So far, generative models only generate data that is similar to the training set.
Generally, though, we're not interested in generating data from a particular
distribution, but rather data with specific attributes. Conditional generation
does exactly that.

Conditional Generation

General issue: A neural network compute a single function. Can we compute a
family of functions instead? (a function parametric w.r.t. given attributes). For
instance, in generative model, we would like to parametrize generation according
to specific attributes - generate a given digit - generate the face of an old man
wearing glasses - generate a red, sports car

Issues

o Integrate the condition inside the generative model
o Concrete handling of the condition (mixing input and condition)

Conditional VAE (CVAE)

Both the encoder Q(z|X) and the decoder P(X|x) are now parametrized w.r.t.
a given condition c: Q(z|X,c) and P(X|z,c). What about the prior? - We can
still work with a single, condition independent prior (e.g. a normal gaussian) -

simpler, a little more burden on the decoder side - We are basically assuming
that the prior distribution, in any case, does not depend on c. - We can also use
a different (possibly learned) prior (e.g. a different Gaussian) for each condition
- slightly more complex; not clearly beneficial

Data x | Label y

I

. Encoder Q(z|x y) |‘fr

Mean Vector p | Variance Vector o’ |
-q__“'h-q._#-"f”
Sampled = | Label y
' —
-

. Decoder Plx|z.v) }‘/

Data x |

The architecture of CVAE is this:




Additional info on CVAE

By giving the label info to bo the encoder and the decoder, they can essentially
exploit that information in some ways. In general, for example, ==they can
use that info for encoding the information (instead of encoding the data into
the latent space)==. In general, the clusters of the latent space become much
more defined, since we do not need anymore to distinguish this information in
a way.

- To be more precise, if we saw the latent space, they would not be any more
clustering, but rather the data of the same class would overlap.

Also, in general, VAE have a more regular latent space wrt to general autoen-
conder, since we are using in fact using a kind of regularization method, which
in fact is the KL distance.

Conditional GANs

The generator takes in input the condition, in addition to the noise.

real or take
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What about the discriminator? - use the condition to discriminate fakes for
real of the given class (Conditional GAN) - It gives the same condition
given to the generator as an additional input to discriminator. - try to classify
w.r.t different conditions in addition to true/fake discrimination (Auxiliary
Classifier GAN) - couples the discriminator with a classifier, so in addition it
also has to guess the label of the image.

Loss function for AC-GANs Notation: - p*(x,¢) is true image-condition
joint distribution - py(x,c) is the joint distibution of generated data - qy(c|z)
is the classifier

In addition to the usual [[2023-04-19 - Generative Models 2#GAN’s loss
function| GAN objective), we also try to minimize the following quantities:
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- term 1:
the classifier should be consistent with the real distribution - So, it’s the
dedicated to the classifier. - term 2: the generator must create images easy to
classify by the discriminator.

The second term has always been criticized, so in InfoGAN, for example, we
only have the first term. - The second term helps to generate images far from
boundaries between classes, hence, likely more sharp. But what if real images
are close to boundaries? - This is a problem of almost every GAN: some images
are very easy to generate, while others provide a very bad result. - It has also
been criticized because the classifier can suffer from the [[2023-04-19 - Generative
Models 2#GANs problems|Mode Collapse), too.

Concrete handling of the condition

In conditional networks, we pass the label/condition as an additional input. How
is this input going to be processed? If we need to add it to a dense layer, we
just concatenate the label to the input. If we need to add it to a convolutional

layer, we have two basic ways: - Vectorization - Feature-wise Linear Modulation
(FILM)



Vectorization

We essentially repeat the label (typically in categorical form) for every input neu-
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FILM
Idea: use the condition to give a different weight to each feature (each channel).

We use the condition to generate two vectors v and [ with size equal
to the channels of the layer. Them we rescale layers by ~ and add p.
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It’s less invasive than parametrizing the



weights. Nevertheless, Vectorization remains the most typical and the most
easy to use though.
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