
Deep Learning

Matteo Donati

November 23, 2021

Original work: https://github.com/matteodonati/unibo_artificial_intelligence_notes/

Contents

1 Introduction 3
1.1 Neural Networks . 3
1.2 Features and Deep Features . 4
1.3 Successful Applications . 4

2 Expressiveness 5
2.1 Single Perceptron . 5
2.2 Multi-Layer Perceptron . 5

3 Training 6
3.1 Gradient Descent . 6

3.1.1 Stochastic Gradient Descent . 6
3.1.2 Gradient Descent with Momentum . 7

3.2 Backpropagation . 7
3.3 Overfitting and Underfitting . 9
3.4 Activation and Loss Functions for Classification . 9

4 Convolutional Neural Networks 11
4.1 Convolution and Correlation . 11
4.2 Convolutional Layers . 12
4.3 Pooling Layers . 12
4.4 Backpropagation in CNNs . 13
4.5 Transposed Convolution . 14
4.6 Dilated Convolution . 15
4.7 Transfer Learning with CNNs . 15
4.8 How CNNs See the World . 15
4.9 Fooling CNNs . 16
4.10 Inceptionism . 17
4.11 Style Transfer . 17
4.12 Segmentation . 18

4.12.1 Convolutionalization . 18
4.13 Object Detection . 19

4.13.1 You Only Look Once (YOLO) . 20

1

4.13.2 Multi-Scale Processing . 22

5 Autoencoders 23
5.1 Principal Component Analysis . 23
5.2 Variational Autoencoders . 25

6 Generative Adversarial Networks 29
6.1 Combinations of VAEs and GANs . 30
6.2 Cycle GANs . 31
6.3 Conditional Generation . 32

6.3.1 Vectorization . 33
6.3.2 Feature-wise Linear Modulation . 34

7 Recurrent Neural Networks 35
7.1 Long-Short Term Memory (LSTM) . 36
7.2 Attention . 38
7.3 Transformers . 39

8 Geometric Deep Learning 42
8.1 Graph Convolutional Networks . 42

8.1.1 Spectral-Based GCNs . 43
8.1.2 Spatial-Based GCNs . 45

9 Reinforcement Learning 47
9.1 Value-Based Approaches . 48

9.1.1 Q-Learning . 49
9.1.2 Deep Q-Learning (DQN) . 50
9.1.3 SARSA . 54

9.2 Policy Gradients . 54
9.2.1 REINFORCE Approach . 54
9.2.2 A3C and A2C . 55
9.2.3 TRPO and PPO . 55

2

Chapter 1

Introduction

Deep learning is the branch of machine learning which uses neural networks in order to make inferences.
Deep learning techniques can be applied to all the problems suitable for machine learning.

1.1 Neural Networks

Neural networks are networks of artificial neurons. Each neuron takes multiple inputs and produces
a single output. Moreover, a neural network is usually divided into layers, where each layer contains
a specific number of neurons. This type of networks has been introduced in order to understand, via
simulation, how the brain works, and to solve practical problems difficult to address with algorithmic
techniques (e.g. object recognition). In particular:

• Each neuron implements a logistic regressor:

y = σ(wx+ b) (1.1)

where x is the vector containing all the inputs received from the previous layer, w is the vector
containing the weights associated with each input, b is a scalar called bias, and σ is an activation
function.

• If a given network is acyclic, then it is called a feed-forward network, while if it has cycles it
is called a recurrent network.

• If a given network is composed of more than one hidden layer, then it is called a deep network,
otherwise it is called a shallow network.

• A dense layer is a layer in which each neuron at layer k − 1 is connected to each neuron at
layer k.

• A convolutional layer is a layer in which each neuron at layer k−1 is connected via a parametric
kernel to a fixed subset of neurons at layer k. In convolutional neural networks, the generic
kernel is convolved over the whole k − 1 layer.

3

• The weights w are the parameters of the model and they are learned during the training phase.
Moreover, the number of layers and the number of neurons in each layer are hyper-parameters
chosen by the user before the training phase.

1.2 Features and Deep Features

Any individual measurable property of data is called a feature. Discovering good features from data
is a complex task. In particular, deep learning exploits a hierarchical organization of the learning
model, allowing complex features to be computed in terms of simpler ones (i.e. each layer synthesize
new features in terms of the previous ones), through non-linear transformations.

1.3 Successful Applications

Some examples of successful applications are the following:

• Image processing and computer vision:

– Image classification and object detection.

– Image segmentation, scene understanding.

– Style transfer.

– Deep dreams and inceptionism.

• Natural language processing:

– Speech recognition.

– Text processing.

• Generative modelling:

• Deep reinforcement learning:

– Robot navigation and autonomous driving.

– Planning and simulation.

4

Chapter 2

Expressiveness

2.1 Single Perceptron

The single perceptron implements a binary threshold. This simple network is able to produce the
following output:

y =

�
1 if

�
iwixi + b ≥ 0

0 otherwise
(2.1)

In particular, the bias set the position of the threshold. More generally, the set of points such that�
iwixi + b = 0 defines a hyperplane in the space of the variables xi. For example, when x ∈ R2, this

hyperplane is a line which divides the Cartesian plane into two parts.

2.2 Multi-Layer Perceptron

Multi-layer perceptrons (MLPs) are composed by multiple single perceptrons. In particular:

• Multi-layer perceptrons can be either shallow networks or deep networks, however with a multiple
hidden layers (i.e. using a deep network) one is able to approximate a given function with less
neural units.

• The chosen activation functions play an essential role, since these functions are the only source
of non-linearity.

• Every continuous function f : R → [0, 1] can be approximated by a shallow neural network.

5

Chapter 3

Training

The goal of training a neural network is to minimize a given loss function. In particular, a loss
function L is a function of the parameters of the network, θ, which, for every input the network
receives, computes the error between the predicted output and the true output. In particular, the
gradient of a multi-variate function is the vector containing all the partial derivatives of the given
function:

∇θL(θ) =

�
∂L(θ)

∂θ1
, . . . ,

∂L(θ)

∂θn

�
(3.1)

In particular, the gradient of a multi-variate function points in the direction of steepest ascent. This
makes −∇θL(θ) a descent direction.

3.1 Gradient Descent

Gradient descent is an iterative descent method which, at every iteration, computes an approximated
solution to the minimization problem at hand, wk+1 = g(wk), which, in the case of gradient descent,
is translated into the following update rule:

θ = θ − µ∇θL(θ) (3.2)

where µ is the learning rate or step-size of the algorithm, and −∇θL(θ) is the selected descent
direction.

3.1.1 Stochastic Gradient Descent

Given N data points (i.e. samples), stochastic gradient descent approximates the true gradient of the
loss function by considering a number M < N of data points. In particular, in deep learning one
often considers objective functions which are evaluated as the sum of the errors, Ln, computed at each
training sample n:

L(θ) =
N�

n=1

Ln(θ) (3.3)

6

The gradient of such loss function is then computed as follows:

∇θL(θ) =
N�

n=1

∇(Ln(θ)) (3.4)

Since computing the gradient of such loss function is quite expensive (in terms of memory consump-
tion), by using stochastic gradient descent it is possible to select a mini-batch composed of M < N
samples such that:

∇θL(θ) =
M�

n=1

∇(Ln(θ)) (3.5)

In particular, by using stochastic gradient descent the direction of the gradient could be less precise
but, by using appropriate values for the learning rate, one can obtain the results as the ones obtained
by applying gradient descent.

