
Inception V3
In inception-like CNNs, we have a deep/convolutional part comprised of incep-
tion modules, in which we extract features and information from the input. At
the very end, we have some kind of pooling operation, and we process the in-
formation depending of which kind of purpose has our CNN (i.e., classification,
regression…). This final part is usually not very, since it is comprised of only
2/3 dense layers.

ResNet - Residual Learning
This type of CNN is also used for image processing, and makes use of Residual

Learning, which is described by this image:
In Residual Learning, we have some kind of connection from the input to the
output. In particular, instead of learning a function 𝐹(𝑥) you try to learn
𝐹(𝑥) + 𝑥.

The intuition of this approach may be better understood by this image:

1



Essentially, we are adding a residual computation to our input, so we are
computing a kind of delta (which is F(x)) to the input, it is a kind of residual
that can help in the computation. In general, it can be seen as a way to see if
our input has some kind of improvement or not.

You add a residual shortcut connection every 2-3 layers. Inception Resnet is

an example of a such an architecture. The main
advantage is that along these links, you have a better backpropagation of the
loss. It’s true that if use RELU (Rectified Linear Units) instead of, say a sigmoid,
you do not have the problem of vanishing gradient, but in any case there’s a
quick degradation of the loss going deeper and deeper in the net. Instead, using
this method, ==there’s no degradation of the gradient==.

2



Why Residual Learning works? Not well understood yet. The usual expla-
nation is that during back propagation, the gradient at higher layers can easily
pass to lower layers, withouth being mediated by the weight layers, which may
cause vanishing gradient or exploding gradient problem.

Residual Learning - Sum or concatenation? The “sum” operation
can be interpreted in a liberal way. A common variant consists in concate-
nating (skip connection) instead of adding (usually along the channel axis):

By using a concatenation, we are usually just skipping some parts of the net-
work.

The point is to induce the net to learn different filters. One important example
is the UNet, which we’ll see in the future.

Efficient Net
A decision that we have to make when developing image processing network
(CNN) is, for example, the size of the input.

ConvNets essentially grow in three directions: - Layers: the number of layers -
Channels: the number of channels for layers - Resolution: the spatial width
of layers Is there a principled method to scale up ConvNets that can achieve
better accuracy and efficiency?

The resolution of a ConvNet is an important aspect that we have to address.
In fact, we may decide that the information contained in high-res images is not
important, and we may decide to lose this information in order to decrease the
computational cost of the model.

The resolution of the input also affects the resolutions of all the feature maps.

Regarding the channels, we know that if we decrease the spacial dimension, we

3



have an increase along the channel axis. Usually, we have to try to work with
as many channel that we have at our disposal.

At the same time, we have to work uniformly along the “3 dimensions”, so if we
increase the resolution, we should probably also increase the channels etc.
More info in this paper here.

Transfer Learning
In transfer learning, we try to transfer knowledge from a model into another
model, ==usually we do this when we have a very good network that has been
trained on a lot of data, and we want to transfer knowledge to a more specific
network for which we do not have a lot of data==.

We can understand better this process if we consider the typical structure of
NN, in which we have a part in which we are trying to extract features from the
data, and another final part (the dense part, made by dense layers) in which we
solve the problem that we’re interested in.

In particular, on the resulting network, we just alter the layers that we are
interested and delete the others, then add a couple of dense layers, and on those
we’ll do the actual learning.

A better explanation We learned that the first layers of convolutional net-
works for computer vision compute feature maps of the original image of growing
complexity. The filters that have been learned (in particular, the most primi-
tive ones) are likely to be independent from the particular kind of images they
have been trained on. They have been trained on a huge amount of data and are
probably very good. It is a good idea to try to reuse them for other classification
tasks.

Transferring knowledge from problem A to problem B makes sense if: - the two
problems have “similar” inputs - we have much more training data for A than
for B

In all layers, you typically have a trainable parameter (which is a boolean), and
if it false the learning on this layer freezes.

4

https://arxiv.org/pdf/1905.11946.pdf


In this type of learning, we can also do some fine-tuning by unfreezing the first
part of the network after the dense layer has already been trained, thus training
also the first part of the network on the specific data of the transferred network.
Finetuning is always dangerous, and there’s a risk of overfitting and degrading
(possibly) good information.

Expectations of transfer learning

5



Backpropagation for CNNs
To understand how backpropagation works in CNNs, we need to understand
how do we have to change the weights of the kernel during backpropagation

Since when doing a convolution we are transforming (for example) an input of

dimension 4x4 into an output of dimension 2x2. This can be
seen also in the image above. Essentially, what we are trying to do can be also
done through a linear transformation, involving weights.

