
Little insights on learning

• As we know, SGD is not guaranteed to find a local minimum if we dont
have a convex function, so someone might find the result of these tech-
niques a bit aleatoric, however, they are not: in fact they are surprisingly
stable (the reason for this is not 100% understood as of now). However, 3
possible explanation for this can be related to:

1. The initializations of the weights: usually, they are very close to 0
and chosen in a randomic way (essentially, it’s a confined area of
values).

2. The convexity of the loss function: it’s not rare to have loss functions
which have multiple local minimum with values very much close to
the global minimum.

3. (not proven though) Redundancy in the internal neural network: re-
dundancy of the number of neurons and parameters inside the NN.

– A lot of redundancy allows a NN to ignore the parts which give
a bad result.

• In dense layers, in which each neuron is connected to every neuron of
the previous layer, the order of the nodes (and thus the weights) is not
relevant.

Overfitting and underfitting
As we know: - overfitting: the model is too complex and specialized over the
peculiarities of the samples in the training set. - underfitting: the model is
too simple and does not allow to express the complexity of the observations.

Overfitting essentially tells us to keep in mind that the training data we have is
just a small subset of the bigger, more general set of real data.

[!remark] Deep models are good at fitting, but the real goal is gen-
eralization - With NN models, we see mainly overfitting problems.

1

Ways to reduce overfitting
• Collect more data:

– the more the test data, the most likely the predictions will be similar
to real data -> the more likely you can capture the variability of the
real world.

• Reduce the model capacity
– Capacity refers to the ability of a model to fit a variety of functions;

more capacity, means that a model can fit more types of functions
for mapping inputs to outputs. Increasing the capacity of a model is
easily achieved by changing the structure of the model, such as adding
more layers and/or more nodes to layers.

• Early stopping:
– If the results (i.e. validaiton of the training set) are not improving, I

simply stop.
∗ Easily implemented using callbacks. You can use callbacks to

save weights or compare result at specific times of the run-times
(i.e. the end of this epoch)

• Regularization, e.g. Weight-decay
– 𝑙2 regularization: you penalize the weights of the model using a

quadratic penalty, to keep them close to 0.

– Weight-decay: the weights decay towards 0.

2

– We do this to improve smoothness of the model.
– In each layer you add regularizers, and you can choose the kind of

regularizers that you want.
• Model averaging

– i.e. in Random forests, we compute an average of the results obtained
from each tree.

• Data augmentation
– We add data that we presume that is consistent with the real data

(i.e. images with modifications, flipped images).
– Can have dangerous repercussions.

• Dropout

Dropout
Idea: “cripple” the neural network stocastically removing hidden units (we dis-
connect neurons from the network, disabling them). - during training, at each
iteration (not each epoch) hidden units are disabled with probability 𝑝 (e.g. 0.5)
- hidden units cannot co-adapts with other units (they are disconnected). - in-
puts not set to 0 are scaled up by 1/(1 − 𝑝) - similar to train many networks
and averaging between them.

This operation makes our network much more robust, since the network has to
adapt to this strong change. Another way to make the model more robust is to
inject noise into the data, and check the results with very noisy data (i.e. adding
salt and pepper noise).

Activation and loss functions for classification
In this topic we’ll talk about activation functions on the final layer of the NN.
We know that on the hidden layers we should always use rectified linear units
(or variants of it).

Sigmoid
When the result of the network is a value between 0 and 1, e.g. a probability
for a binary classification problem, it is customary to use the sigmoid function:

𝜎(𝑥) = 1
1 + 𝑒−𝑥 = 𝑒𝑥

1 + 𝑒𝑥

as activation function. If

𝑃(𝑌 = 1|𝑥) = 𝜎(𝑓(𝑥)) = 𝑒𝑓(𝑥)

1 + 𝑒𝑓(𝑥)

then
𝑃(𝑌 = 0|𝑥) = 1 − 𝜎(𝑓(𝑥)) = 1

1 + 𝑒𝑓(𝑥)

3

In general, sigmoid functions are used when we have to define a probability of a
certain choice, in particular they are used when our network has a single output.

