
TODOs
- Add sign and magnitude slide
- Add first slide info
- Add learning rate info from lesson
- Review part of SGD

The loss depends on the dataset, and it also depends on the current model,
which is defined by a set of parameters.

For the purposes of training, you should consider the loss function as a functino
of the parameters 𝐿 = 𝐿(𝜃).

Learning by trials (naif approach)

Evolutionary approach: randomly perturb weights and see if we get better results.
If so, save the change, else discharge. This is akin to reinforcement learning, but
is very inefficient and has a high probability to make things worse.

Instead of making a random adjustement of the parameters, we try to predict

the parameters. 𝑤 is
the current value of the loss function, and we should move left (in this example)
to decrease the loss. We also have to compute how long we have to move to
decrease the loss.

Obviously, the mathematical tool we need to find the movement direction are
derivatives. The derivative is the tangent of the angle 𝛼. The magnitude of
the derivative tells us how much we are close to a stationary point. - If the
derivative is 0, we are either close to the minimum, or maybe we’re are in a
plateu.

[insert slide?]

1

Why binary threshold is no good for learning Derivative is 0 everywhere

(and infinite in correspondence of the jump).

The gradient
If we have many parameters, we have a different derivative for each of them (the
so called partial derivatives). The vector of all partial derivatives is called the
gradient of the function: […]

With multiple parameters, the magnitude of partial derivatives becomes rele-
vant, since it governs the orientation of gradient.

The gradient points in the direction of steepest ascent.

The gradient descent technique (AGAIN)
1. start with a random configuration for the parameters
2. compute the gradient of the loss function
3. make a “small step” in the direction opposite to the gradient
4. iterate from step 2 until the loss is “sufficiently small”

We have to answer to these questions first though: - what is a small step? -
when should we stop iterating?

2

Learning rate

«««< HEAD The dimension of the step in the direction of the gradient is the
so called learning rate, traditionally denoted with 𝜇.

𝑤 ← 𝑤 − 𝜇∇𝐿(𝑤)

The learning rate is an hyperparameter that can be configured by the user. Its
evolution during training is governed by software components called optimizers
(more about them later).

[riguardare lezione in questa slide, sono manco 5 minuti bro dai]

Examples

Linear regression example (fitting a line) We want to fit a line through
a set of points ⟨𝑥𝑖, 𝑦𝑖⟩.

• Model: a line 𝑦 = 𝑎𝑥 + 𝑏
• Loss: 1/2 ∗ ∑𝑖(𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏))2

• 𝜕𝐿
𝜕𝑎 = − ∑𝑖((𝑦𝑖 − 𝑎𝑥𝑖 + 𝑏)𝑥𝑖)

• 𝜕𝐿
𝜕𝑏 = − ∑𝑖(𝑦𝑖−𝑎𝑥𝑖+𝑏)
The previous problem is a linear optimization problem, that can be easily
solved analytically. Why taking a different approach? I the analytic
solution only works in the linear case, and for fixed error functions I
usually, it is not compatible with regularizers I the backpropagation
method can be generalized to multi-layer non-linear networks

Some notes on gradient descent Gradient descent is a general minimiza-
tion technique, but it can - end up in local minima - get lost in plateau Only
guaranteed to work (find an absolute minimum) if the surface is concave.

3

Optimizations
How often to update the weights (in an epoch)? - Online: for each training
sample - Full batch: full sweep through the training data - Mini-batch: for a
small random set of training cases

How fast to update - Use a fixed learning rate? - Adapt the global learning rate?
- Adapt the learning rate on each connection separately? - Use momentum?
Each asnwer to these questions returns an new optimizer definition.

Online vs Batch learning

- Fullbatch on all training
samples: gradient points to the direction of steepest descent on the error surface
(perpendicular to contour lines of the error surface) - Online (one sample at a
time) gradient zig-zags around the direction of the steepest descent. - Minibatch
(random subset of training samples): a good compromise.

Stochastic Gradient Descent
[…] We make less precise updates more frequently.

Momentum
If, during consecutive training steps, the gradient seems to follow a stable direc-
tion, we could improve (increase) its magnitude (we increase the gradient), sim-
ulating the fact that it is acquiring a momentun along that direction, similarly to

4

a ball rolling down a surface.
The hope is to reduce the risk to get stuck in a local minimum, or a plateau.
There’s no theoretical justification.

Most of the optimizers have some sort of momentum implemented.

5

	Learning by trials (naif approach)
	The gradient
	The gradient descent technique (AGAIN)
	Learning rate
	Examples

	Optimizations
	Online vs Batch learning
	Stochastic Gradient Descent
	Momentum

