
Data Manifold
Why classification techniques are vulnerable
Every single classification technique, not just NN, is vulnerable. - discriminating
between domains does not give us much knowledge about those domains. Dif-
ference between generative and discriminative approaches in machine learning.
- In general, in generative techniques we try to discriminate by taking account
how the data that I have is distributed and what features does it have. - Instead,
the discriminative techniques we try to discriminate by only looking at those
features of a sample which allow us to solve our task.
- if data occupies a low-dimensional portion in the feature space, it is easy to
modify features, to pass the borders of our discrimination boundaries.

Let’s consider this neural network, Inception V3, which is used for image process-

ing:

This kind of network has - a long sequence of convolutional layers, possibly
organized in suitable modules (e.g. inception modules) - a short (2 or 3) final
sequence of dense layers - with convolutional layers we extract interesting fea-
tures from the input image, generating a different internal representation of data
in terms of these features - with the dense layers, we exploit these features
in view of the particular problem we are aiming to solve (e.g. classification).

What if we reverse the representation of this kind of data? Reversing
the representation of data makes sense as far as we are in extraction phase - we
can syntesize interesting patterns recognized by neurons of convolutional layers

We cannot expect to derive interesting information about categories from the
information that the network uses to discriminate among them. - ==we can-
not automatically synthesize a “cat”== (starting from a classifier; we shall see
specific generative techniques in the next lesson)

Data Manifold
If we generate an image at random, it looks like noise. The probability of
randomly generating an image having some sense for us is null. This means that
“natural images” occupy a portion of the features space of almost no dimension.
Moreover, due their regularities, we expect them to be organized along some

1



disciplined, smooth-runnning surfaces. This is the so called manifold of data
(in the features space).

[!DEFINITION] A manifold is a set of values in which the all neigh-
bours are homeomorphic. - The data manifold is a continue -> if we
interpolate 2 image that are not noise, we may get an image that is
senseless, but that it still not noise at the very least.

The Manifold issue

• Suppose we have a space with two features (a cartesian plane), and our
data occupy the manifold of dimension 1 (the line in the picture), along
the dotted line described in the following picture.

• Suppose moreover that our data are splitted in two categories
(yellow and blue) and we want to perform their classification

We
have little knowledge of where the classifier will draw the boundary.
A tiny change in the data features may easily result in a missclassifi-
cation. Observe that we are escaping from the actual data manifold..

2



As we can
see, it is very easy to move the circled sample outside of the boundary,
such that it is misclassified.

Now imagine the possibilities in a space with hundreads or thousands of dimen-
sions…

So, essentially, when we are adding the noise that we saw in the previous lesson,
we are escaping the manifold, and doing so in a way that allows us to go out of
the boundary of our class.

A remark on inceptionism

The complexity of inceptionims consists in modifying an image remaining inside
the expected data manifold. This is difficult, since we have little knowldge about
the actual data distribution in the feature space.

To this aim, deepdream generator exploits regularization techniques (smooth-
ing, texture similarities, etc.) trying to obtain images similar (in statistical
terms) to those in the training set.

A remark on manifold So, what if, when we have a classification problem,
we introduce another class that essentially captures all the data that is not on
the manifold (in Asperti’s words: that is bullshit). Would something like this
be feasible? - i.e. We have 3 classes: cats, dogs and other. In short: no, ==it
would not be feasible==, since our manifold (which in this case is our dataset) is
an extremely small set in the feature space. So, the “other” class would just be
too huge. Thus, when building a classifier, we should only discriminate between
the classes that we’re interested in.

3



Autoencoders
Two natural questions about the data manifold: 1. We said that (in almost
all cases) the actual dimensionality of the data manifold is low in comparison
with the latent space. - Can we experimentally confirm this claim? Can we
compress data? 2. For fooling networks, we synthesized new samples outside
the actual data manifold. - Is it possible to automatically detect this kind of
anomalies?

To answer to these kind of questions it is worth to have a look at particular
neural network models called autoencoders.

What is an autoencoder?
An autoencoder is a net trained to reconstruct input data out of a learned inter-
nal representation. Usually, the internal representation has ==lower dimension-

allity== w.r.t. the input.
Why is data compression possible, in general? Because we exploit regularities
(correlations) in the features describing input data. Thus, If the input has a
random structure (high entropy) no compression is possible. - random, lawless,
uncompressible, high entropy - ordered, lawfull, compressible, low entropy

Are autoencoder really feasible as a data compression method? Well,
in a strict computer science sense, not so much. Let’s consider why. If (as usual)
the internal layer has fewer units of the input, autoencoders can be seen as a
form data compression. This compression is - data-specific: it only works well
on data with strong correlations (e.g. digits, faces, etc.) This is different from
traditional data compression algorithms - lossy: the output is degraded with
respect to the input. This is different from textual compression algorithms, such
as gzip - directly trained on unlabeled data samples. We usually talk of self-
supervised training (unsupervised, and the data itself is used as both training
data and the target).

4



What are they good for?

Not so good for data compression, due to the lossy nature. Applications to -
data denoising - anomaly detection - feature extraction (generalization of PCA)
- generative models (VAE) Especially, an amusing and simple to understand
topic.

Autoencoders for anomaly detection

The latent encoding of data is meant to capture the main components of the
data features. We can hence expect to easily detect anomalies by looking at
points with abnormal latent values. Equivalently, we may look at points with a
reconstruction below the expected quality.

Autoencoding is data specific: the autoencoder works well on data similar
to those it was trained on. If applied on different data (anomaly), it will perform

poorly.

5


	Data Manifold
	Why classification techniques are vulnerable
	Data Manifold
	The Manifold issue
	A remark on inceptionism


	Autoencoders
	What is an autoencoder?
	What are they good for?
	Autoencoders for anomaly detection



