▪ As Gating maps: 

o Gating maps dynamically generated by NN – allowing focus on diff part of 

i/p 

o Forget map, input map and output map in LSTMs are examples of 

attention mechanisms. 

- squeeze and excitation model 

o https://arxiv.org/pdf/1709.01507.pdf 

o easy-to-plug-in module called a Squeeze-and-Excite block (abbreviated as SE-block) 

which consists of three components (shown in the figure above): 

▪ Squeeze Module 

▪ Excitation Module 

▪ Scale Module 

o It is designed to improve the representational power of a network by 

enabling it to perform dynamic channel-wise feature recalibration. 

- The block has a convolutional block as an input. 

https://arxiv.org/pdf/1709.01507.pdf
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- Each channel is "squeezed" into a single numeric value using average pooling. 
- A dense layer followed by a ReLU adds non-linearity and output channel 

complexity is reduced by a ratio. 
- Another dense layer followed by a sigmoid gives each channel a smooth gating 

function. 
- Finally, we weight each feature map of the convolutional block based on the side 

network; the "excitation". 

 

- modular multi purpose layer: 

o attention layer is based on the key-value 

paradigm, implementing a sort of 

associative memory. 

o attention layer is based on the key-value 

paradigm, implementing a sort of 

associative memory. 

o values are also used as keys (self-

attention). 

- Typical score functions 

o Different score functions lead to different attention layers 

▪ Dot product: query and key must have same dimension. 

 

▪ MLP: α is computed by a neural 

network. 

 

Application to translation: 

▪ https://arxiv.org/pdf/1409.0473.pdf 

▪ Translation has two parts: alignment and translation. 

• Alignment: identifying which part of ip seq are relevant to each word in 

op. 

 Alignment is form of attention: 

https://arxiv.org/pdf/1409.0473.pdf
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• Translation: using relevant information to select appropriate o/p. 

 

➢ Producing attention maps: 

• Decoder decides which 

parts of the source 

sentence to pay 

attention. 

• It is in control of 

attention mechanism, 

Encoder has less burden 

to encode all info in 

source sentence as fixed 

length vtr. 

• By this approach- info spreads throughout the seq of annotations. 

 

TRANSFORMERS 

➢ The transformer is a new encoder-decoder 

architecture that uses only the attention 

mechanism instead of RNN to encode each 

position. 

➢ encoding component is a stack of encoders. 

Similarly, the decoding component is a stack of 

decoders. 

▪ encoder is organized as a self-attention layer 

(query, key and value are shared), followed by 

http://jalammar.github.io/illustrated-transformer/
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feedforward component (a couple of dense layers). They do not share 

weights.  

▪ The encoder’s inputs first flow through a self-attention layer. The encoder 

look at other words in the input sentence when it is performing encoding. 

The outputs of the self-attention layer are fed to a feed-forward neural 

network.  

▪ The decoder has both those layers, but between them is an additional layer 

known as attention layer that helps the decoder focus on relevant parts of 

the input sentence. 

▪ decoder is similar, with an additional attention layer -helps to focus on 

relevant parts of the ip sentence. 

➢ Applications like Bert and GPT, (with all relative families) are based on 

Transformers. 
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Multi head attention:  

➢ expands the model’s ability to focus on different 

positions, for different purposes. 

➢ multiple “representation subspaces” – focus on 

different attributed of ip. 

➢ we can apply a Boolean mask to the input, to hide part 

of its content. 

➢ Training of multihead attention: 

 
❖ Residual connections: 

➢ Each sub layer (self-attention, ffnn) in each encoder 

has a residual connection around it, and it is 

followed by a layer normalization step.  

❖ Positional encoding: 

- Information about the relative positions of words are 

embedded in vector of same dimensions of word embedding. 

