
An Efficient Cryptographic Protocol Verifier Based on Prolog Rules

Bruno Blanchet
INRIA Rocquencourt*

Domaine de Voluceau B.P. 105
78 153 Le Chesnay Cedex, France
Bruno.Blanchet@inria.fr

Abstract protocol to guarantee the termination of the verification pro-
cess. If there exists an attack that only appears with more
runs of the protocol, it will not be discovered. Our solution
to these problems relies on two ideas:

We present a new automatic cryptographic protocol veri-
$er based on a simple representation of the protocol by Pro-
log rules, and on a new eficient algorithm that determines
whether a fact can be proved from these rules or not. This 0 a simple intermediate representation of the protocols;

verifer proves secrecy properties of the protocols. Thanks
to its use of uniBcation, it avoids the problem of the state
space explosion. Another advantage is that we do not need
to limit the number of runs of the protocol to analyze it. We
have proved the correctness of our algorithm, and have im-
plemented it. The experimental results show that many ex-
amples of protocols of the literature, including Skeme [24] ,
can be analyzed by our tool with very small resources: the
analysis takes from less than 0.1 s for simple protocols to
23 s for the main mode of Skeme. It uses less than 2 Mb of
memory in our tests.

1. Introduction

0 a new efficient solving algorithm.

We use Prolog rules to represent the protocol and the at-
tacker. Messages and channels are represented by terms; the
fact at tacker(M) means that the attacker has the message
M ; rules give implications between such facts. This can be
considered as an abstraction of the multiset rewriting [161
or of the linear logic representation [191. We perform two
interesting abstractions:

0 Fresh values considered as functions other messages
in the protocol. To give an intuition, when the attacker
does not modify messages, different values are used
for each pair of participants of the protocol, instead of
per session.

The design of cryptographic protocols is difficult and
error-prone. This can be illustrated by flaws found in ex-
isting protocols [1, 6, 1 1, 251. It is therefore important to
have tools to verify the properties of cryptographic proto-

We forget the number of times a message appears to re-
member only that it has appeared. A step of the proto-
col can be executed several times instead of only once
in each session.

cols. Several techniques can be used to build such tools:
logics, such as the BAN logic [l l] used in [23], theo-
rem proving, used in Isabelle [33], rank functions [21],
typing [2 , 12, 221, abstract interpretation [7, 8, 20, 291,
model checking, rewriting, and related techniques, used in
Elan [131, Brutus [141, Maude [161, FDR [25], NRL [26],
the Interrogator [27], Murcp [28], Athena [35]. Most exist-
ing protocol verifiers based on model checking suffer from
the problem of the state space explosion, and they need very
large resources to verify even relatively simple protocols.
Moreover, in general, they limit the number of runs of the

These are keys to avoid limiting the number of runs of pro-
tocols: the number of repetitions is simply forgotten. Our
approximations are safe, in the sense that if the verifier does
not find a flaw in the protocol, then there is no flaw. The ver-
ifier therefore provides real security guarantees. In contrast,
it may give a false attack against the protocol. However,
false attacks are rare, and we have been able to prove the
secrecy properties of all the protocols that we have consid-
ered. Therefore, we believe that our abstractions could also
be useful in other protocol tools. Various protocol repre-
sentations can be translated into our simple representation.

*This work wils partly done while the author wils at Bell Labs Research, We have built an automatic translator from a restricted ver-
sion of the applied pi calculus [5], that only handles certain Lucent Technologies.

82
1063-6900/01$10.00 0 2001 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

mailto:Bruno.Blanchet@inria.fr

equational theories, including the theories used to repre-
sent shared- and public-key cryptography (encryption and
signatures), hash functions, the Diffie-Hellman key agree-
ment. It is also possible for the user to enter directly the
rules representing the protocol, since the representation is
simple enough.