3.1.2 Gradient Descent with Momentum

If, during consecutive training steps, the gradient seems to follow a stable direction, one could improve
its magnitude, simulating the fact that it is acquiring a momentum along the descent direction,
similarly to a ball rolling down a surface. The objective of gradient descent with momentum is to
reduce the risk to get stuck in a local minimum or in a plateau. In this case, the update rule is the
following:

θk+1 = θk − µ∇θL(θ) + αΔθk (3.6)

where α ∈ [0, 1] and Δθk = θk − θk−1 is the update obtained at iteration k.

3.2 Backpropagation

The backpropagation algorithm is simply the instantiation of the gradient descent technique to the case
of neural networks. In particular, this algorithm provides iterative rules to compute partial derivatives
of the loss function with respect to each parameter of the network and then it applies gradient descent
to minimize the given objective function.

• The backpropagation algorithm utilizes the chain rule of derivation. Given two derivable
functions, f and g, the derivative of the composite function h(x) = f(g(x)) is:

h�(x) = f �(g(x))g�(x) =
∂f

∂g

∂g

∂x
(3.7)

This can be extended to consider the multi-variate case. Given a multi-variate function f(x, y)
and two single variable functions x(t) and y(t), the derivative of the composition is given by:

∂f(x(t), y(t))

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
(3.8)

7

If v(t) = [x(t), y(t)]T , then:

∂f(x(t), y(t))

∂t
= ∇f · v�(t) (3.9)

• Let E(θ) the given loss function, ali the output (i.e. σ(wx + b)) of the i-th neuron in the l-th
layer, zli the value of the weighted input (i.e. (wx+ b)) of the i-th neuron in the l-th layer, wl

kj

the weight connecting the neuron k in the (l− 1)-th layer and neuron j in the l-th layer, and blj
the bias of the j-th neuron in the l-th layer. The backpropagation algorithm for a generic MLP
works by applying the following steps:

– Input: set

a0 = x (3.10)

where x is a generic training instance given to the network.

– Feed-forward: for l = 1, 2, . . . , L compute

zl = wlal−1 + bl (3.11)

al = σ(zl) (3.12)

– Output error: compute the vector

δL =
∂E

∂zL
= ∇aLE � σ�(zL) (3.13)

where ∇aLE is the gradient of E with respect to aL, σ�(zL) is the vector computed eval-
uating the first derivative of σ in zL, � is the Hadamard product (i.e. component-wise)
product.

– Backpropagation: for l = L− 1, L− 2, . . . , 1 compute

δl =
∂E

∂zl
= (wl+1)Tδl+1 � σ�(zl) (3.14)

– Updating: for l = 1, 2, . . . , L update the parameters of the network:

wl
kj = wl

kj − µ
∂E

∂wl
kj

= wl
kj − al−1

k δlj (3.15)

blj = blj − µ
∂E

∂blj
= blj − µδlj (3.16)

• Backpropagation has the following issues:

8

– From equation 3.15 it follows that when activations are low, weights change slowly. From
equations 3.13 and 3.14 it follows that if σ(zl) ≈ 0 or σ(zl) ≈ 1, then σ�(zl) ≈ 0. In this
case the specific neuron is said to be saturated. In both of these cases, the considered
neuron learns slowly.

– From equation 3.14 it follows that for the first layers in the network, the gradient is the
product of many factors of the form σ�(zl) ≤ 1

4 for small values of zl. This means that
the first layers learn much more slowly than the last layers. Moreover, if weights are small,
the first layer loses most of the input information, hence the last layers learn fast but on a
highly deteriorate information. This is called vanishing gradient problem.

3.3 Overfitting and Underfitting

Whenever the model at hand is too complex and specialized over the peculiarities of the samples in
the training set one has overfitting. In particular, whenever the model overfits the training set, it
becomes unable to generalize well on unseen data. The opposite problem is called underfitting. In
order to avoid overfitting one could apply one of the following techniques:

• Collect more data.

• Reduce the model capacity.

• Early stopping.

• Regularization (e.g. weight-decay)

• Model averaging.

• Data augmentation.

• Dropout. In particular, during the training process, hidden neurons are randomly disabled with
probability p.

3.4 Activation and Loss Functions for Classification

• When one is trying to solve a binary classification problem, it is customary to use the sigmoid
function as the activation function for the output layer of the network:

σ(x) =
1

1 + e−x
=

ex

1 + ex
(3.17)

This function returns a real value in [0, 1].

• When one is trying to solve a multi-class classification problem, it is customary to use the
softmax function as the activation function for the output layer of the network:

9

softmax(j, x1, . . . , xk) =
exj

�k
j=1 e

xj
(3.18)

This function returns a probability distribution. In the binary case, the softmax function is
equivalent to the sigmoid function.

• When one is trying to solve a classification problem, it is customary to use the cross-entropy
loss function in order to compare two probability distributions. This function is based on the
Kullback-Leibler divergence (DKL(P�Q)) between two distributions P and Q, which is a
measure of the information loss due to approximating P with Q:

DKL(P�Q) =
�

i

P (i) log
P (i)

Q(i)

=
�

i

P (i)(logP (i)− logQ(i))

=
�

i

P (i) logP (i)−
�

i

P (i) logQ(i))

= − H(P)� �� �
Entropy

−
�

i

P (i) logQ(i)

(3.19)

In particular, the cross-entropy between P and Q is given by:

H(P,Q) = −
�

i

P (i) logQ(i) = H(P) + DKL(P�Q) (3.20)

10

Chapter 4

Convolutional Neural Networks

In convolutional neural networks the activation of a neuron is not influenced from the entire input
signal, but only from a small region of such input. The dimension of the input which influences
the activation of such neuron is called receptive field. In particlaur, every neuron works as a
convolutional filter which is convolved over the whole input data. For this reason, in a convolutional
neural network, the weights between layers are shared.




0 1 1 1×1
0×0

0×1
0

0 0 1 1×0
1×1

0×0
0

0 0 0 1×1
1×0

1×1
0

0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0




∗




1 0 1
0 1 0
1 0 1


 =




1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0




4.1 Convolution and Correlation

• Convolution is a mathematical operation which transforms an input matrix by means of another
matrix (kernel). This operation can be seen as the transformation of a given function via another
function. Considering the 2D case:

f(x, y) ∗ k(x, y) =
��

u

�
v f(x− u, y − v)k(u, v) (continuous case)�

u

�
v f(x− u, y − v)k(u, v) (discrete case)

(4.1)

In particular, convolution is symmetric, associative and distributive.

• Correlation is a mathematical operation similar to convolution which does not flip the given
kernel. In particular, given a uni-variate function f(x) and a uni-variate kernel k(x) in the
interval [−M,M], the 1D convolution between these two is given by:

11

(f ∗ k)(x) =
M�

m=−M

f(x−m)k(m)

In this case it is possible to notice that k(−m) is the multiplicative factor for f(x+m), that is,
the kernel must be flipped before taking the products. This means that convolution, in general,
flips the given kernel and then computes the products. If one does not flip the kernel, then one
computes the correlation (f ◦ k) between the two functions.

• There is no difference between convolution and correlation if the given kernel is symmetric
(e.g. a Gaussian kernel) and the difference between the two operations is not so relevant when
considering neural networks (the weights are learned by the machine).

4.2 Convolutional Layers

Convolutional layers are defined by the following parameters:

• Kernel size, which is the dimension of the linear filter.