Attention Is All You Need (vandergoten.ai) 

The Annotated Transformer (harvard.edu) 

Transformer model for language understanding  |  Text  |  TensorFlow 

10.7. Transformer — Dive into Deep Learning 0.16.6 documentation (d2l.ai) 

http://vandergoten.ai/2018-09-18-attention-is-all-you-need/
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://www.tensorflow.org/text/tutorials/transformer#text_tokenization_detokenization
https://d2l.ai/chapter_attention-mechanisms/transformer.html
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Transformer Architecture: The Positional Encoding - Amirhossein Kazemnejad's 

Blog 

 

=============================================================

============== 

BEYOND EUCLIDEAN DATA: GEOMETRIC DEEP LEARNING 

 

❖ Paper: A Comprehensive Survey on Graph 

Neural Networks 

- In real life we must deal with data generated 

from non-Euclidean domains and are 

represented as graphs with complex 

relationships and interdependency between 

objects. The complexity of graph data has 

imposed significant challenges on existing 

machine learning algorithms. 

- divide the state-of-the-art graph neural networks into four categories, namely  

o recurrent graph neural networks 

 learn node representations with recurrent neural architectures. 

 They assume a node in a graph constantly exchanges 

information/message with its neighbors until a stable equilibrium is 

built 

 the idea of message passing is inherited by space based convolutional 

graph neural networks. 

CONVOLUTIONAL GRAPH NEURAL NETWORKS 

 generalize the operation of convolution from grid data to graph data. 

 Main idea -generate a node v’s representation by aggregating its own 

features xv and neighbors’ features xu, where u ∈ N(v).  

 Different from RecGNNs, ConvGNNs stack multiple graph 

convolutional layers to extract high-level node representations.  

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://arxiv.org/pdf/1901.00596.pdf
https://arxiv.org/pdf/1901.00596.pdf
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 ConvGNNs play a central role in building up many other complex 

GNN models. 

 

GRAPH AUTO ENCODERS, 

 unsupervised learning frameworks  

 encode nodes/graphs into a latent vector space and reconstruct graph 

data from the encoded information.  

 GAEs are used to learn network embeddings and graph generative 

distributions. 

➢ For network embedding, GAEs learn latent node representations 

through reconstructing graph structural information such as the 

graph adjacency matrix.  
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➢ For graph generation, some methods generate nodes and edges of 

a graph step by step while other methods output a graph all at 

once. 

 

o spatial-temporal graph neural networks. 

 aim to learn hidden patterns from spatial-temporal graphs, which 

become increasingly important in a variety of applications such as 

traffic speed forecasting, driver maneuver anticipation, and human 

action recognition.  

 idea -consider spatial dependency & temporal dependency at the 

same time. 

 Many current approaches integrate graph convolutions to capture 

spatial dependency with RNNs or CNNs to model the temporal 

dependency. 
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GRAPH LEARNING TASKS 

graph data are non-structured and non-Euclidean. 

One the one hand the connections between nodes carry essential 

information, on the other hand it is not trivial to find a way to process this 

kind of information. 

 
 

Link TO PAPER: Graph Convolutional Networks —Deep Learning on Graphs 

| by Francesco Casalegno | Towards Data Science 

https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f
https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f
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WHY CONVOLUTIONS? 
incredibly efficient at extracting complex features, and convolutional layers nowadays represent the backbone of 
many Deep Learning models. CNNs have been successful with data of any dimensionality: 

in 1D, to process audio signals — e.g. for sound classification 

in 2D, to process images — e.g. for early caries detection 

in 3D, to process scans — e.g. for MRI brain registration 

What makes CNNs so effective is their ability to learn a sequence of filters to extract more and more complex 
patterns.  

 

Defining graph convolution 

On Euclidean domains, convolution is defined by taking the product of translated functions. translation is undefined 
on irregular graphs, so we need to look at this concept from a different perspective. 

the key idea is to use a Fourier transform. In the frequency domain, thanks to the Convolution Theorem, the 
(undefined) convolution of two signals becomes the (well-defined) component-wise product of their transforms.  

 
 

➢ how do we define a graph Fourier transform? 

Let’s take the case of a function defined on the real line. Its Fourier 

transform is its decomposition in frequency terms, obtained by 

projecting the function on an orthonormal basis of sinusoidal waves. 

And in fact, these waves are precisely the eigenfunctions of the 

Laplacian: 

 
Fourier transform in 1D (image by author) 

 

we can define the Fourier transform of a function as its projection on an 

orthonormal basis of eigenfunctions of the Laplacian. 