Using this representation, we have built a tool to prove
secrecy properties of protocols. Indeed, the attacker may
have a given message m only if the fact attacker(m) can
be proved from the rules representing the protocol and the
abilities of the attacker. However, the usual Prolog solving
algorithm loops, due to rules that appear in the description
of the attacker. Therefore, we have designed a solving al-
gorithm. This algorithm is novel as far as we know, and it
appears to be very efficient in practice. We have applied it
to prove secrecy properties of several protocols of the liter-
ature, including Skeme [24], or to find attacks against them.

Related work Prolog rules and similar formalisms have
already been used in a number of works on cryptographic
protocols, for example [16, 26, 271. We propose a more ab-
stract representation of the protocols, that enables us to de-
sign a simpler and faster analysis, and to avoid limiting the
number of runs of the protocol, thus improving over most
model checkers. Of course, the additional approximations
imply that our analysis may not be able to prove that cer-
tain protocols are secure (it may give false attacks), but in
our experiments our analysis was precise enough to prove
secrecy properties of the protocols we have considered. A
key problem of previous tools using Prolog rules is termina-
tion. Our solving algorithm is a big step towards a solution
of this problem.

Two works have already tackled the problems met by
classical model checkers. Broadfoot, Lowe and Roscoe [10,
341 do not limit the number of runs of protocols. They re-
cycle nonces, to use only a finite number of them in an infi-
nite number of runs. We achieve the same result by directly
reusing the same values for nonces. However, they limit the
number of parallel runs of protocols. We avoid this limita-
tion. They also allow the attacker to simulate honest agents,
but use this technique only for servers. We generalize it to
all agents involved in the protocols. In their work as well
as in ours, the deduction rules for the attacker must have
only equalities in their hypotheses, no inequalities (that is,
they are positive deduction systems). Song [35] avoids the
state space explosion problem by using the strand space
model to verify protocols. This model captures the causal
information of messages, in a way similar to our deduction
rules. However, our model is more abstract than Song’s.
She sometimes limits the number of runs of the protocol to
guarantee termination, whereas we avoid this limitation.

Automatic protocol verifiers have already been built by
using abstract interpretation [7, 8, 20, 291. The analysis of

F ::=

. d ’ 1 7 . . . 7‘TL)

R ..-
Fl A . . . A F, -+ F

terms
variable
name
function application

fact
predicate application

rule
implication

Figure 1. Syntax of our protocol representa-
tion

Bodei et al. [7, 81 is not relational: when a variable ap-
pears several times in a message, each occurrence can take
different values (in the set of values of the variable). All
nonces generated by the same restriction are also considered
as equal. These are causes of imprecision that our analy-
sis solves. Moreover, Bodei’s analysis only handles shared-
key cryptography. The main difference between Monniaux’
analysis [29] and ours is that Monniaux represents sets of
messages by tree automata, whereas we represent rules that
generate these sets. This enables us to gain in efficiency.
Goubault [20] extends and improves the efficiency of [29],
also using ideas of Bolignano [9]. However, 1201 does not
allow any term to be used in place of a key. We do not have
this limitation. In our experimental results, we obtain an
even faster analysis with a simpler framework.

Theorem provers are not fully automatic tools: the user
has to intervene to provide information on the proof. Previ-
ous works using typing are also better suited for human use
than for automatic verifiers: type inference is sometimes
difficult [4] and types are in general human-readable. Types
provide constraints that can help the designers of new pro-
tocols ensure the desired security properties, but existing
protocols may not satisfy these constraints even if they are
correct. In contrast, our analysis yields a fully automatic
protocol verifier.

Overview Section 2 details our protocol representation.
Section 3 describes our solving algorithm, and sketches its
proof of correctness. Several extensions and optimizations
to this algorithm are detailed in Section 5 . Section 6 gives
experimental results and Section 7 concludes.