6



Matrix for applying CNNs linearly

This operation, when done in a linear way, involves a matrix of this kind:

Each column corresponds to a dif-
ferent application of the kernel. 𝑤𝑖,𝑗 is a kernel weight, with i and j being the
row and column of the kernel respectively. The matrix has been transposed for
convenience.

• Since this matrix is very sparse, it is very easy to compute efficiently.
• The weights are also repeated (obviously) since the kernel is repeatly ap-

plied onto the same input.

Why are we trying to find this correlation between linear layers and convolu-
tional layers? Well, it’s because in linear layers we know how to apply backprop-
agation.

However there’s a catch: when we backpropagate, each parameter of the linear
matrix is transformed in a different way, so the ==partial derivativative of
the loss function for each one of the parameters of the linear layer will be
different==.

7



To solve this problem, we update
the kernel with the average of the updates made to each parameter.

Transposed convolutions
Normal convolutions with non-unitarian (>1) strides downsample the input di-
mension (usually, for example, to increase their receptive field). In some cases,
we may be interested to upsample the input, e.g. for - image to image process-
ing, to obtain an image of the same dimension of the input (or higher) after
some compression to an internal encoding. - project feature maps to a higher-
dimensional space.

When upsampling, we can also use bilinear transformations. But for now, we’ll
just focus on transposed convolutions.

A transposed convolution (sometimes called deconvolution) can be thought
as a normal convolution with subunitarian stride. To mimic subunitarian
stride, we must first properly upsample the input (e.g. inserting empty rows
and columns) and then apply a single strided convolution like in this image:

In this way, we can have an output that is bigger in size than the input.

8



Dilated Convolutions
Sometimes, when applying convolutions, the kernel may be too small, and if
we increase the size of the kernel, it may become too computationally complex
for our needs. Dilated convolutions are just normal convolutions with holes.

It enlarges the receptive fields, keeping a low number of parameters. Might be
useful in first layers, when working on high resolution images.

They are also used in Temporal Conovlutional Networks (TCNs) to pro-

cess long input sequences:

[!WARNING] Remember: - in transpose convolutions, we are dilat-
ing the input. - in dilated convolution, we are dilating the kernel.

Normalization layers
Normalization layers allow to renormalize the values after each layer. The poten-
tial benefits for this kind of operation are: - have a more stable (more controlled
activations) and possibly faster training - It allows to solve the NaN output
problems which are created by activations that have exploded. - increase the
independence between layers

9



Batch Normalization

Batch normalization operates on a batch of data, so not on the whole dataset,
and operates on single layers, per channel base.

Essentially, we are computing a normalization for each batch, and everytime we
find a new batch, we compute a weighted average between the statistics of this
new batch and the old ones.

At each training iteration, the input is normalized according to batch (moving)
statistics, subtracting the mean 𝐵 and dividing by the standard deviation 𝜎𝐵 . -
Then, an opposite transformation (denormalization) is applied based on learned
parameters 𝛾 (scale, equivalent to a standard deviation) and 𝛽 (center, equiva-
lent to a mean). These parameters allow essentially to cancel the normalization
operation according to what the network thinks that it’s better to do. - This

operation can also be disabled.
𝐵 and 𝜎𝐵 are the batch statistics.

[!WARNING] Remember: - Stacking 2 linear layers together in a
network is an operation that never makes sense, since a composition
of 2 linear layers is just a simple linear layer. So… - if we put a linear
layer after a normalization layer that has the learned parameters, it
is kind of useless since the operation is basically just learned by the
layer. - The only case in which it makes sense is when the layer right
next to the normalization layer is an activation layer.

Batch Normalization at prediction time

Batch normalization behaves differently in training mode and prediction mode.
Typically, after training, we use the entire dataset to compute stable estimates
of the variable statistics and use them at prediction time. Once training is
concluded, statistics (over a given training set) do not change any more.

Other forms of normalization

Each subplot shows a feature map tensor, with N as the batch axis, C as the

10



channel axis, and (H, W) as the spatial axes. The pixels in blue are normalized
by the same mean and variance, computed by aggregating the values of these
pixels.

• Batch Norm: we are normalizing along the batch dimension, as we’ve seen.
This is done for each channel of the network.

• Layer Norm: we are normalizing along the channel dimension.
• Instance Norm: we are normalizing along the spatial dimension only.
• Group Norm: we are normalinzing some defined channels, but not all of

them (maybe because some of them are more important than others?).

11


	Inception V3
	ResNet - Residual Learning
	Efficient Net
	Transfer Learning
	Backpropagation for CNNs
	Matrix for applying CNNs linearly
	Transposed convolutions
	Dilated Convolutions
	Normalization layers
	Batch Normalization
	Batch Normalization at prediction time
	Other forms of normalization



