
Attention
Attention is the ability to focus on different parts of the input, according to the
requirements of the problem being solved. It is an essential component of any
intelligent behaviour, with potential application to a wide range of domains.

Usually, attention constist of either cropping or masking all the parts that are
not important. Masking especially is what is used, rather than cropping.

A differential mechanism

From the point of view of Neural Networks, we would expect the attention
mechanism to be differentiable, so that we can learn where to focus by standard
backpropagation techniques. The current approach (not necessarily the best one)
is to focus everywhere, just to different extents.

Attention as gating maps

Attention mechanisms can be implemented as gating functions. The gating
maps are dynamically generated by some neural net, allowing to focus on
different part on the input at different times. ==The forget map, input map
and output map in [[2023-05-02 - Recurrent Neural Networks#Long-Short
Term Memory (LSTM)|LSTMs) are examples of attention mechanisms==.

Another example: squeeze and excitation

SE layers are a building component of Squeeze and Excitation Networks.
SE layers implement a form of self attention, allowing to focus on particu-
lar channels in a dinamical way, according to the input under consideration.

1

The SE-inception module essentially
does this: it reduces the number of channels, and then generates a boolean map
for each one of the regional channels. This allows only to focus on the maps
that we care about.

Key-value attention
The most typical attention layer is based on the key-value paradigm, implement-
ing a sort of associative memory (i.e. a dictionary). We access this memory
with queries to be matched with keys. The resulting scores generate a boolean
map that is used to weight values.

In this approach, we have key-value pairs and a query. We need to find which
key is matches the query. Since we want to compare 2 vectors, some typicals
metrics that we can use are cross-similarity. So this is the general process:

• For each key 𝑘𝑖 compute the scores 𝑎𝑖 as:

𝑎𝑖 = 𝛼(1, 𝑘𝑖)
(the 𝛼 is the score function.)

• then, obtain attention weights via softmax:

�⃗� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(⃗𝑎)
• return a weighted sum of the values:

𝑜 =
𝑛

∑
𝑖=1

𝑏𝑖𝑣𝑖

2

In many applications, values are also used as keys (self-attention).

From Tensorflow official explanation: An attention layer does a fuzzy lookup
like this, but it’s not just looking for the best key. It combines the values based
on how well the query matches each key.

How does that work? In an attention layer the query, key, and value are
each vectors. Instead of doing a hash lookup the attention layer combines
the query and key vectors to determine how well they match, the “attention
score”. The layer returns the average across all the values, weighted by the
“attention scores”.

Each location the query-sequence provides a query vector. The context
sequence acts as the dictionary. At each location in the context sequence
provides a key and value vector. The input vectors are not used directly,
the layers.MultiHeadAttention layer includes layers.Dense layers to
project the input vectors before using the

Score function Different score functions lead to different attention layers.
Two commonly used approaches are:

• Dot product:
𝛼(𝑞, 𝑘) = 𝑞 ⋅ 𝑘

√
𝑑

The query and the key must have the same dimension 𝑑.
• MLP: 𝛼 is computed by a neural network (usually composed by a single

layer):
𝛼(𝑘, 𝑞) = 𝑡𝑎𝑛ℎ(𝑊𝑘�⃗� + 𝑊𝑞 ⃗𝑞)

3

https://www.tensorflow.org/addons/api_docs/python/tfa/layers/MultiHeadAttention
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense

Attention applied to translations
First, here’s some terms that you need to know:

• alignment: identify which parts of the input sequence are _relevant to
each word in the output_.

• translation: y’all already know; is the process of using the relevant infor-
mation to select the appropriate output.

Alignement is a form of attention!

Here’s how alignment works:

Transformers
Transformers have been introduced in Attention is All You Need, one of the most
influential works of recent years. This works stated that the LSTM where not
needed anymore to process text, but rather, it was possible to achieve even better
result by simply using attention and feed-forward networks. Transformers
have rapidly become the model of choice for NLP. Applications like Bert and

4

https://arxiv.org/abs/1706.03762

GPT (General Pre-trained Trainsformer), (with all relative families) are based
on Transformers.

General structure of transformers

Encoder & decoder A transformer has a traditional encoder-decoder struc-
ture, with connections between them. The encoding component is a stack of
encoders. Similarly, the decoding component is a stack of decoders.

• The encoder is supposed to extract information about the in-
put (i.e. semantics), and is used to condition the generation of
the output made by the decoder (typically, is just the last en-
coder of the stack that condition all the elements of the decoder).

Structure of encoder and decoder modules

• The encoder is organized as a _self-attention layer* (query, key and
value are shared), followed by _feedfoward component* (a couple of dense
layers).

– Each output is obtain as a weighted combination of the input.
• The decoder is similar, with an additional attention layer that

helps the decoder to focus on relevant parts of the input sentence
(meaning, according to the information passed on by the decoder).

5

Multi-head attention Using multiple heads for attention expands the
model’s ability to focus on different positions, for different purposes. As a
result, multiple “representation subspaces” are created, focusing on potentially
different aspects of the input sequence.

6

• This focus on different positions happens in parallel.

Masking the future The process of masking in transformers is used in the
decoder part. Essentially, we can apply a boolean mask to the input, to hide
part of its content. This is frequently used in the decoder to prevent it to attend
at future positions during generation.

• In general, it prevents confusion inside the NN (i.e. some tokens are only
the initial part of a phrase that is not relevant to the generation of text
etc…)

Residual connections Each sub-layer (self-attention, ffnn) in each encoder
has a residual connection around it, and it is followed by a layernormalization

7

step.
Why? who knows. Not me for sure, since neither asperti nor the slides mention
it.

Positional encoding Positional encoding is added to word embeddings to
give the model some information about the relative position of the words in the
sentence. The positional information is a vector of the same dimensions 𝑑𝑚𝑜𝑑𝑒𝑙,
of the word embedding. The authors use sine and cosine functions of different
frequencies.

• It provides some structural information in relation to a relative position
of phrase in a certain language (i.e. i should always be more focused to 2
tokens on the right of the current token etc…)

Each important position is then encoded as a sequence of frequencies, that
form some barcode like structure.

This

8

type of representation is also used since it can be expressed as a linear mapping,
which is easily learn by a linear perceptron.

9

	Attention
	A differential mechanism
	Attention as gating maps
	Another example: squeeze and excitation

	Key-value attention
	Attention applied to translations
	Transformers
	General structure of transformers