2. Protocol representation

A protocol is represented by a set of Prolog rules
(clauses), whose syntax is given in Figure 1. The terms rep-
resent messages that are exchanged between participants of

83

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

the protocol. A variable can represent any term. Names are
used to represent atomic values, such as keys and nonces.
Each principal has the ability of creating new names. Here,
the created names are considered as functions of the mes-
sages previously received by the principal that creates the
name. Thus, a different name is created when the preced-
ing messages are different. This is slightly weaker than the
fact that a new name is created at each run of the proto-
col. As noticed by M. Abadi (personal communication),
this approximation is in fact similar to the approximation
done in some type systems (such as [4]): the type of the
new name depends on the types in the environment. It is
enough to handle many protocols, and can be enriched by
adding other parameters to the name. The function appli-
cation is used to build terms: examples of functions are the
encryption, or hash functions. Predicates are used to repre-
sent facts about these messages. Several predicates can be
used, but for a first example, we are going to use only one
predicate attacker(M), meaning “the attacker may have the
message M”. A rule F1 A . . . A F, -+ F means that if all
facts Fl, . . . , F, are true, then F is also true. A rule with
no hypothesis -+ F is written simply F .

We can illustrate the coding of a protocol on the follow-
ing simple example (this is a simplification of the Denning-
Sacco key distribution protocol [171, omitting certificates
and timestamps):

Message 1.
Message 2 .

A -+ B : { { k } s ~ A } p k B
B -+ A : {s}k

There are two principals A and B. S ~ A is the secret key of
A, p k , its public key. Similarly, S ~ B and p k B for B. The
key k is a new key created by A. A sends this key signed
with its private key S ~ A and encrypted under its public key
pk, . When B receives this messages, it decrypts the mes-
sage, and assumes, seeing the signature, that the key k has
been generated by A. Then it sends a secret s encrypted
under k (this is a shared-key encryption). Only A should
be able to decrypt the message and get the secret s. (The
second message is not really part of the protocol, we use it
to check if the key k can really be used to exchange secrets
between A and B. In fact, there is an attack against this
protocol [1 11, so s will not remain secret.)

2.1. Representation of primitives

Cryptographic primitives are represented by functions.
For instance, we represent the public-key encryption by a
function pencrypt(m, p k) which takes two arguments: the
message m to encrypt and the public key pk. There is a
function pk that builds the public key from the secret key.
(We could also have two functions pk and sk to build respec-
tively the public and secret keys from a secret.) The secret
key is represented by a name which has no arguments (that

is, there exists only one copy of this name) s k ~ [] for A and
s k ~ [] fo rB . ThenpkA = p k (s k ~ []) andpkB = p k (s k ~ []) .

More generally, we consider two kinds of functions:
constructors and destructors. The constructors are the
functions that explicitly appear in the terms that repre-
sent messages. For instance, pencrypt and pk are con-
structors. Destructors manipulate terms. A destructor g
can be defined by one or several equations of the form
g(M1, . . . , M,) = M where M I , . . . ,&In, M are terms
that contain only variables and constructors. For in-
stance, the decryption pdecrypt is a destructor, defined by
pdecrypt(pencrypt(m, pk(sk)), s k) = m. Other functions
are defined similarly:

0 For signatures, there is a constructor sign(m, s k)
that is used to represent the message m signed un-
der the secret key sk. A destructor getmess de-
fined by getmess(sign(m, s k)) = m returns the mes-
sage without its signature, and checksign(sign(m, s k) ,
pk(sk)) = m only returns the message if the signature
is valid.

0 For shared-key encryption, we have a construc-
tor sencrypt and a destructor sdecrypt, defined by
sdecrypt(sencrypt(m, I C) , I C) = m.

A hash function is represented by a constructor h (and
no destructor).

0 Tuples of arity n are represented by a construc-
tor (-,. . . ,-) and n destructors i t h defined by
i th ((z1 , . . . ,z,)) = xi, i E {l , , . . , T I } .

2.2. Representation of the abilities of the attacker

We assume that the protocol is executed in the presence
of an attacker that can intercept all messages, compute new
messages from the messages it has received, and send any
message it can build. We first present the encoding of the
computation abilities of the attacker. The encoding of the
protocol will be detailed below.

