
Generative Models
When we are using discriminative models we’re interested in doing a classifica-
tion, so we are just interested in discriminating objects belonging to different
classes.

Generative models, on the other hand, are models that try to learn the actual
distribution 𝑝𝑑𝑎𝑡𝑎 of real data from available samples (training set).

Goal: ==build probability distribution 𝑝𝑚𝑜𝑑𝑒𝑙 close to 𝑝𝑑𝑎𝑡𝑎.== We can either
try to - explicitly estimate the distribution (i.e. with a math formula) - build
a generator able to sample according to 𝑝𝑚𝑜𝑑𝑒𝑙, possibly providing estimations
of the likelihood - i.e., we have a dataset of faces, and we try to generate faces
which are similar to the dataset of faces.

Obviously, we can also compute a likelihood and other quality indicators that
would help us try to measure the quality of our generated samples.

Why studying Generative Models?

• Improve our knowledge on data and their distribution in the visible feature
space

• Improve our knowledge on the latent representation of data and the en-
coding of complex high-dimensional distributions

• Typical approach in many problems involving multi-modal outputs
• Find a way to produce realistic samples from a given probability distribu-

tion
• Generative models can be incorporated into reinforcement learning, e.g. to

predict possible futures

Multi-modal output In many interesting cases there is no unique intended
solution to a given problem: - add colors to a gray-scale image - guess the next
word in a sentence - fill a missing information - predict the next state/position
in a game - . . . When the output is intrinsically multi-modal (and we do not
want to give up to the possibility to produce multiple outputs) we need to rely
on generative modeling.

Let’s take for example the idea of coloring an image. In this case, there are
many different solutions to this problem, and interpolating or mixing all the
possible solution would not give us an especially good result. So, we want to
generate a possible solution in some conditioned and stochastic way.

1

Latent variables models

In latent variable models we express the probability of a data point 𝑋 through

marginalization over a vector of latent variables:

The generator computes the probability conditioned on a vector of latent vari-
ables 𝑧 (which could be, for example, the internal representation of a face).
These latent variables capture important but hidden information or patterns
that are not explicitly measured or recorded. Essentially, 𝑧 could be seen as
an internal representation of 𝑋. 𝑧 is distributed with a known prior distribu-

tion 𝑃(𝑧). As we can see, 𝑃(𝑧) is passed to the
generator, which in turn generates a possible sample �̂� that belongs in the dis-
tribution. 𝑧 is also called latent representation (or latent encoding), while �̂�
is called also visible representation. Typically, the generator is a deterministic
component.

[!As said in the slides] This simply means that we try to learn a
way to sample X starting from a vector of values 𝑧 (this happens in
the generator, which is 𝑃(𝑋|𝑧)), where 𝑧 is distributed with a known
prior distribution 𝑃(𝑧). z is the latent encoding of X.

2

Dimensions of latent space and visible space

The Visible space is a huge space (i.e. for an image of dimensions 64x64, the
dimension of the space 64x64x3 (since we have to consider the colors also)). The
dimension of the latent space, instead, could be much smaller, since the [[2023-
04-04 - The data manifold & autoencoders#Data Manifold|manifold) that we
want to reach is very small compared to the whole visible space dimension.

Classes of generative models
There are four main classes of generative models: - compressive models - they
compress the latent space according to what we said earlier.
- Variational Autoencoders (VAEs) - Generative Adversarial Networks (GANs)
- dimension preserving models - the latent space has the same dimension of
the visible space. - Normalizing Flows - Denoising Diffusion Models

Each model also differs in the way the generator is trained.

VAE - Variational AutoEncoders
To train a generator in a VAE, you couple a generator with an encoder,
thus producing a latent encoding 𝑧 given 𝑋. This will be distributed
according to an inference distribution (a statistical deduction) 𝑄(𝑧|𝑋).

It basically tries to “reconstruct” the input image, so in that way it kinda
works like an [[2023-04-04 - The data manifold & autoencoders#What is an
autoencoder?|autoencoder). The different wrt to autoencoders is that we cannot

3

use them for generators, since we do not know how 𝑧 is distributed inside the
latent space (using only autoencoders). So, for example we may pick a point of
the latent space which is outside the manifold, and thus we may sample a bad
image.

Variational Autoencoders force this problem by trying to enforce the distribu-
tion of 𝑧 to be a Normal/Gaussian distribution, and this can be seen in the loss
function specifically, in which we try to force the z to assume a Gaussian distri-
bution. The loss function aims to: - minimize the reconstruction error between
𝑋 and �̂� - bring the ==marginal inference distribution 𝑄(𝑧) close to the prior
distribution 𝑃(𝑧)== (this is usually a Gaussian distribution) [this was the part
I was talking about] And is the sum of these 2 components.