 

Laplacian Matrix [L] = Degree Matrix [D]- adjacency Matrix[A] 

 

 

 

https://ieeexplore.ieee.org/document/8605515
https://journals.sagepub.com/doi/full/10.1177/0022034519871884
https://arxiv.org/abs/1809.05231
https://en.wikipedia.org/wiki/Convolution_theorem
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BUILDING THE FULL NEURAL NETWORK  

Architecture of CNN for img recognition used similar structure.  

1. Features are extracted by passing the HxWxC input image through a series 

of localized convolution filters and pooling layers. 

2. The resulting feature channels are mapped into a fixed-size vector using 

e.g. a global pooling layer. 

3. Finally, a few fully-connected layers are used to produce the final 

classification output. 

 

architecture of Graph Convolution Networks follows exactly the same structure! 

 

 case of a GCN, our input is represented by the following elements: 

• the NxC array x containing, for each of the N nodes of the 

graphs, C features 

• the NxN adjacency matrix 

 

Conclusions 

https://paperswithcode.com/method/global-average-pooling
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• From knowledge graphs to social networks, graph applications are 

ubiquitous. 

• Convolutional Neural Networks (CNNs) have been successful in many 

domains, and can be generalized to Graph Convolutional Networks 

(GCNs). 

• Convolution on graphs are defined through the graph Fourier transform. 

• The graph Fourier transform, on turn, is defined as the projection on the 

eigenvalues of the Laplacian. These are the “vibration modes” of the 

graph. 

• As for traditional CNNs, a GCN consists of several convolutional and 

pooling layers for feature extraction, followed by the final fully-connected 

layers. 

• To ensure that the convolutional filters have compact support, we use a 

polynomial parametrization. Chebyshev polynomials allow to reduce the 

computational complexity. 

Graph Laplacian 

EIGENVECTORS: 

Encode info on graphs of 

increasing frequencies. 
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Fourier Transformation 

  

GCN corresponds to substituting multiplication by Λ with a simpler linear filter on 

the eigenvalues of the Laplacian matrix. 

Graph convolutional networks: a comprehensive review | Computational Social 

Networks | Full Text (springeropen.com) 

=============================================================

===================== 

 

SPACIAL METHODS IN GEOMETRIC DEEP LEARNING 

https://computationalsocialnetworks.springeropen.com/articles/10.1186/s40649-019-0069-y
https://computationalsocialnetworks.springeropen.com/articles/10.1186/s40649-019-0069-y
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[1706.02216] Inductive Representation Learning on Large Graphs (arxiv.org) 

 

❖ Propagating based on Graph CN 

➢ A traditional convolution computes the output value for a node as a (learned) 

linear composition of its neighbours. 

➢ We look at efficient way to compute op value fr node as leared aggregation of 

its adjacent nodes. 

▪  

 

❖ Spatial approaches 

➢ GraphSage 

▪ Processing is 

composed of 

three steps: 

• Neighbourhood sampling  

• Aggregation  

• Prediction 

 

▪ GS forward pass: Each aggregator function aggregates information from a 

different number of hops - or search depth - away from a given node. 

https://arxiv.org/abs/1706.02216
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▪ Aggregation: 

• Mean Ag - averaging all the neighborhood node features (can be 

weighted average) 

• LSTM Ag - using an LSTM cell to sequentially aggregate neighborhood 

node features (ordered randomly) 

• Pooling Ag - Max pooling only takes the “highest” feature into 

consideration (performed the best in experiments) 

▪ Prediction and training 

• Results after Ag are compared to feature map extracted from an img 

after the conv layers (excluding top dense layers) 

• aggregated neighbourhood node features collected by each node are 

used to compute a resulting value, according to the logic of the problem 

(node classification, structure/context determination.  

• This is where the learning happens, according to problem-specific loss 

functions 

 

MIXTURE MODEL NETWORK (MONET) 

▪ 3 important contributions to the field of geometric deep learning: 

• generalization of various Graph Learning approaches, unifies spatial and 

spectral approaches  

• parametric kernels and pseudo-coordinates, integrating well with 

existing models (Anistropic CNN, Geodesic CNN, . . . ) 
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• a wide series of experiments 

performed on different 

benchmark manifolds, graphs, 

and networks 

▪ Pseudo coordinates and path 

operators à 

 

• Flexibility of Pseudo coords: 

many gcn are sub cases of 

Monet-> 

By carefully selecting pseudo cooridnates u(i, j) and kernel functions wp(u) 

many known graph convolutional network models can be viewed as a 

specific case of MoNet. 