• Stride, which is the number of input elements to be crossed in consecutive applications of the
kernel.

• Padding, which is an artificial enlargement of the input to allow the application of filters on
borders of the input. The two possible ways of padding are the valid padding, in which no
padding is applied, and the same padding, in which one adds the minimal padding enabling the
kernel to be applied an integer number of times.

• Depth, which is the number of different filters that one wish to synthesize.

In particular, along each axes the dimension of the output is given by the formula:

W + P −K

S
+ 1 (4.2)

where W is the dimension of the input, P is the padding, K is the kernel size and S is the stride.

• Given a 1D input of size W = 7, a kernel of size K = 3, P = 0 and S = 1, one obtains
(W −K)/S + 1 = (7− 3)/1 + 1 = 5 output values.

• Given a 2D colour image of size 32× 32× 3, twelve kernels of size 6× 6, P = 0 and S = 2, one
obtains an output whose size is 14× 14× 12.

4.3 Pooling Layers

In deep convolutions networks, it is common practice to alternate convolutional layers with pooling
layers, where each neuron simply takes the mean or the maximum value in its receptive field. This
practice reduces the dimension of the output.

12

4.4 Backpropagation in CNNs

In order to apply backpropagation in convolutional neural networks, one can proceed as follows:

1. Unroll the input and the output into vectors, from left to right and from top to bottom. Con-
sidering the following example

the input has dimension 4 × 4 = 16, and the output has dimension 2 × 2 = 4. In this case,
the operation performed by the convolutional layer can be seen as a single dense network, with
sixteen inputs and four outputs.

2. The weights to be updated are the kernel weights. In particular, it is possible to define the
weights matrix, W ∈ R|input|×|output|, as follows:

W =




w0,0 0 0 0
w0,1 w0,0 0 0
w0,2 w0,1 0 0
0 w0,2 0 0

w1,0 0 w0,0 0
w1,1 w1,0 w0,1 w0,0

w1,2 w1,1 w0,2 w0,1

0 w1,2 0 w0,2

w2,0 0 w1,0 0
w2,1 w2,0 w1,1 w1,0

w2,2 w2,1 w1,2 w1,1

0 w2,2 0 w1,2

0 0 w2,0 0
0 0 w2,1 w2,0

0 0 w2,2 w2,1

0 0 0 w2,2




• Each column corresponds to a different ap-
plication of the kernel (the specific kernel
can be applied only four times in the afore-
mentioned example).

• wi,j is a kernel weight, with i and j being
the row and column of the kernel respec-
tively.

3. The weights are updated using the usual update rule for dense networks.

13

W =




w0,0 0 0 0

w0,1 w0,0 0 0

w0,2 w0,1 0 0
0 w0,2 0 0

w1,0 0 w0,0 0

w1,1 w1,0 w0,1 w0,0

w1,2 w1,1 w0,2 w0,1

0 w1,2 0 w0,2

w2,0 0 w1,0 0
w2,1 w2,0 w1,1 w1,0

w2,2 w2,1 w1,2 w1,1

0 w2,2 0 w1,2

0 0 w2,0 0
0 0 w2,1 w2,0

0 0 w2,2 w2,1

0 0 0 w2,2




• Updates relative to a same kernel weight
must be shared, e.g. taking a mean among
all updates.

4.5 Transposed Convolution

In general, normal convolutions with a stride S �= 1 downsample the input dimension. In some cases,
one may be interested in upsampling the input (e.g. image-to-image processing, to obtain an image
of the same dimension of the input after some compression, or to project feature maps to a higher-
dimensional space). A transposed convolution (sometimes called deconvolution) can be thought
as a normal convolution with a sub-unitarian stride. To mimic such stride, one must first properly
upsample the input (e.g. by inserting empty rows and columns) and then apply a single strided
convolution.

Inserting rows
=========⇒
and columns

One could also upsample the image by using other tools, instead of adding empty rows and columns.

14

4.6 Dilated Convolution

Dilated convolutions are obtained by expanding the convolution kernel with holes between its
consecutive elements. Applying a dilated convolution is the same as applying a normal convolution
but, by dilating a kernel, one is able to enlarge the receptive field of the filter (i.e. to cover a larger
are of the input).

rate = 1 rate = 2 rate = 3

4.7 Transfer Learning with CNNs

Usually, when dealing with images and convolutional neural networks, it is possible to transfer knowl-
edge from one network to another. In particular, the filters that have been learned (the most primitive
ones) are likely to be independent from the particular kind of images they have been trained on. This
means that the filters applied to the first convolutional layers are able to extract low-level features
that are applicable across image (e.g. edges, patters, gradients), while the last layers usually identify
specific features within an image (i.e. they are not useful when knowledge has to be transferred). In
order to transfer knowledge one could:

1. Train a convolutional neural network using a first given dataset X1.

2. Freeze the early convolutional layers of the network.

3. Train only the last few layers using a second dataset X2.

This is particularly useful whenever the two problems have similar inputs or whenever |X1| � |X2|.

4.8 How CNNs See the World

Each neuron in a convolutional neural network gets activated by specific patterns in the input image.
The general intuition is that neurons in higher layers should recognize increasingly complex patterns,
obtained as a combination of previous patterns, over a larger receptive field. In the highest layers (i.e.
last layers of the network) neurons may start to recognize patterns similar to features of objects in
the given images. In particular, it is possible to visualize which patterns are recognized by a specific
given neuron by following different procedures:

15

• The loss function L(θ, x) of a network depends on the parameters θ and on the input x. During
training, one fixes x and compute the partial derivative of L with respect to the parameters θ in
order to adjust the such parameters. In the same way, one could fix θ and use partial derivatives
with respect to x in order to synthesize images which minimize the loss (i.e. to find which images
activate a given neuron). This is achieved by using the gradient ascent technique:

1. Generation of a random image, x.

2. Computation of a forward pass using x as input to the network to compute the activation
ai(x) caused by x at some neuron.

3. Computation of a backward pass in order to compute the gradient of ∂ai(x)/∂x of ai(x)
with respect to each pixel of the input image.

4. Modification of x by adding a small percentage of the gradient ∂ai(x)/∂x so to reduce the
error.

5. Repetition of the process until a sufficiently high activation value is obtained.

• Instead of synthesizing an image which maximizes the activation of a neuron, one could emphasize
what caused the activation. This process uses the deconvolution operation and the unpooling
operation (i.e. inverse of pooling operation). In particular, a general DeConv Network works
in the following way:

1. Selection of an image with a strong activation for a neuron.

2. Zero-ing out all the activations for different neurons.

3. Computation of the corresponding image, starting from the given feature map, using the
given DeConv network (this network uses deconvolution and unpooling in order to go
back to image space). By doing so, convolutional kernels must be transposed in order to
emphasize the portion of the image that caused the activation.

• One could also try to understand the inner representation at some layer by generating an image
indistinguishable from the original one. In this case, the objective is similar to autoencoding. In
particular, one progressively adjust the source image by gradient ascent, but instead of optimizing
towards a given category, the goal is to minimize the distance from an internal encoding Θ0 =
Θ(x0) of a given image x0:

argminx∈RH×W×C L(Θ(x),Θ0)� �� �
Loss

+ λR(x)� �� �
Regularizer

(4.3)

4.9 Fooling CNNs

Gradient ascent can be used to modify an input image so to emphasize the activation of a given
neuron. The same technique can be use to increase the classification score of whatever class one wants
by synthesizing images of the selected class (data augmentation):

16

• When synthesizing new images, a tiny consistent perturbation of all the pixels is enough to fool
the classifier.