GAN - Generative Adversarial Network
The GAN approach is completely different. In a Generative Adver-
sarial Network, the generator is coupled with a discriminator, trying
to ==tell apart real data from fake data== produced by the genera-
tor. Detector and Generator are trained together alternatively (when
you train the generator you freeze the discriminator and viceversa).

The loss function aims to: - instruct the detector to spot the generator. -
instruct the generator to fool the detector. At this point, one could see that if
one is working bad so is the other, thus training is tricky. At the end of this
process, the generator is supposed to win of course. Usually, GAN produces
better results than VAE.

Normalizing Flows
In Normalizing Flows, the generator is split into a ==long chain of invertible
transformations==, so you can essentially go back and invert the transforma-

tion.

4

As you may remember, the Normalizing Flow is a dimension preserving model,
so the latent space is the same dimension as the visible space. What we’re
doing is trying to apply some transformations to the latent space to obtain the
visible space.

The network is trained by maximizing log-likelihood. - Pros: it allows a precise
computation of the resulting log-likelihood. - Cons: the fact of restricting to
invertible transformation limit the expressiveness of the model.

Diffusion Models
In Diffusion Models, the latent space is understood as a strongly noised version
of the image to be generated. The generator is split into a long chain of denoising
steps, where each step 𝑡 attempts to remove Gaussian noise with a given variance

𝜎𝑡 .
We train a single network implementing the denoising operation, parametric in
𝜎𝑡.

This method uses Reverse Diffusion, where Diffusion is a technique which es-
sentially aims to add and distribute noise to an image. One of the famous
implementation of this method, Stable Diffusion, uses 1000 steps of denoising.
Usually, these models start from a very small image (i.e. 64x64 resolution) and
they then add a hyper-resolution step with a totally unrelated network.

VAE in depth
An autoencoder is a net trained to reconstruct input data out of a
learned internal representation (e.g. minimizing quadratic distance)
The idea is to use the encoder like a traditional generator in a way.

5

Can we use the decoder (aka the single autoencoder) to generate data by sam-
pling in the latent space? No, since we do not know the distribution of latent
variables. So, in a way, we need some control inside of the latent space, and thus
we try to force the latent variables to have a Spherical Gaussian Distribution.

We assume 𝑄(𝑧|𝑋) has a Gaussian distribution 𝐺((𝑋), 𝜎(𝑋)) with different mo-

ments for each different input 𝑋.

The values (𝑋), 𝜎(𝑋) are both computed by the generator, that is hence returning
an encoding 𝑧 = (𝑋) (the enconding corresponds to the mean) and a variance
𝜎(𝑋) around it, expressing the portion of the latent space that is essentially
encoding ==an information similar to 𝑋==.

Sampling in the latent space

==During training==, we sample around (𝑋) with the computed 𝜎(𝑋) before
passing the value to the decoder. Here essentially what that means: - Suppose

6

that for the data 𝑋2, we know its mean and its variance 𝜎. Using the variance,
we sample around it [the dotted circle in the picture] and we find in this
neighbourhood an image that is very much similar to 𝑋2.

- This is done before passing the value to the decoder.
After we pass the value to the decoder, we expect to be able to decode the
same image that we received as input.

This process is important for 2 reasons: 1. If we can sample the input image
from the whole “variance area”, we cover a larger area of the latent space. Thus,
it increases the probability for the generator of deriving an output that makes
sense from the latent space. 2. Among other things, the sampling that we do
using the varians adds noise to the encoding, and so it improves the robustness
of the model.

7

The full picture of VAE

We also have 2 losses: 1. The reconstruction error of the input from the
output. 2. The Kullback-Leiber component, which is just the distance
between the 2 gaussian distribution 𝑁(0, 1) and 𝑄(𝑧|𝑋) - Allows 𝑄(𝑧|𝑋) to be
as close as possible to a Gaussian distribution.

The effect of the Kullback-Leiber divergence on latent variables has 2 effects: 1.
pushing 𝑧(𝑋) towards 0, so as to center the latent space around the origin 2.
push 𝜎𝑧(𝑋) towards 1, augmenting the “coverage” of the latent space, essential
for generative purposes.

VAE problems

• balancing log-likelihood and KL regularizer in the loss function
– Also, if the value of the variance is too small, we may make the areas

in the latent space too big, and thus the areas may overlap.
• variable collapse phenomenon

– i.e., you have 50 variables but only 10 are used.
• marginal inference vs prior distribution mismatch

– Q(z) vs. Q(z|X), we try to make them as similar as possible but we
might fail.

• blurriness (aka variance loss)

8

	Generative Models
	Latent variables models

	Classes of generative models
	VAE - Variational AutoEncoders
	GAN - Generative Adversarial Network
	Normalizing Flows
	Diffusion Models
	VAE in depth
	Sampling in the latent space
	The full picture of VAE
	VAE problems