▪ Learning weights 

• Monet gives smoother weight functions 

 

 

=============================================================

============= 

BASIC RE ENFORCEMENT LEARNING  

❖ Agent – interacts with enviornment and provides numeric rewards. 

This is based on time, policy & steps.  

policy π(a|s) à probability distribution of actions given states. 

- Agent at time t selects action a/c policy  

- Enviornment answers with local reward  

- Agents now moves into new state 

Utility- the utility of taking action a in some state s is the expected immediate 

reward for that action plus the sum of the long-term rewards over the rest of the 

agent's lifetime, assuming it acts using the best policy. 
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❖ Best way to act à best policy [actions taken in order to maximize their utility in 

the pursuit of some goals.]  

Objective? Maximise future comulative rewards. 

R = Sum1<=i (r,i) 

❖ Future Discount cumulative Rewards 
- Chances of picking rewards that are far are less likely than closer ones, that are more predictable. 

- multiply the reward by a discount rate 0 < γ <= 1 exponentially decreasing with time. 

- discount factor essentially determines how much the reinforcement learning agents cares about 

rewards in the distant future relative to those in the immediate future. If γ=0, it will only choose 

those action which have short term rewards. 

 

❖ Markov Decision Process 

➢ Current state completely characterises the state of the world: future actions only depend on the 

current state. 

▪ Defined by a tuple (S, A, R,P, γ)  

• S: set of possible states  

• A: set of possible actions  

• R: reward probability given (state, action) pair  

• P: transition probability to next state given (state, action) pair  

• γ: discount factor 

 

The optimal policy 

- a policy that maximizes the value of all states at the same time 

- Policy produces trajectories/paths. 

- We find the optimal policy à 

 

 

❖ Model Free vs Model based 
➢ Model-based reinforcement learning has an agent try to understand the world and create a 

model to represent it. Here the model is trying to capture 2 functions, the transition function 

from states T and the reward function R. From this model, the agent has a reference and can 

plan accordingly. 
➢ However, it is not necessary to learn a model, and the agent can instead learn a policy directly 

using algorithms like Q-learning or policy gradient. 
➢ A simple check to see if an RL algorithm is model-based or model-free is: 
➢ If, after learning, the agent can make predictions about what the next state and reward will be before it 

takes each action, it's a model-based RL algorithm. 
➢ If it can't, then it’s a model-free algorithm. 
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➢ transition from state st to state st+1 is not always determinstic, but governed by some probability 

P(st+1|st , at). 

➢ If the learning model needs to learn this probability P(st+1|st , at), then it is called model-based. 

➢ In model-free approaches, this information is left implicit: you learn to take actions from past 

experience relying on trial-and-error. 

❖ Exploration/Exploitation trade of 
➢ Exploration is finding more information about the environment.  

➢ Exploitation is taking advantage of the available information to maximize the reward. 

❖ Model free approaches 

➢ Value-based --we shall choose the action taking us to the next state with the best evaluation. we 

don't store any explicit policy, only a value function. The policy is here implicit and can be derived 

directly from the value function (pick the action with the best value). 

➢ Policy-Based --we directly try to improve the current policy, hopefully optimizing it. methods we 

explicitly build a representation of a policy (mapping π:s→a) and keep it in memory during 

learning. 

▪ policy defines the agent behavior at a given state: a = π(s)  

▪ better, π(s) is the probability to perform a in state s. 

❖ Value-based approaches 

➢ Value function and Q-function. 

▪ Value f() – tells about how good is the state. 

▪ Q function – tells how good an action a is for the state- s. 

➢ Relation bwtween Value & Q: 

▪ sum every action-value weighted by the probability π(a|s) 

to take that action. 

▪ EASY TO COMPUTE V from Q 

▪ TO COMPUTE Q from V à we need 

model based approach!  

• S à state ; aà action. 

❖ Optimal policy: 

➢ Q-value function Q∗ (s, a) is the maximum expected 

cumulative reward achievable from state s performing 

action a 

❖ Bellman eq 

➢ expresses a relation between the solution for a given problem in terms of the solutions for 

subproblems. 



