
Convolutional Neural Networks
As we know, in a NN we have dense layers (in which each node is connected to
the previous layer). In CNN, there are some differences.

In a CNN, each neuron is computed as a function of only some specific neurons
of the previous layer (in particular, a neighbourhood of the previous layer).

To determine the neighbourhood of each pixel, we usually just select a kernel
of weights, which is then computed through a dot product with the rest of the
neurons.

Filters and convolutions
We have a grid of weights (a kernel or filter), which we then slide.

As we’ve said: - the activation of a neuron is not influenced from all neurons
of the previous layer, but only from a small subset of adjacent neurons: his
receptive field. - every neuron works as a convolutional filter. Weights are
shared: every neuron performs the same trasformation on different areas of
its input. - with a cascade of convolutional filters intermixed with activation
functions we get complex non-linear filters assembing local features of the image
into a global structure.

CNNs and Images

Convolutions are very useful expecially for extracting features from images. An
image is coded as a numerical matrix (array) which can be either grascale or
rgb.

1



Some interesting features that we can extract from images are: - Edges, angles,
…: points where there is a discontinuity, i.e. a fast variation of the intensity.

We measure variations of intensitites by means of derivatives and we can com-
pute discrete approximations of derivatives convolving simple linear filters.

Computing approximations of derivatives
If we think of this variation as a surface, we may notice that probebly in that
point this repentine change can be translated in a high derivative. We can
approxiamte the derivateive by meanse of the finite central difference:

Finite central difference
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ = 𝑓 ′(𝑥) + 𝑂(ℎ2)

We essentially are computing 𝑦1 − 𝑦0
𝑥1 − 𝑥0

.

Usually, ℎ = 1 (since we can’t take 0) pixel, and negleting the costant 1/2 we
compute with the following filter

[−1 0 1]
This kernel is quite interesting in image processing and allows us to approximate
a derivative of the input image (w.r.t. the difference of the intensity of the pixel)
in a specific position. This kernel can be applied both horizontally and ver-

tically.
From the input image we extract the visible contours, using different orienta-
tions of the kernel.

In general, the kernel is a pattern of the image that we are interested in. We can
have many, complex patterns, we look for this pattern over the input. The weak

2



point is that the pattern is linear, and so only part of the pattern is recognixed.
It’s better to combine pattern in successive elaborations.

Code Demo
kernel = np.zeros((3,3))
kernel[:,0] = -1
kernel[:,2] = 1

img = cv2.filter2D(image, -1, kernel) # allows to apply our kernel
fig, ax = plt.subplots(1, figsize=(12,8))
plt.imshow(img)

The kernel that we obtain is:

array([[-1., 0., 1.],
[-1., 0., 1.],
[-1., 0., 1.))

And the result is:

A kernel that would shift the image looks something like this:

array([[0., 0., 0.],
[0., 0., 1.],
[0., 0., 0.))

You can find the full code for this demo here: link

3

https://virtuale.unibo.it/pluginfile.php/1241675/mod_resource/content/1/Convolutions.ipynb

	Convolutional Neural Networks
	Filters and convolutions
	CNNs and Images

	Computing approximations of derivatives

	Code Demo