During its computations, the attacker can apply all con-
structors and destructors. If f is a constructor of arity n,
this leads to the rule:

attacker(s1) A . . . A attacker(z,)

-+ attacker(f(z1,. . . , z,)).

If g is a destructor defined by g(M1, . . . , M,) = M , this
leads to the rule:

attacker(M1) A . . . A attacker(M,) -+ attacker(M).

If g is defined by several equations, there are several rules,
one for each equation. The destructors never appear in the

84

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

rules, they are coded by pattern-matching on their param-
eters (here M I , . . . , Mn) in the hypothesis of the rule and
generating their result in the conclusion. In the particular
case of the public-key encryption, this yields:

attacker(m) A attacker(pk)

--f attacker(pencrypt(m,pk)),

attacker(sk) -+ attacker(pk(sk)),

attacker(pencrypt(m, pk(sk)) A attacker(&)
(1)

where the first two rules correspond to the constructors
pencrypt and pk, the last rule corresponds to the destruc-
tor pdecrypt. When the attacker has an encrypted message
pencrypt(m, p k) and the decryption key sk , then it also has
the plaintext m. (We assume that the cryptography is per-
fect, hence the attacker can only obtain the plaintext from
the encrypted message if it has the key.)

For signatures, we obtain the rules:

-+ attacker(m),

attacker(m) A attacker(&) -+ attacker(sign(m, s k)) ,
attacker(sign(m, s k)) -+ attacker(m),

where the first rule corresponds to the constructor sign and
the second one to the destructor getmess. (The rule for
checksign is removed, since it is implied by the rule for
get mess.)

The rules above describe the abilities of the attacker.
Moreover, the attacker has the public keys. Therefore, we
add the rules attacker(pk(skA 1)) and attacker(pk(sk~ [I)).
We also give a name a to the attacker, that will represent all
the names it can generate: attacker(a[]).

2.3. Representation of the protocol itself

Now, we describe how the protocol itself is represented.
We consider that A and B are willing to talk to any princi-
pal, A, B but also malicious principals that are represented
by the attacker. Therefore, the first message sent by A can
be pencrypt(sign(k, S k ; g []) , pk(z)) for any z. w e leave to
the attacker the task to start the protocol with the principal
it wants, that is the attacker will send a first message to A,
mentioning the public key of principal with which A should
talk. This principal can be B , or another principal repre-
sented by the attacker. (The attacker can create public keys,
by the rule for constructor pk.) Moreover, the attacker can
intercept the message sent by A. This yields a rule of the
form

attacker(pk(z))

-+ attacker(pencrypt(sign(k, s k ~ [I) , pk(z))).

Moreover, a new key IC is created each time the protocol is
run. Hence, if two different keys pk(z) are received by A,

85

the generated keys k are certainly different: k depends on
pk(z). The rule becomes:

attacker (p k(z))
3 attacker(pencrypt(sign(k[pk(s)j, S k A []) , pk(z))).

(2)

Remark. It would also be possible for A to initiate the
protocol itself, by choosing randomly the other principal to
which it talks, instead of letting the attacker initiate the pro-
tocol. In this case, the rule above would be

attacker(pencrypt(sign(k[pk(z)] , S ~ A [I), pk(z))).

where z is a variable that represents the secret key of the
principal talking with A. However, if we want to represent
the protocol by a closed process in the applied pi calculus,
the variable z must come from an input. That is, A cannot
choose randomly the principal to which it talks. If the pro-
cess is modeled in the applied pi calculus, the attacker sends
a message that indicates with which principal A should talk.
This yields the rule (2) given above.

B expects a message of the form pencrypt(sign(lc’, s k) ,
pk(skB1)). When such a message is received, it tests
whether A has signed the message (that is, B evaluates
checksign(sign(k’, s k) , p k A) , and this only succeeds when
sk = S k A []) . If so, it assumes that the key k’ is only known
by A, and sends a secret s encrypted under IC’. We assume
that the attacker relays the message coming from A, and
intercepts the message sent by B. Hence the rule:

attacker(pencrypt(sign(k’, SkA[]) , pk(skB1)))

-+ attacker (sencry pt (s [I, I C ’)) .