110 | P a g e   s x a n d i e  

 

These notes are not a substitute to the original slides provided by professor but shall only be considered as additional material for 
the course.  

 
optimal policy π ∗ consists in taking the best action in any state as specified by Q* 

 

❖ Computing Q ∗ via iterative update 

➢ Q∗ satisfies the Bellman equation:  

➢ perform iterative update on progressive approximations Qi of Q∗ : 

 
RECURSIVE UPDATE  : derivation of quadratic distance between Qi(s,a) & r0 

+ γmaxa’ Qi (s 0 , a 0 ) 

➢ Add more details about Q learning 

 

❖ Exploration vs. exploitation 

➢ At start, the Q-table is not informative. Taking actions according to it could introduce biases, and 

prevent exploration. 

➢ early stages à random exploration. Later rely on table 

 

❖  Epsilon Greedy 

Strategy 

➢ exploration rate , initially 

equal to 1. 

➢ Generate random number, if it 

is greater than Exploration 

rate – refer to Q table to the 

info collected, else choose 

random exploration 

➢ Reduce Exploration rate 

with time. 
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❖ Q value and V value: 

  

❖  

 

 

 

❖ How learning takes place in practice? 

 

 

Integrating with Deep Learning : DQN 

➢ Q-learning exploits Bellman’s 

equation  
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DEEP Q LEARNING 

 

 

 

 

 

 

 

 

Loss Function 

 

 

 

 

Experience 

Replay: 

- For 

learning – we 

need loss 

function and 

gradient 
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- To compute them we need transitions.  

- We can store these transitions in experience memory, and replay them at leisure training 

{experience reply} 

- Better than learning for the batches of consecutive samples coz- 

o Samples tend to be correlated à inefficient learning 

o Greater risk of introducing biases during learning 

The Atari Q-learning architecture 

 

 

Why so we stack frames? 

- To capture the movements 

- Alternatevly we can use LSTM layer (after processing the state, and before computing Q values) 

Atari Games and Q learning 

- Works well for reactive game, not for planning games! 

Rewards: 

- Differ game to game 

Links: https://arxiv.org/abs/1707.06203 

https://arxiv.org/pdf/1605.01335.pdf 

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf 

 

 

https://arxiv.org/abs/1707.06203
https://arxiv.org/pdf/1605.01335.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
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==============================================================================

== 

Deep Q learning Improvements 

- Fixed Q-targets  

- Double Q-learning  

- Prioritized Experience Replay  

- Dueling  

- Noisy Networks  

- Distributional RL  

- Rainbow 

❖ Fixed Q targets 

➢ With Q-learning, we try to approximate the optimal target Q-function Q∗ , through progressive 

updates:  

Q ∗ (s, a) − Q(s, a)  

➢ Moreover we approximate computation of Q*(s,a) as ro + maxa 0Q(s 0 , a 0 ), giving us q learning 

rate- 

 
 

➢ Shared weights- in loss function the same nw is used to provide two different estimates of Q 

functions: 

 
➢ At every step of training, Q value shifts but also the “target value” shifts 

We are getting closer to target -> but target also keeps moving causing oscillations in training 

 

➢ Fixed Q targets 
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▪ Use a separate network Q with fixed parameters for estimating the TD target. 

▪  
▪ Periodically, copy the parameters from Q to Q, to update the target network. 

➢ Implementation 

 

 

❖ Double Q learning:  

➢ Action values overestimates 

▪ approximation of target action value is computed using a maximum over actions: 

 
▪ Approximation is noisy, it is possible to prove that this will eventually result in +ve bias à 

overestimation of correct value. 

❖ Decoupling action choice and its estimations 

➢ https://papers.nips.cc/paper/3964-double-q-learning 

➢ The Double Q-learning approach consists in decoupling the choice of the action from its estimation, 

using two networks QA and QB . 

 

https://papers.nips.cc/paper/3964-double-q-learning
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Prioritized Experience Replay : https://arxiv.org/abs/1511.05952 

➢ PER: 

▪ idea – some experience may be more important than others, and thus replay more frequently. 

