
Convolutional Layers 2
Convolutional Layers vs Linear Layers

As we know, the kernel is a small window of weights, and applies these windows
or weights to make a weighted combination of the input image. The computation
performed by the convolutional layer is the same as the computation made by
the linear layer, since we are still performing a linear combinaiton. - The real
difference is that we are just considering a small portion of the inputs for the
layer, and not all of them.

Structure of a CNN Layer

A convolutional layer is defined by the following parameters - kernel size: the
dimension of the linear filter. - A stride is the movement we want for the
kernel along the x or y axis. The minimum is 1, but you can also define a bigger
stride. - With an higher stride, we have less overlap and the dimension of the
output gets smaller (obv, we have more overlap with a bigger size). - The stride
also influences the size of the output, since we are basically skipping cells. -
Padding: Artificial enlargement of the input to allow the application of filters
on borders. - i.e. zero-padding, the borders are filled with black pixels, or we
can repeat the last values. - depth: number of different kernels that we wish to
syntesize. Each kernel will produce a different feature map with a small spatial
dimension. - Can be seen as the number of channel that we have in the layer in
which we want to apply the convolution.

So, each CNN layer usually has 4 dimensions: - batch dimension - width - heght
- depth

What do we do when our layer has more than 1 channel? In this case, ==the
kernel operates on all the channels together==.
For this reason, a kernel of 1x1 operates just on the channels.

1



Reducing channels If in a layer we reduce the channels, i.e. 64 to 32, our
CNN kinda behaves like PCA, since it compresses the 64 channels to 32, pre-
serving the information that is important to us.

Unless stated differently (e.g. in separable convolutions), ==a filter operates on
all input channels in parallel==. So, if the input layer has depth 𝐷, and the
kernel size is 𝑁 × 𝑀 , the actual dimension of the filter will be 𝑁 × 𝑀 × 𝐷.
The convolution kernel is tasked with simultaneously mapping cross-channel

correlations and spatial correlations.

2



Dimension of the output

The spatial dimension of each output feature map depends form the spatial
dimension of the input, the padding, and the stride. Along each axes the dimen-
sion of the output is given by the formula:

𝑊 + 𝑃 − 𝐾
𝑆 + 1

where: - 𝑊 = dimension of the input - 𝑃 = padding - 𝐾 = Kernel size - 𝑆 =
Stride

Example

• The width of the input (gray) is 𝑊=7.
• The kernel has dimension 𝐾=3 with fixed weights [1, 0, −1]

• Padding is zero
• In the first case, the stride is 𝑆 = 1. We get (𝑊 − 𝐾)/𝑆 + 1 = 5 output

values.
• In the second case, the stride is 𝑆 = 2. We get (𝑊 − 𝐾)/𝑆 + 1 = 3 output

values.

Example 2D

• INPUT [32 × 32 × 3] color image of 32 × 32 pixels. The three channels
R G B define the input depth

• CONV layer. Suppose we wish to compute 12 filters with kernels 6 × 6,
stride 2 in both directions, and zero padding. Since (32 − 6)/2 + 1 = 14
the output dimension will be [14 × 14 × 12]

• RELU layer. Adding an activation layer the output dimension does not
change

Padding modes
Usually, there are two main “modes” for padding: - valid: no padding is applied
- same: you add a minimal padding enabling the kernel to be applied an integer
number of times

This is also true in Keras.

Receptive field
• The receptive field of a (deep, hidden) neuron is the dimension of the

input region influencing it.

3



• It is equal to the dimension of an input image producing (without padding)
an output with dimension 1.

• ==A neuron cannot see anything outside its receptive field!==

This notion is only true in CNNs, since in normal, dense NNs we have that each
neuron is connected to all the other neurons of the previous layer.

We can compute the dimension of the input (so the receptive field) from the
dimensions of the output:

𝐼 − 𝐾
𝑆 + 1 = 𝑂 ⟶ 𝐼 = (𝑂 − 1) ⋅ 𝑆

𝐼 − 𝐾
where 𝐼 is the dimesion of the input and 𝑂 is the dimension of the output.

Pooling
Downsampling is a common practice in CNN in order to reduce both computa-
tional and spatial cost of the operation. Normally, in CNN, a way to downsample
the input is to apply a kernel with stride > 1.

Another way is applying pooling operation. In deep convolutional
networks, it is common practice to alternate convolutional layers with
pooling layers, where each neuron simply takes the mean or maximal
value in its receptive field. This has a double advantage: - it reduces
the dimension of the output - it gives some tolerance to translations:

4



While the mean-pooling operation can be applied through a convolution (same
kernel as the blurring kernel), the max-pooling can’t be expressed through a
convolution.

Usually, when downsampling, we are also doubling the channel dimention, oth-
erwise the reduction would be too drastic.

Expressiveness of different CNNs kernels Now, a question: we have 2
methods we can use with the same receptive field. One uses a kernel of dimension
5x5, while the other uses 2 kernels of dimension 3x3.

In the case of the kernel 5x5, we have 25+1 parameters. In the case of the 3x3
kernel, we have (9+1)x2 parameters. So, we have less parameters in the second
case rather than in the first. We should expect that some transformations which
were computable by means of a kernel of dimension 5x5 are not expressible
anymore through these 2 kernels of dimensions 3x3. Thus, the first is more
expressive than the second. However, we can introduce non-linear operations
using the 3x3 kernel by introducing non-linearities between the two kernels,
which we cannot compute with the single 5x5 kernel. So, which is the more
expressive method? We cannot say, the two methods are simply not comparable.

5



Famous CNNs

AlexNet
This one is interesting since it proves again that we dont a long stack of deep
neural layers: at the end of this network, there are just 2 dense layers, and are
enough to extract complex features.

This net also uses very a big kernel (11x11), while now the standard is basically
using a 3x3 kernel.

VGG

6



Inception modules
Inception modules re-combine together results and try to resythesize together

new features.
As we can see from this image, you are basically applying some different oper-
ations, which are then stacked together along the channel dimension (through
concatenation).

Inception hypothesis and Depthwise Separable Convolution

Remember that normal convolutional kernels are 3D, simultaneously mapping
cross-channel correlations and spatial correlations. It can be better to decouple
them, independently looking for cross-channel correlations (via 1 × 1 convolu-
tions), and spatial 2D convolutions. This operation is illustrated in the following

picture:

7



In Deptwise Separable Convolutions, we have a kernel for each channel, which
is applied separately. Each kernel produces a single output, so the number of
feature maps in input is the same as the number of features map in output. We
then reduce the number of feature maps (called 𝐶𝑜𝑢𝑡) through a single unary
convolution.

Inception modules can be understood as an intermediate step between a regular
convolution and a depthwise separable convolution (a depthwise convolution
followed by a pointwise convolution).

Traditional vs. Depthwise Separable Convolution Suppose we have a
convolutional layer with a 3 × 3 kernel, 16 input channels and 32 output chan-
nels. The input is convolved 32 times with different kernels of dimension 3 × 3
× 16 = 144: we have a total of 32 × 144 = 4608 parameters.

In a depthwise separable convolution on the same example, we first traverse the
16 channels with a different 3x3 kernel, and then we apply 32 different kernels
with dimension 1 × 1 × 16. The total number of parameters is 16 × 3 × 3 +
32 × 1 × 1 × 16 = 656.

8


	Convolutional Layers 2
	Convolutional Layers vs Linear Layers
	Structure of a CNN Layer
	Dimension of the output
	Padding modes
	Receptive field
	Pooling
	Famous CNNs
	Inception modules
	Inception hypothesis and Depthwise Separable Convolution