• The same effect can also be achieved by applying an evolutionary technique (i.e. consisting of
mutations, perturbations) and forgetting about gradient ascent.

• All classification techniques are vulnerable, since in high dimensional space it is easy to move
away from the manifold (i.e. a collection of points forming a certain kind of set) of a given
category. This is due to the low-dimensionality manifolds associated with natural images.

4.10 Inceptionism

Inceptionism is achieved as follows:

1. Train the image classification network.

2. Starting from some specific layer, revert the network to slightly adjust (via backpropagation)
the original image to improve activation of a specific neuron.

3. After enough iterations, the image will be incepted by the desired features.

4.11 Style Transfer

The gradient ascent technique can also be used to mimic artistic style:

17

This can be achieved by adding a feature space on top of the original CNN representations, which
computed correlations between the different feature maps (channels) at each given layer. In particular:

• At each layer l, an image is encoded with Dl distinct feature maps, F l
d, each of size M l (M =

(W ×H)). The feature map F l
d,x if thus the activation of the filter d at position x in the l-th

layer.

• Feature correlations for the given image are given by the Gram matrix, Gl ∈ RDl×Dl
, where

Gl
d1,d2

is the result of the dot product between the feature maps F l
d1

and F l
d2

in the l-th layer.

4.12 Segmentation

Segmentation is the task of classifying each pixel in an image according to the object category it
belongs to. Building supervised training sets is quite expensive, since it requires a complex human
operation. Given a dataset, each sample of such dataset, (x, y), is a pair of images. In particular, x is
the original image to be segmented, and y is the corresponding segmented image:

For this reason, semantic segmentation can be regarded as a special case of image-to-image transfor-
mation.

4.12.1 Convolutionalization

In convolutionalization one is interested in using CNNs in order to segment a given input. In particular:

• The composition of convolutional layers behaves as a convolutional layer. In particular, the
stride of the composite convolution is the product of the strides of the the single components.

• For example, supposing one wants to compose two kernels with dimension three and stride one:

18

then, the intermediate dimension is (1−1)∗1+3 = 3, and the initial dimension is (3−1)∗1+3 = 5.
In general, Din = S ∗ (Dout−1) +K.

• Dense layers, usually present as final layers in a convolutional neural network, can be seen as a
convolution with a filter whose size if equal to the given input.

• If one starts from an image classification network which works on images of a given, fixed size,
one can get a network which takes in input images of arbitrary dimension and produces in output
a heatmap of activations of the different objects categories, relative to different locations of the
input image.

4.13 Object Detection

Object detection is similar to segmentations, but in this case one must return a boundary box con-
taining the considered object.

Typically, the quality of each individual bounding box is evaluated with respect to the corresponding
ground truth using the IoU operator (Intersection over Union):

IoU(A,B) =
|A ∩B|
|A ∪B| (4.4)

19

The more the predicted and true bounding boxes are overlapped, the higher is the obtained IoU value.
In particular, there exist two main approaches one could follow:

• Region Proposal methods, in which region proposals are usually extracted via selective search
algorithms, aimed at identifying possible locations of interest. These algorithms typically exploit
the texture and structure of the image, and they are object independent.

• Single Shot methods which rely on really fast techniques. An example of such methods is You
Only Look Once (YOLO).

4.13.1 You Only Look Once (YOLO)

YOLO is an object detector which uses features learned by a fully convolutional neural network to
detect an object. In particular:

• The input image is divided into an S × S grid. If the centre of an object falls into a grid cell,
that particular grid cell is responsible for detecting the particular object.

• Each grid cell predicts B bounding boxes and confidence scores for the specific boxes. These
confidence scores reflect how confident the model is that the box contains an object an also how
accurate it thinks the box is that it predicts. Formally, the confidence scores are computed as
P (object) ·IoU(truth, pred). If no object exists in that cell, the confidence scores should be zero.
Otherwise, one wants the confidence score to be equal to IoU(truth, pred).

• Each bounding box consists of five predictions, x, y, w, h and confidence. In particular, the (x, y)
coordinates represent the centre of the box relative to the bounds of the grid cell. The width, w,
and the height, h, are predicted relative to the whole image. Finally, the confidence prediction
represents the IoU between the predicted box and any ground truth box.

• Each grid cell also predicts C conditional class probabilities, P (Classi|Object). These proba-
bilities are conditioned on the grid cell containing an object. One only predicts one set of class
probabilities per grid cell, regardless of the number of boxes B.

• At test time, one multiplies the conditional class probabilities and the individual box confidence
predictions:

P (Classi|Object) · P (Object) · IoU(truth, pred) = P (Classi) · IoU(truth, pred) (4.5)

which gives the class-specific confidence scores for each box. These scores encode both the
probability of that class appearing in the box and how well the predicted box fits the object.

20

• YOLO’s loss function consists of two parts, the localization loss for bounding box offset pre-
diction and the classification loss for conditional class probabilities. In particular, former one
is computed as:

Lloc =
S2�

i=0

B�

j=0

1objij [(xi − x̂i)
2 + (yi − ŷi

2) + (
√
wi −

�
ŵi)

2 + (
�
hi −

�
ĥi)

2] (4.6)

where v is the ground truth value, while v̂ is the predicted value, i ranges over cells, j ranges
over bounding boxes, 1objij is a delta function indicating whether the j-th bounding box of the
i-th cell is responsible for the object detection. The classification loss, instead, is computed as:

Lcls =

S2�

i=0

B�

j=0

(1objij + λnoobj(1− 1objij))(Cij − Ĉij)
2

+

S2�

i=0

�

c∈C
1obji (pi(c)− p̂i(c))

2

(4.7)

where λnoobj is a configurable parameter meant to down-weight the loss contributed by back-
ground cells containing no objects. Finally, the whole loss is computed as:

L = λcoordLloc + Lcls (4.8)

where λcoord is an additional parameter, balancing the contribution of Lloc and Lcls. In YOLO,
λcoord = 5 and λnoobj = 0.5.

21

4.13.2 Multi-Scale Processing

Multi-scale processing (predicting something given a feature map) can be achieved in multiple ways.

1. Using an image pyramid to build a feature pyramid. Features are computed on each of the image
scales independently, which is slow.

2. The first systems for fast object detection (such as YOLO) opted to use only higher level features
at the smallest scale. This usually compromises detection of small objects.

3. An alternative is to reuse the pyramidal feature hierarchy computed by a convolutional network
as if it were a featured image pyramid.

4. Modern systems recombine features along a backward pathway. This is as fast as point 2. and
3. but more accurate.

22

Chapter 5

Autoencoders

An autoencoder is a network trained to reconstruct input data out of a learned internal representation.

Usually, the internal representation has lower dimensionality with respect to the input. In general, data
compression is possible because one exploits regularities (i.e. correlations) in the features describing
input data. If the input has a random structure no compression is possible. In particular:

• If the internal layer has fewer units of the input, autoencoders can be seen as a form of data
compression. This compression is:

– Data-specific, i.e. it only works well on data with strong correlations (e.g. digits, faces).

– Lossy, i.e. the output id degraded with respect to the input.

– Directly trained on unlabelled data samples (self-supervised training).