 
 

➢ Stochastic Prioritization 

▪ The probability of being chosen for replay is computed a/c to following rule: 

 

If α = 0, all transistions have same probability; if α is large, it priveleges 

transitions with high priority pt . 

 

High priority sample have more chances of being selected, although there exists risk of overfitting 

on small portion of experiences that we presume to  be interesting. 

 

➢ Importance sampling weights 



117 | P a g e   s x a n d i e  

 

These notes are not a substitute to the original slides provided by professor but shall only be considered as additional material for 
the course.  

▪  
 

 

 

 

❖ Dueling 

➢ Advantage 

 
➢ Dueling DQN : https://arxiv.org/pdf/1511.06581.pdf 
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▪ Dueling learns whether states are valuable or not without having to learn the effect of each 

action for each state. 

▪ Useful when-> actions don’t affect the env in any way 

▪ Converslyà when action is relevant, if can focus on advantage without caring for the current 

evaluation of state. 

 

 

➢ Saliency maps on Enduro : 

https://arxiv.org/abs/1312.6034 

▪ For extimaing Value the n/w focus on 

• Horizon  

• score  

▪ Saliency maps- orange blurs, 

computed with jacobians (partial 

derivatives) on ip images 

 

❖ Naif aggregation

 
❖ Aggregating Values and Advantage 
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❖ Alternative: mean instead of Max 

➢ Experimentally, replacing max with mean seem to work better 

 

➢ Subtracting the mean helps to improve stability during training. 

 

 

❖ Noisy Networks :Link 

➢ Noise helps in random 

explorations. 

➢ Randomicity in choice of 

actions 

➢ As noisy weights are 

learned, resulting noise is 

state dependent à n/w 

randomly explores env at 

diff rates in diff part of state 

space. 

➢ Bettern tha epsilon greedy strategy 

 

❖ Distributional RL : http://proceedings.mlr.press/v70/bellemare17a/bellemare17a.pdf 

➢ Try to learn probab distribution of future cumulative reward instead of the traditional approach of 

modeling the expectation of this return. 

➢ Works on random return Z whose expectation is value Q. 

 

❖ The cumulative reward random variable Z : 

https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf 

https://arxiv.org/abs/1706.10295
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➢  
❖ Distributional Bellman 

➢  
❖ Discretization 

➢ Discretized over a support in given range b/w Vmin and Vmac using fixed number of bins 

➢ Loss b/w two distribution can be computed with KL-divergence. 

 
 

 

C51- pseudocode : https://flyyufelix.github.io/2017/10/24/distributional-bellman.html 
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Rainbow- 
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==============================================================================

==== 

Polilcy Gradient Techniques 

- Sarsa 

- Actor-critic methods 

- A3C and A2C 

Problem of Q Learning 

➢ It is 1-step method since it updates the action value Q(s,a) towards the one-step return 

  
➢ This directly affects value of state action pair (s,a) that lead to reward. 

➢ The value of other s,a pairs are affected à indirectly though updated value Q(s,a). 

➢ This makes learning slow 

Can we learn policy directly? 

Finding best policy from collection of policies? 

❖ On policy vs off techniques 

➢ Q learning is off policy technique. It does not rely on policy and only needs local transitions. 

▪ Can take advtg of experience replay. 

➢ On policy techniques try to improve the current policy 

▪ Sampling of long trajectories a/c to current strategy. 

▪ Need many diversified trajectories ( ||el agents). 

❖ SARSA 

➢ State Action Rewards State Action 

➢ Learning Algo similar to Q learning 

➢ Updating for Q learning- 

▪  
➢ Updating for SARSA: 

▪  
➢ Instead of connsidering best action at time t+1 (greedy choice), we consider actual action at+1 under 

current policy 

❖ SARSA vs QLearning 

➢ QL : Single step transitions :  

➢ SARSA mini trajectories (2 steps):  
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❖ Mouse and Cliff scenario 

LINK 

With QL- mouse ends up running along 

the edge of cliff, but occasionally 

jumping off & plummeting to its death. 

With SARSA – mouse learnt – with time 

he commits errors- best path is not to 

run strtaight to cheese along the edge of 

cliff but take safer route, little far. 

Even if a random action is  chosen there – there is less chance of dying. 

https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/

