So far, generative models only generate data that is similar to the training set.
Generally, though, we're not interested in generating data from a particular
distribution, but rather data with specific attributes. Conditional generation
does exactly that.

Conditional Generation

General issue: A neural network compute a single function. Can we compute a
family of functions instead? (a function parametric w.r.t. given attributes). For
instance, in generative model, we would like to parametrize generation according
to specific attributes - generate a given digit - generate the face of an old man
wearing glasses - generate a red, sports car

Issues

o Integrate the condition inside the generative model
o Concrete handling of the condition (mixing input and condition)

Conditional VAE (CVAE)

Both the encoder Q(z|X) and the decoder P(X|x) are now parametrized w.r.t.
a given condition c: Q(z|X,c) and P(X|z,c). What about the prior? - We can
still work with a single, condition independent prior (e.g. a normal gaussian) -

simpler, a little more burden on the decoder side - We are basically assuming
that the prior distribution, in any case, does not depend on c. - We can also use
a different (possibly learned) prior (e.g. a different Gaussian) for each condition
- slightly more complex; not clearly beneficial

Data x | Label y

I

. Encoder Q(z|x y) |‘fr

Mean Vector p | Variance Vector o’ |
-q__“'h-q._#-"f”
Sampled = | Label y
' —
-

. Decoder Plx|z.v) }‘/

Data x |

The architecture of CVAE is this:

Additional info on CVAE

By giving the label info to bo the encoder and the decoder, they can essentially
exploit that information in some ways. In general, for example, ==they can
use that info for encoding the information (instead of encoding the data into
the latent space)==. In general, the clusters of the latent space become much
more defined, since we do not need anymore to distinguish this information in
a way.

- To be more precise, if we saw the latent space, they would not be any more
clustering, but rather the data of the same class would overlap.

Also, in general, VAE have a more regular latent space wrt to general autoen-
conder, since we are using in fact using a kind of regularization method, which
in fact is the KL distance.

Conditional GANs

The generator takes in input the condition, in addition to the noise.

real or take

GAN C-GAN AC-GAN

What about the discriminator? - use the condition to discriminate fakes for
real of the given class (Conditional GAN) - It gives the same condition
given to the generator as an additional input to discriminator. - try to classify
w.r.t different conditions in addition to true/fake discrimination (Auxiliary
Classifier GAN) - couples the discriminator with a classifier, so in addition it
also has to guess the label of the image.

Loss function for AC-GANs Notation: - p*(x,¢) is true image-condition
joint distribution - py(x,c) is the joint distibution of generated data - qy(c|z)
is the classifier

In addition to the usual [[2023-04-19 - Generative Models 2#GAN’s loss
function| GAN objective), we also try to minimize the following quantities:

— E In(qe(c|x))— E In(ge(c|x))
L P’ {x:f—_} o Petx,e i

term 1 term 2

- term 1:
the classifier should be consistent with the real distribution - So, it’s the
dedicated to the classifier. - term 2: the generator must create images easy to
classify by the discriminator.

The second term has always been criticized, so in InfoGAN, for example, we
only have the first term. - The second term helps to generate images far from
boundaries between classes, hence, likely more sharp. But what if real images
are close to boundaries? - This is a problem of almost every GAN: some images
are very easy to generate, while others provide a very bad result. - It has also
been criticized because the classifier can suffer from the [[2023-04-19 - Generative
Models 2#GANs problems|Mode Collapse), too.

Concrete handling of the condition

In conditional networks, we pass the label/condition as an additional input. How
is this input going to be processed? If we need to add it to a dense layer, we
just concatenate the label to the input. If we need to add it to a convolutional

layer, we have two basic ways: - Vectorization - Feature-wise Linear Modulation
(FILM)

Vectorization

We essentially repeat the label (typically in categorical form) for every input neu-

label

W

NN N NN

additiona
channels

SN NN

AN NN

AN NN

NN NN

ron, and stack them as new channels.

FILM
Idea: use the condition to give a different weight to each feature (each channel).

We use the condition to generate two vectors v and [with size equal
to the channels of the layer. Them we rescale layers by ~ and add p.

Filihl"l

activation u

= +

It’s less invasive than parametrizing the

weights. Nevertheless, Vectorization remains the most typical and the most
easy to use though.

	Conditional Generation
	Issues

	Conditional VAE (CVAE)
	Additional info on CVAE

	Conditional GANs
	Concrete handling of the condition
	Vectorization
	FILM