5.1 Principal Component Analysis

To understand how autoencoding works it is convenient to look at Principal Component Analysis
(PCA), a traditional statistical technique for dimensionality reduction. In particular, given points in
a d-dimensional space, the objective of PCA is to minimize the quadratic error of their reconstruction
(e.g. find the best projection on a line of some bi-dimensional data, find the best planar approximation
of a three-dimensional image). In general, minimizing the projection error is equivalent to maximize
the variance.

23

In particular, in order to maximize the variance, the following concepts are needed:

• An eigenvector of a matrix A is the vector v such that for some scalar λ:

Av = λv (5.1)

• Given a dataset X ∈ RN×D, the covariance matrix of X is the matrix in RD×D given by:

var(X) = E[(X − E)T (X − E)] (5.2)

If the dataset is centred, i.e. E = 0, then:

var(X) = E[XTX] =
1

n
XTX (5.3)

For example:

X =




−3 −2
−2 3
1 −2
4 1


 ⇒ XTX =

�
30 2
2 18

�

Such matrix is always symmetric and expresses the deformation of the given data, i.e. the way
data are distributed in space.

• Every square matrix A defines a linear transformation. In particular, every symmetric matrix
defines a scaling along particular directions orthogonal to each other. In general, the direction
of some vectors is preserved, while some other directions are not preserved. The preserved
directions are precisely the ones defined by the eigenvectors of A. For example:

24

A =

�
2 1
1 2

�

The eigenvectors of A are v1 = [1, 1]T , v2 = [1,−1]T , which corresponds to the orthogonal scaling
directions, and the corresponding eigenvalues are 3 and 1, which corresponds to the intensities
of the scaling along the considered directions. In this case, v1 is the principal component (its
corresponding eigenvalue is the greatest one) and v2 is the secondary one.

• In order to maximize the variance, one can fit an ellipsoid over the training data, and project
over the main axes. These axes are just the eigenvectors of the covariance matrix of the given
dataset. As a matter of fact, the eigenvectors are the axes of the ellipsoid conceptually fitting
the given data.

The PCA algorithm is the following:

1. Put data in a matrix X.

2. Normalize X so that the mean along each dimension is null (in order to obtain E = 0).

3. Compute the covariance matrix Σ = XTX.

4. Find the eigenvectors of Σ and the corresponding eigenvalues.

5. Keep the m eigenvectors with largest eigenvalues.

By taking a fully connected linear network with k hidden units, no activation functions, and quadratic
reconstruction error as objective function, one may compute the k principal components (weights)
and their respective projections (hidden values). Moreover, deep belief networks are deep, non-
linear, networks which try to reduce the dimensionality of a given image, using the best possible
representation (this can be achieved by applying principal components analysis at each layer).

5.2 Variational Autoencoders

Variational autoencoders are generative models which allow one to generate data by sampling in the
latent space (i.e. to generate data which is similar to the data at hand), even though usually one does

25

not know the distribution of the latent variables. By using variational autoencoders one tries to force
latent variables to have a known distribution:

In particular:

• Given an image, Xi, and the encoder part of an autoencoder, Q, one is able to project X1 onto
the latent space through Q, obtaining Q(z|Xi), which can be set equal to a Gaussian distribution
G(µ(Xi),σ(Xi)). Usually, each data-point whose projection onto the latent space is near the
projection of Xi will be similar to Xi. Different Xi gets modelled using different µ and σ.

• The overall idea of variational autoencoders is to first compute µz(X) and σz(X) for each data-
point X and each latent variable z. Then, a regularization term is added to the loss function in
order to:

– Push µz(X) towards zero (loss is µz(X)2), i.e. move the projections of each X to the centre
of the latent space.

– Push σz(X) towards one (loss is σz(X)2 − log(σ2
z(X)) − 1), i.e. enlarge the projections of

each X.

The effect of the regularization term is to induce a Gaussian distribution of points in the latent
space.

• Given a sample X, the encoder part of the autoencoder should predict µ(X) and σ(X). Then,
it is possible to sample around µ(X) using the computed variance σ(X) and compute the re-
construction of the point X. The reconstruction error is finally used to tune both µ(X) and
σ(X).

26

• The full picture is the following:

where KL(Q(z|X)�N (0, 1)) is the distance between the Q(z|X) distribution and the normal
distribution N (0, 1). In particular, the actual distribution of latent variables is the marginal
distribution Q(z), and hopefully:

Q(z) =
�

X

Q(z|X) ≈ N (0, 1) (5.4)

27

• Once the network has been trained using backpropagation (i.e. adjusting µz(X) and σz(X)) one
is able to sample z ∼ N (0, 1) (i.e. to generate a point in the latent space) and use the decoder
in order to produce a new data-point which is similar to the ones at hand.

28

Chapter 6

Generative Adversarial Networks

A generative adversarial network (GAN) is a generative model such as variational autoencoders. In
general, a generative model is a model which tries to learn the actual distribution of the data from
the available samples. The goal of generative model is, thus, to build a probability distribution, pmodel,
close to actual distribution of the data, pdata.
The output of generative models is intrinsically multimodal (e.g. generating a car, there are a lot of
possible outputs). If one bases learning on minimizing an average distance between all the elements in
the training set and the set of expected features, one could end up with exceedingly blurred images.
In particular:

• The generative adversarial network approach is based on game theory. The players of the game
are the two parts of the network: the generator and the discriminator.

• The generator, G, and the discriminator, D, play a minimax game, MinGMaxDV (D,G), where:

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (6.1)

In particular, Ex∼pdata(x)[logD(x)] is the negative cross-entropy of the discriminator with respect
to the true data distribution, while Ez∼pz(z)[log(1 − D(G(z)))] is the negative cross entropy of
the false discriminator with respect to the fake generator. From a high-level point of view, the

29

generator network generates an image and tries to fool the discriminator, which should be able
to tell if the received data is a generated image or a real data image.

• The training process consists in training the discriminator, by freezing the generator, and training
the generator, by freezing the discriminator. The algorithm is the following:

• The fact that the discriminator get fooled does not mean that the fake generated by the generator
is good. As a matter of fact, neural networks can be easily fooled.

6.1 Combinations of VAEs and GANs

Both VAEs and GANs have problems as generative models:

• When using VAEs, the similarity metric is crucial. Pixel-wise metrics, like the squared error,
are too sensible to local perturbations (e.g. small translations or rotations).

• When using GANs, the generative approach has problems to capture the real data distribution
(learning is difficult and unstable).

To avoid these problems, two main approaches are possible:

30

• Acting in the latent space. In particular, this approach works by replacing the KL-divergence
with a discriminator network. The whole network should match the aggregated posterior dis-
tribution Q(z) with the expected (arbitrary) prior distribution pz (P (z)), in order to fool the
discriminator. These networks are called adversarial autoencoders.

• Acting in the visible space. In particular, this approach works by replacing the reconstruction
loss with a discriminator network. This network tries to distinguish the original image from the
reconstructed image. These networks are called VAE-GANs.

6.2 Cycle GANs

Cycle GANs allow unpaired image-to-image translation (this can be seen as a stylistic transformation).
For example, given an image of two zebras, one can obtain the same image but with two horses,
preserving the content of the image:

In order to do so:

31

• Training is done using images divided into two classes. These images should not be paired. For
example:

• A generator and a discriminator network play the minimax game. The generator tries to produce
samples from the desired distribution, based on an input of the other distribution, and the
discriminator tries to predict if the sample belongs to the actual distribution or it was produced
by the generator. However, this cannot guarantee that the generated image is related to the
original image.