Softmax
[useless stuff he said] When using the softmax activation function, we are trying
to generalize the situation in which we have a multiclass classification problem,
in which for each class we want to output the probability that input belongs to
each class. So, the output is the probability distribution of the input wrt to all
the categories of the output that we are interested in.

In this case, since we are outputting a probability distribution over the cat-
egories, our output must satisfy 2 constraints: 1. The output for each class
should be between 0 and 1. 2. The sum of the outputs should be 1. [end of
useless stuff he said]

When the result of the network is a probability distribution, e.g. over K different
categories, the softmax function is used as activation:

softmax(𝑗, 𝑥1, ..., 𝑥𝑘) = 𝑒𝑥𝑗

∑𝑘
𝑖=1 𝑒𝑥𝑖

It is easy to see that
0 < softmax(𝑗, 𝑥1, ..., 𝑥𝑘) < 1

and most importantly
𝑘

∑
𝑗=1

softmax(𝑗, 𝑥1, ..., 𝑥𝑘)

Softmax vs Sigmoid
An interesting property of the softmax function is that it is invariant for trans-
lation: if we add a value 𝑐 to the inputs, the output remains unchanged.

softmax(𝑗, 𝑥1, ..., 𝑥𝑘) = softmax(𝑗, 𝑥1 + 𝑐, ..., 𝑥𝑘 + 𝑐)

We could see the softmax function as a generalization of the sigmoid case:

𝜎(𝑥) = softmax(𝑥, 0)

Cross entropy
Comparing loss functions
The output computed, usually, is a probability distribution. - Also, the ground
truth can be seen as a categorical distribution, since we have a category for each
one of the inputs. So, if an input belongs to one of the categories, its probability
wrt to that category is 1, while the probability wrt to the others is 0.

4

As we know, the loss function is the difference between the actual output
of the model and the ground truth. The problem is, what loss functions
should we use for comparing probability distributions? - We could treat them
as “normal functions”, and use e.g. quadratic distance between true and
predicted probabilities. - Can we do better? For instance, in logistic regression
we do not use mean squared error, but use negative log-likelihood. Why?

Probability distributions can be compared according to many different met-
rics. There are two main techniques: - you consider their difference 𝑃 − 𝑄
(e.g. Wasserstein distance, it tries to measure the amount of “work” needed to
reshape the curve to the one of the ground truth) - you consider their ratio
𝑃/𝑄 (e.g. Kullback Leibler divergence)

Kullback-Leibler divergence

The Kullback-Leibler divergence 𝐷𝐾𝐿(𝑃 ||𝑄) between two distributions 𝑄
and 𝑃 , is a measure of the information loss due to approximating 𝑃 with 𝑄.

5

We call Cross-Entropy between 𝑃 and 𝑄 the quantity:

Since, given the training data, their entropy 𝐻(𝑃) is constant, minimizing
𝐷𝐾𝐿(𝑃 ||𝑄) is equivalent to minimizing the cross-entropy 𝐻(𝑃 , 𝑄) between
𝑃 and 𝑄.

Some properties: - The cross entropy is minimal when Q is equal to P. - The
KL divergence is always positive, and it is equal to 0 when Q is equal to P.

A learning objective can be the minimization fo the Kullback-Leiber divergence.

6

Cross-Entropy and Log-likelihood

To better understand, let us consider the case of the binary classification.

If 𝑥 = 1, then the probability of 𝑃(𝑦 = 1|𝑥) is 1.

Calculating the cross entropy is the same as computing the log-likelihood of Q
w.r.t. to the real distribution P.

Log-likelihood Predicted log-likelyhood that 𝑋 has label 𝑌 is 𝑙𝑜𝑔𝑄(𝑌 |𝑋).
We want to split it according to the possibile labels 𝑙 of 𝑌 :

𝑙𝑜𝑔𝑄(𝑙1|𝑋) + 𝑙𝑜𝑔𝑄(𝑙2|𝑋)...𝑙𝑜𝑔𝑄(𝑙𝑛|𝑋)

but weighted in which way?

