Modeling sequences

Typical problems: - turn an input sequence into an output sequence (possibly
in a different domain): - translation between different languages - speech/sound
recognition - ... - predict the next term in a sequence - The target output sequence
is the input sequence with an advance of 1 step. Blurs the distinction between
supervised and unsupervised learning. - predict a result from a temporal sequence
of states, Typical of Reinforcement learning, and robotics.

Memoryless approach

Compute the output as a result of a fixed number of elements in the input se-

outputit)

NN

input(t-3) input(t-2) input(t—1) input(t)

quence:
Used e.g. in - Bengio’s (first) predictive natural language model - Qlearning for
Atari Games

What is a RNN?

(This is an exercerpt from the final part of the previous lesson) An RNN
is simply a neural network with cycles in it. The end. This means that,

in presence of backward connections, ==hidden states depend on the
past history of the net==, so it has some kind of memory in a sense.
W

wo £ N\w
"-Q 9™-0

As we know, in logical circuits having cycles cause some instabilitites...

T AND == NOT P

..but
these are solved usually by adding a clock. A similar concepts is preserved in
RNN thanks to Temporal Unfolding, meaning that activations are updated
a precise time steps. In this way, the RNN is basically a layered net that keeps

W
. i |

reusing the same weights: So it can easily
be translated into a traditional feedforward NN. The only thing that we have
to keep in mind is that the weights are shared between weights of the same
layer at the start; however, they get updated differently after the first update.

Sharing weights through time It is easy to modify the backprop algorithm
to incorporate equality constraints between weights. We compute the gradients
as usual, and then average gradients so that they induce a same update (and
preserve the weights). - If the initial weights satisfied the constraints from the
start, they will continue to do. - N.B.: this same update is done if we want to
preserve the same weights.

To constrain w; = w, we need: - Aw; = Aw, - compute — and — and use
ow, ow,

OE OFE

Twl + 87102 to update both w; and w,.

Backpropagation through time - BPTT

o think of the recurrent net as a layered, feed-forward net with shared weights
and train the feed-forward net with weight constraints.
e reasoning in the time domain:
— the forward pass builds up a stack of the activities of all the units at
each time step.
— the backward pass peels activities off the stack to compute the error
derivatives at each time step.

— finally we add together the derivatives at all the different times for
each weight.

Hidden state initialization We need to specify the initial activity state of all
the hidden and output units. The best approach is to treat them as parameters,
learning them in the same way as we learn the weights: - start off with an
initial random guess for the initial states. - at the end of each training sequence,
backpropagate through time all the way to the initial states to get the gradient
of the error function with respect to each initial state. - adjust the initial states
by following the negative gradient.

Long-Short Term Memory (LSTM)

O o ® 6 o
A]

(A A -[A—[A
O o & & . o

Both the vector of inputs and the vector of outputs have the same length .

A simple, traditional RNN

Let’s see another example. The content of the memory cell C, , and
the input =z, are combined through a simple neural net to produce
the output h, that coincides with the mnew content of the cell C,;.

® @ Output of previous cell @

T J A becomes C of the next

A & A
\

| l Activ*ation I
@ ® Function @
Why C,,; = h;? Better trying to preserve the memory cell, letting the neural
net learn how and when to update it. - Many times, though, using these kind

of the structure the memory may be lost in a way (because of the input z,).
Nevertheless, we try to preserve the memory as much as possible.

Also, C, # h,, since the content of a cell, before becoming the output, goes
through some kind of post processing.

The overall structure of a LSTM

® 0 6
I} | |

>
v
i
Ho—>¢
g
]
.
W,
v
1 T
>

0 — > <

Neural Network Pointwise Vector

) n n
Layer Operation Transfer Concatenate Copy

C-line and gates The LSTM has the ability to remove or add information to
the cell state, in a way regulated by suitable gates. Gates are a way to option-
ally let information through: the product with a sigmoid neural net layer simu-

Cy_, C

the C-line

®

a gate

lates a boolean mask.

The forget gate The forget gate decides what part of the memory cell to

fe=0Wg-[hy 1. 2] + by)

preseruve.
In particular, by concatenating the input of the current cell w/ the output
of the previous, which is then passed to a network layer, it generates a mask
which decides which part of the content of the previous to keep and which of
them to ignore.

This is a form of attention, as we will see.

iv =0 (Wilhi—1, 2] + b;)

C) =tanh(We-[hy—y, 2] + be)

The update gate
As we've seen, the input gate decides what part of the input to pre-
serve. The tanh layer creates a vector of new candidate values C,

to be added to the state. Here’s how the content of a cell is updated.

oy (@
(X O, >

f‘T @5 Ci = [xCror + iy x Cy

We multiply the old state by the boolean mask f, . Then we add i, * 6t.

The output gate The output b, is a filtered version of the content of the cell.

L A
m O!' =g (I‘i?’-’ lh’f—] ' 'J‘r'llfJ + bn)
oy)
et [0] Lf hy = o * tanh (C})

A

The output gate decides what parts of the cell state to output. The tanh
function is used to renormalize values in the interval [—1, 1].

Applications
They were used for NLP until the birth of transformers.

Asperti then did a long ass demo. You can find the demo here.

https://virtuale.unibo.it/pluginfile.php/1623565/mod_resource/content/1/carry_over.ipynb

	Modeling sequences
	Memoryless approach
	What is a RNN?
	Long-Short Term Memory (LSTM)
	A simple, traditional RNN
	The overall structure of a LSTM

	Applications