• To this aim, the cycle-consistency constraint has been added: if one transforms from the
source distribution to the target distribution and then back again to the source distribution, one
would expect to obtain the original image.

• Given the mappings G : X → Y and F : Y → X, and discriminators DY and DX , the loss
function of such networks is composed of two parts:

Adversarial loss: Ey∼pdata(y)[log(DY (y))] + Ex∼pdata(x)[log(1−DY (G(x)))]

Cycle consistency loss: Ex∼pdata(x)(�F (G(x))− x�1) + Ey∼pdata(y)(�G(F (y))− y�1)

6.3 Conditional Generation

When using a generative model one would like to parametrize the generation according to specific
attributes (e.g. generate a given digit or the face of an old man wearing glasses).

• Conditionl VAEs (CVAE) are networks in which both the decoder Q(z|X) and the decoder
P (X|z) are parametrized with respect to a given condition c: Q(z|X, c) and P (X|z, c).

32

• Conditional GANs are networks in which both the generator and the discriminator take in
input the condition. Auxiliary Classifier GANs, instead, try to classify with respect to
different conditions in addition to compute a true/fake discrimination.

In general, in conditional networks, one passes the label / condition as an additional input:

• If one needs to add such label to a dense layer, one just needs to concatenate the label to the
input vector.

• If one needs to add such label to a convolutional layer, one can perform vectorization or Feature-
wise Linear Modulation (FILM).

6.3.1 Vectorization

This method consists in repeating the label (typically in categorical form) for every input neuron, and
stack them as new channels.

33

6.3.2 Feature-wise Linear Modulation

This method consists in using the condition to give a different weight to each feature (i.e. to each
channel). In particular, the vectors γ and β, whose size is equal to the channels of the layer, are
generated from the condition. Then, the layers are rescaled by these two vectors.

34

Chapter 7

Recurrent Neural Networks

A recurrent neural network (RNN) is an artificial neural network where connections between neurons
form a directed graph along a temporal sequence. These networks allow sequence-to-sequence pro-
cessing. In order to define the semantics of a recurrent neural network one can temporally unfold the
network as shown below:

w1

w3

w2

w4 Temporal
======⇒
unfolding

t = 0

t = 1

t = 2

t = 3

w1

w3 w2

w4

w1

w3 w2

w4

w1

w3 w2

w4

w1 w4

In particular, the recurrent network is just a layered network that keeps re-using the same weights
through time. Moreover:

• The backpropagation algorithm is modified in order to incorporate equality constraints be-
tween weights: one computes the gradients as usual, and then average gradients so that they
induce a same update. For example, to constraint wi = wj , one can compute ∂E/∂wi and
∂E/∂wj and use ∂E/∂wi + ∂E/∂wj to update both wi and wj .

• The hidden neurons activations at time t = 0 need to be initialized. These can be either
initialized manually or they can be treated as parameters and learned in the same way as the
weights.

35

7.1 Long-Short Term Memory (LSTM)

In this section, each RNN is depict using the temporally unfolded representation, i.e. a forward link
between two units must be seen as a looping connection:

In a traditional RNN, the content of the memory cell Ct and the input xt are combined in order to
produce the output ht, which coincides with the new content of the cell Ct+1.

The overall structure of a LSTM is different:

36

In particular:

• The LSTM has the ability of removing or adding information to the cell state, in a way regulated
by suitable gates. Gates are a way to optionally let information through. In particular, the
product with a sigmoid neural network layer simulates a boolean mask.

• The forget gate decides what part of the memory cell to preserve. In particular, this gate
computes the following operation:

ft = σ(Wf · [ht−1, xt] + bf) (7.1)

• The input gate decides what part of the input to preserve. The tanh layer creates a vector of
new candidate values C̃t to be added to the state:

it = σ(Wi · [ht−1, xt] + bi) (7.2)

C̃t = tanh(WC · [ht−1, xt] + bC) (7.3)

37

• Cell updating consists in multiplying the old state by the boolean mask ft, and then adding
it ∗ C̃t:

Ct = ft ∗ Ct−1 + it ∗ C̃t (7.4)

• The output gate computes ht by filtering the content of the cell. In particular, such gate
decides what parts of the cell state to output. The tanh is used to re-normalize values in the
interval [−1, 1]:

ot = σ(Wo · [ht−1, xt] + bo) (7.5)

ht = ot ∗ tanh(Ct) (7.6)

7.2 Attention

In general, attention is the ability to focus on different parts of the input, according to the requirements
of the problem being solved. From the point of view of neural networks, one would expect the attention
mechanism to be differentiable, so that one can learn where to focus by standard backpropagation
techniques. In particular:

• Attention mechanisms can be implemented as gating functions. The gating maps are dynamically
generated by some neural network, allowing to focus on different part of the input at different
times. An example of attention mechanisms are the forget map, the input map and the output
map in LSTM.

• The most typical attention layer is based on a key-value paradigm, implementing a sort of
associative memory. This memory is then accessed with queries to be matched with keys. The
resulting scores generate a boolean map that is used to weight values. In particular:

38

1. For each key ki a score ai is generated as follows:

ai = α(q, ki) (7.7)

2. The attention weights are obtained using the softmax function:

b = softmax(a) (7.8)

3. The weighted sum of the values is then returned:

o =
n�

i=1

bivi (7.9)

In many applications, values are also used as keys (self-attention).

• Different score functions lead to different attention layers. In particular, the two main approaches
are based on:

– The dot product, in which the query and the key must have the same dimension d:

α(q,k) = q · k√
d

(7.10)

– Multi-layer perceptrons, where α is computed by a neural network, usually composed of a
single layer:

α(q,k) = tanh(Wqq +Wkk) (7.11)

7.3 Transformers

The general structure of a transformer is the following:

39

In particular:

• A transformer has a traditional encoder-decoder structure, with connections between them.
Moreover, the encoder and the decoder are both composed of multiple components:

• Each encoder element is organized as a self-attention layer, followed by a feed-forward compo-
nent. Each decoder element is similar, with an additional attention layer that helps the decoder
focusing on relevant parts of the input sentence:

• Multi-head attention expands the model’s ability to focus on different positions, for different
purposes. As a result, multiple representation subspaces are created, focusing on potentially
different aspects of the input sequence.

40

• Positional encoding is added to word embeddings to give the model some information about the
relative position of the words in the sentence. The positional information is a vector of the same
dimensions, dmodel, of the word embedding. As positional encoding, the authors proposed the
sine and cosine functions of different frequencies:

PE(pos,2i) = sin
� pos

100002i/dmodel

�
(7.12)

PE(pos,2i+1) = cos
� pos

10000(2i+1)/dmodel

�
(7.13)

According to the this encoding, each dimension i of the positional encoding vector, PE, corre-
sponds to a sinusoid, where the wavelengths form a geometric progression from 2π to 10000 · 2π.

41

Chapter 9

Reinforcement Learning

Reinforcement learning problems are problems involving an agent interacting with an environment
which provides numeric reward. At each time step t:

1. The agent is in state st and selects the action at according to some policy π(at|st). In particular,
a policy π(a|s) is a probability distribution of actions given states.