According to the actual probability that 𝑋 has label 𝑙:

𝑃(𝑙1|𝑋)𝑙𝑜𝑔𝑄(𝑙1|𝑋) + 𝑃(𝑙2|𝑋)𝑙𝑜𝑔𝑄(𝑙2|𝑋)...𝑃 (𝑙𝑛|𝑋)𝑙𝑜𝑔𝑄(𝑙𝑛|𝑋)

or
∑

𝑙
𝑃(𝑙|𝑋)𝑙𝑜𝑔(𝑄(𝑙|𝑋)

Cross-entropy is really how likely is the probability of a probability distribution
𝑄 given 𝑃 . So essentially, we want to measure how likely is the distribution of
the prediction w.r.t. to the training data that we have.

Summing up… For binary classification use: - sigmoid as activation function
- binary crossentropy (aka log-likelihod) as loss function

7

For multinomial classification use: - softmax as activation function - categorical
crossentropy as loss function

Understading Log-likelihood
(this part was in the next lesson)

< 𝑥𝑖, 𝑦𝑖 >, with categories {𝑘1, ..., 𝑘𝑛} Let’s assume that we have a binary
distribution, so we have 𝑘1 and 𝑘2. We have to estimate the probability of 𝑥
given that 𝑦 is 𝑦𝑖, (that is, the value 𝑄). We also have a ground truth probability
𝑃 , i.e. 𝑃(𝑦 = 𝑘|𝑥 = 𝑥𝑖). - We could have that 𝑘 = 𝑦𝑖, and in this case P = 1.
Otherwise 𝑘 ≠ 𝑦𝑖, and P = 0.

We assume that all the data that is in the training set are independent from
each other, and so their probability is just the product of the probabilities. The
likelihood, then, is: 𝐿 = ∏𝑖∈DATA 𝐿𝑖 = ∏𝑖∈DATA 𝑄(𝑦 = 𝑦𝑖|𝑥 = 𝑥𝑖)
We can prove that ==[1]==: 𝑄(𝑦 = 𝑦𝑖|𝑥 = 𝑥𝑖) = 𝑄(𝑦 = 𝑘1|𝑥 = 𝑥𝑖)𝑃(𝑦=𝑘1|𝑥=𝑥𝑖) ⋅
𝑄(𝑦 = 𝑘2|𝑥 = 𝑥𝑖)𝑃(𝑦=𝑘2|𝑥=𝑥𝑖)

Let’s examine the case in which 𝑦𝑖 = 𝑘1: - In this case, 𝑃 = 1 in the first
part and 𝑃 = 0 in the second term of the multiplication. So, the final result is
𝑄(𝑦 = 𝑦𝑖|𝑥 = 𝑥𝑖) = 𝑄(𝑦 = 𝑘1|𝑥 = 𝑥𝑖) Same thing if 𝑦𝑖 = 𝑘2.

Let’s compute the whole logarithm of the expression ==[1]==. We’ll get:

𝑃(𝑦 = 𝑘1|𝑥 = 𝑥𝑖)⋅𝑙𝑜𝑔(𝑄(𝑦 = 𝑘1|𝑥 = 𝑥𝑖))+𝑃(𝑦 = 𝑘2|𝑥 = 𝑥𝑖)⋅𝑙𝑜𝑔(𝑄(𝑦 = 𝑘2|𝑥 = 𝑥𝑖))

It’s basically just the sum of the possibility, for all the categories that we have,
that the label of associated with 𝑥 is 𝑦𝑖. And this is also the definition of the
cross-entropy between 𝑃 and 𝑄.

8

	Overfitting and underfitting
	Ways to reduce overfitting
	Dropout
	Activation and loss functions for classification
	Sigmoid
	Softmax
	Softmax vs Sigmoid

	Cross entropy
	Comparing loss functions
	Kullback-Leibler divergence
	Cross-Entropy and Log-likelihood

	Understading Log-likelihood
	(this part was in the next lesson)