2. The environment answer with a local reward rt.

3. The agent enters into a new state st+1.

In order to solve such problems, one wants to learn the best way to act, i.e. the best policy. This is
achieved by maximizing the future cumulative reward:

R =
�

i≥1

ri (9.1)

Moreover, one could also take into account the fact that distant rewards are less likely than close ones
(these are more predictable). To this aim, one can express R by weighting each local reward ri with
a discount factor γ:

R =
�

i≥1

γiri (9.2)

The reinforcement learning paradigm can be mathematically modelled using the concept of Markov
Decision Process. In particular:

• A Markov Decision Process is characterized by the Markov property, which states that the
current state completely characterizes the state of the world (i.e. future actions only depend on
the current state).

• A Markov Decision Process is defined by a tuple (S,A,R,P, γ), where:

– S is the set of possible states. At time step t = 0, the environment is is state s0.

47

– A is the set of possible actions.

– R is the reward probability given a (s, a) pair. After each action, the environment samples
rt ∼ R(rt|st, at).

– P is the transition probability to the next state given a (s, a) pair. After each action, the
environment samples st+1 ∼ P(st+1|st,at). In particular, if the learning model needs to learn
the probability P(st+1|st,at), then the model is called model-based, otherwise it is called
model-free.

– γ is the discount factor.

Moreover, a policy produces trajectories of the form s0, a0, r1, s1, a1, r2, s2, . . . The optimal policy, π∗

is given by:

π∗ = argmaxπ E
�

t≥0

γtrt (9.3)

where the average is taken over all the possible trajectories. In order to be able to find the optimal
policy, all the techniques have to deal with exploration / exploitation trade-off. In particular, there
exist two basic techniques:

• The value-based approach, in which one tries to evaluate each state s with a value function
V (s). In this case, the policy is implicit: at each step, one should choose the action taking to
the state whose evaluation is the best.

• The policy-based approach, in which one tries to directly optimize the policy (remember that
a = π(s) is the probability of performing a in state s).

9.1 Value-Based Approaches

These approaches are based on two evaluation functions:

• An evaluation function for states:

V (s) = Es0=s

�

t≥0

γtrt (9.4)

where V measures how good a state is.

• An evaluation function for actions:

Q(s, a) = Es0=s,a0=a

�

t≥0

γtrt (9.5)

where Q measures how good is action a for state s. It is possible to compute V from Q (V (s) =�
a π(a|s)Q(s, a)) but not vice-versa. Moreover, the optimal Q-value function, Q∗(s, a), is the

maximum expected cumulative reward achievable from state s performing action a:

48

Q∗(s, a) = max
π

Es0=s,a0=a

�

t≥0

γtrt (9.6)

The optimal policy π∗ consists in taking the best action in any state as specified by Q∗.

Another important concept is introduced by the Bellman equation:

• The Bellman equation expresses a relation between the solution for a given problem in terms of
the solutions for its sub-problems. According to this concept:

Q∗(s, a) = Es� [r0 + γmax
a�

Q∗(s�, a�)] (9.7)

Indeed, Rs� = maxa� Q
∗(s�, a�) = V ∗(s�) is the optimal future cumulative reward from s�, and the

optimal cumulative reward from s when taking action a is given by r0 + γRs� .

• Since Q∗ satisfies the Bellman equation, the main idea is to use the above-mentioned formulation
in order to perform an iterative update on progressive approximations, Qi, of Q

∗:

Qi+1(s, a)� �� �
next estimation

= Qi(s, a)� �� �
current estimation

+α (r0 + γmax
a�

Qi(s�, a�)−Qi(s, a))
� �� �

recursive update

(9.8)

where α is the learning rate. The recursive update is the derivative of the quadratic distance
between Qi(s, a) and r0 + γmaxa� Q

i(s�, a�) (these two quantities should become equal).

9.1.1 Q-Learning

The Q-learning algorithm works in the following way:

Initialize the Q-table.

Repat until termination of the episode:

Choose action a in current state s according to the current Q-table.

Perform action a and observe reward r and new state s�.

Update the table: Q(s, a) = Q(s, a) + α(r0 + γmax
a�

Q(s�, a�)−Q(s, a)).

• In order to perform an update, all the information is contained in a transition tuple (s, a, r, T, s�),
where s is the current state, a is the computed action, r is the obtained reward, T is a boolean
stating the termination of the episode, s� is the new state. In particular, such tuples are collected
by exploring the environment and can be saved into an experience replay buffer. Since such
algorithm only needs these tuples, it is an off-policy technique (i.e. does not rely on any policy).

49

• At start, the Q-table is not informative. Taking actions according to it could introduce biases
and prevent exploration. In particular, in early stages one may be interested in privileging
random exploration, and start relying more on the Q-table when more experience is acquired.

• In order to achieve this, one can specify an exploration rate �, initially equal to one. This
variable represents the rate of steps that are chosen randomly. This variable is progressively
reduced during training.

The above-mentioned points allows one to introduce the �-greedy Q-learning algorithm:

Initialize the Q-table, the replay buffer D and � (� = 1).

Repeat for the desired number of episodes:

Initialize state s.

Repat until termination of the episode:

Choose a random move a with probability �, otherwise a = max
a

Q(s, a).

Perform action a and observe reward r and new state s�.

Store transition (s, a, r, T, s�) into D.

Sample a random mini-batch of transitions (s, a, r, T, s�) from D.

For each transition in the extracted mini-batch:

R =

�
r if T

r + γmaxa� Q(s�, a�) if not T

Q(s, a) = Q(s, a) + α(R−Q(s, a))

Decrement �.

9.1.2 Deep Q-Learning (DQN)

The major drawback of standard Q-learning algorithm is that Qi = Q∗ when i → ∞. This means
that Q(s, a) must be computed for every state-action pair. Computing such Q-table is impossible. To
this aim, deep Q-learning use a function approximator (a neural network) to estimate the optimal
action-value function:

Q(s, a, θ) ≈ Q∗(s, a) (9.9)

where θ are the function parameters to be learned. Instead of taking action a and state s as input, in
deep Q-learning is customary to take only the state s and return a value for each possible action a.

• Given a state, action pair (s, a), the current Q-value estimate of the network is Q(s, a, θ).

• The expected value, given by the Bellman equation is Es� [r0 + γmaxa� Q(s�, a�, θ)].

• The loss function one tries to minimize is the following:

50

L(θ) = (Es� [r0 + γmax
a�

Q(s�, a�)]−Q(s, a, θ))2 (9.10)

• In order to train the network, one need to rely on the experience buffer in order to get transition
samples.

Deep Q-learning can also be improved using the following techniques:

• Fixed Q-targets. In order to compute the loss in DQN, the same neural network is used to
provide two different estimations of the Q function (r0 + γmax

a�
Q(s�, a�, θ)

� �� �
approximated target Q∗

− Q(s, a, θ)� �� �
current estimation

). At

every step of training, the Q value shifts but also the target value shifts. The solution to this
problem is to use a separate network, Q, with fixed parameters for estimating the target:

r0 + γmax
a�

Q(s�, a�, θ)
� �� �
approximated target Q∗

− Q(s, a, θ)� �� �
current estimation

(9.11)

Then, one can periodically copy the parameters of Q into Q, in order to update the target
network.

• Double Q-learning. In order to approximate the target action value in DQN, the maximum
over actions is considered (r0����

local reward for taking action a

+γ max
a�

Q(s�, a�, θ)
� �� �

max Q value over all possible actions

). Since the

approximation is noisy, it is possible to prove that this will eventually result in a positive bias,
finally resulting in an over-estimation of the correct value. The solution to this is to decouple
the choice of the action from its estimation, using two different networks, QA and QB:

Initialize QA, QB and s.

Repeat:

Choose a using �, QA, QB. Observe r and s�.

Choose between procedures UPDATE-A and UPDATE-B.

If UPDATE-A: (use QA to choose the action and QB to estimate the action)

a∗ = argmaxaQ
A(s�, a)

QA(s, a) = QA(s, a) + α(r +QB(s, a∗)−QA(s, a))

Else if UPDATE-B: (use QB to choose the action and QA to estimate the action)

a∗ = argmaxaQ
B(s�, a)

QB(s, a) = QB(s, a) + α(r +QA(s, a∗)−QB(s, a))

s = s�

Until end

51

If one uses QA to select the best action a∗, the value of QA(s�, a∗) could be biased by this
choice. Since QB is updated on the same problem, but with different set of experience samples,
QB(s�, a∗) provides a better, unbiased estimate for the value of action a∗.

• Prioritized experience replay. This technique exploits the idea that some experience samples
may be more important than others, and thus should be replayed more frequently. Thus, a
higher priority is given to transitions for which there is a large difference between prediction and
expected target. In particular, considering a transition t = (s, a, r, F, s�), the relative update is:

δt = r + γmax
a�

Q(s�, a�)−Q(s, a) (9.12)

and the relative priority is:

pt = |δt| (9.13)

Stochastic prioritization can be applied. In particular, the probability of being chosen for a
replay is computed as:

pt =
pαt�
t p

α
t

(9.14)

If α = 0 all the transitions have the same probability. If α is large, then transitions with
high priority are privileged. However, by introducing priorities, one may over-fit over the small
portion of experience that one presumes to be interesting. In order to avoid this, one can weight
every pt. In particular, is some transition has a high probability, the related weight will be
reduced.

• Dueling. Each Q value Q(s, a) estimates how good it is to take action a in state s. One can
decompose Q(s, a) into the sum of two terms:

– V (s), the value of being in state s.

– A(s, a), the advantage of taking action a in state s. This function measures how much
better is to take action a with respect to all other possible actions.

Q(s, a) = V (s)����
value

+ A(s, a)� �� �
advantage

(9.15)

In particular, dueling network architectures (DDQN) split the computation of V (s) and A(s, a)
into two different streams:

52

Intuitively, the dueling architecture can learn which states are valuable, without having to learn
the effect of each action for each state. This is useful in states where actions do not affect the
environment in any relevant way or, conversely, it allows focusing on the advantage without
caring for the current evaluation of the state.

• Noisy networks. These networks are characterized by noisy dense layers, combining a deter-
ministic and a noisy stream:

y = b+Wx� �� �
usual layer

+(bnoisy � �b + (Wnoisy � �W)x)� �� �
noisy stream

(9.16)

where W , b, Wnoisy and bnoisy are learned parameters, while �b and �W are randomly generated.
In particular, this type of layer is used instead of any standard dense layer. The purpose of this
technique it to augment the randomicity in the choice of actions. This allows the network to
randomly explore the environment at different rates in different parts of the state space.

• Distributional reinforcement learning (DRL). This technique tries to learn the probability
distribution of the future cumulative reward, instead of the modelling the expectation of the
reward. Specifically, DRL addresses the random reward Z (random variable) whose expectation
is the value Q. In particular:

Zπ(s, a) =
�

t≥0

γtrt
��
s0=s,a0=a,π

(9.17)

Similarly to the Bellman equation (Q(s, a) = R(s, a) + γQ(s�, a∗)):

Z(s, a) = R(s, a) + γZ(s�, a∗) (9.18)

53

9.1.3 SARSA

The Q-learning is an off-policy technique algorithm is a one-step method since it updates the action
value Q(s, a) toward the one-step return r + γmaxa� Q

i(s�, a�). This only directly affacts the value of
the state action pair (s, a) that led to the reward. The values of the state action pairs are affected only
indirectly through the updated value Q(s, a). This can make the learning process slow since many
updates are required to propagate a reward to all the relevant preceding states an actions. To this
aim, on-policy techniques try to improve the current policy by sampling long trajectories according
to the current strategy. In particular, State-Action-Reward-State-Action (SARSA) is a learning
algorithm very similar to Q-learning. The SARSA update is the following:

Q(st, at) = Q(st, at) + α[rt +Q(st+1, at+1 −Q(st, at))] (9.19)

Instead of considering the best action at time t + 1 (greedy choice) one considers the actual action
at+1 under the current policy. Moreover, Q-learning is based on single step transitions (st, at, rt, st+1),
while SARSA is based on mini-trajectories, composed of two steps (st, at, rt, st+1, at+1). For this
reason, SARSA is considered on-policy.

9.2 Policy Gradients

Given a class of parametrized policies Π = {πθ}, for each policy πθ it is possible to define the value of
it:

J(θ) = E
�

t≥0

γtrt (9.20)

The optimal policy is the one associated with θ∗:

θ∗ = argmaxθ J(θ) (9.21)

θ∗ can be learned via gradient ascent.

9.2.1 REINFORCE Approach

There exist several different approaches to policy gradient ascent. In particular, for a given and sam-
pled trajectory, standard REINFORCE updates the policy parameters in the direction∇θ log π(at|st, θ)Rt.
The problem of this is that the raw value of a trajectory is not that meaningful (e.g. if rewards are all
positive, one keeps pushing probabilities of all actions). What matters the most is whether a reward
is better or worse than expected. To solve this, a baseline, dependent on the state, is introduced.
Thus, the new estimator becomes:

∇θ log π(at|st, θ)(Rt − b(st)) (9.22)

An good choice for such baseline is the value function of the state, b(st) = V π(st). In particular, this
approach can be seen as an actor-critic architecture where the policy π is the actor and the value
function (i.e. the baseline) is the critic.

54

9.2.2 A3C and A2C

The Asynchronous Advantage Actor Critic (A3C) pseudo-code is the following:

TheAdvantage Actor Critic (A2C) is similar to A3C but without asynchronous agents. Essentially,
it is a single-worker variat of A3C. Empirically, A2C produces comparable performance with A3C while
being more efficient.

9.2.3 TRPO and PPO

When passing from a given policy πk (e.g. a randomized version of the current policy) to a new policty
π, small modifications can easily result in large fluctuations in behaviour and performance. The goal
here is to take the biggest possible improvement step on a policy, without stepping so far that one
accidentally cause performance collapse. In particular, let πθ denote a policy with parameters θ:

• The TPRO update consists in:

θk+1 = argmaxθ L(θk, θ) such that KL(θ�θk) ≤ δ (9.23)

55

where L(θk, θ) is the surrogate advantage, which represents a measure of how policty πθ
performs with respect to the old policy πθk using data from the old policy:

L(θk, θ) = Es,a∼πθk

πθ(a|s)
πθk(a|s)

Aπθk (s, a) (9.24)

and KL(θ�θk) is an average KL-divergence between policies across states visited by the old
policy:

KL(θ�θk) = Es∼πθk
KL(πθ(·|s)�πθk(·|s)) (9.25)

However, such theoretical update is hard to implement.

• PPO achieves a similar objective of TRPO by updating policies via:

θk+1 = argmaxθ Es,a∼πθk
[L(s, a, θk, θ)] (9.26)

where:

L(s, a, θk, θ) = min

�
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(�, Aπθk (s, a))

�
(9.27)

and:

g(�, A) =

�
(1 + �)A if A ≥ 0, i.e. positive advantage

(1− �)A if A < 0, i.e. negative advantage
(9.28)

56