With these rules, A cannot play the role of B and vice-versa.
If we want that, we can simply add the corresponding rules,
that are obtained by swapping A and B in the above rules:

attacker (p k (z))

attacker(pencrypt(sign(k’, S I C S []) , p k (s k ~ [])))
+ attacker(pencrypt(~ign(k~ [pk(z)], skB [I) , pk(z))) ,

-+ attacker(sencrypt(s~ [I, k’)) .

More generally, a protocol that contains n messages is
encoded by n sets of rules. If a principal X sends the ith
message, the ith set of rules contains rules that have as hy-
potheses the patterns of the messages previously received
by X in the protocol, and as conclusion the pattern of the
ith message. There may be several possible patterns for the
previous messages as well as for the sent message, in partic-
ular when the principal X uses a destructor which is defined
by several equalities. In this case, a rule must be generated
for each combination of possible patterns. Moreover, notice

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

that the hypotheses of the rules describe all the messages
previously received, not only the last one. This is impor-
tant since in some protocols the fifth message for instance
can contain elements received in the first message. The hy-
potheses summarize the history of the exchanged messages.

Remark. When the protocol makes some communications
on private channels, on which the attacker cannot a priori
listen or send messages, a second predicate can be used:
mess(C, M) meaning “the message M can appear on chan-
nel C”. In this case, if the attacker manages to get the name
of the channel C, it will be able to listen and send messages
on this channel. Thus, two new rules have to be added to de-
scribe the behavior of the attacker. The attacker can listen
on all the channels i t has:

mess(z, y) A attacker(z) + attacker(y).

It can send all the messages it has on all the channels it has:

attacker(z) A attacker(y) + mess(z, y).

2.4. Summary

To sum up, a protocol can be represented by three sets of
Prolog rules:

0 Rules representing the computation abilities of the
attacker. There is one rule attacker(z1) A . . . A
attacker(z,) -+ attacker(f(z1, . . . , 2 ,)) for each
constructor f, and one rule attacker(M1) A . . . A
attacker(M,) + attacker(M) for each equation
g(Ml, . . . , M,) = M defining a destructor g.

0 Facts corresponding to the initial knowledge of the at-
tacker. There is a fact attacker(a[]) giving a name to
the attacker. In general, there are also facts giving the
public keys of the participants and/or their names to
the attacker.

0 Rules representing the protocol itself. There is one
set of rule for each message in the protocol. In the
set corresponding to the ith message, sent by prin-
cipal X, the rules are of the form attacker(Mj,) A
. . .Aattacker(Mj,,) + attacker(Mi) where Mj, , . . . ,
Mjn are the patterns of the messages received by X
before sending the ith message, and Mi is the pattern
of the ith message.

The rules representing the Denning-Sacco protocol are sum-
marized in Figure 2 .

2.5. Approximations

The reader can notice that our representation of protocols
is approximate:

Freshness is modeled by letting new names be func-
tions of messages previously received by the creator of
the name in the run of the protocol. When the attacker
does not alter messages, this means that different val-
ues are used per pair of principals running the proto-
col instead of per session. When the attacker does al-
ter messages, different values are used when different
messages are received.

0 A step of the protocol can be completed several times,
as long as the previous steps have been completed at
least once between the same principals. For instance,
in a session between the attacker and a principal A,
the attacker sends the first message M I , A replies with
M2, the attacker can then send two messages in place
of the third message, as long as they correspond to the
pattern expected by A. That is, the attacker sends M3

and gets M4 from A, then the attacker sends M i and
gets M i from A. The attacker can also perform again
the ith step, even if further steps have already been per-
formed. Therefore, the actions of the principals are not
organized into runs.

But the important point is that the approximations are al-
ways performed in the safe direction: if an attack exists in a
more precise model, such as multiset rewriting [161, or the
applied pi calculus [5] , then it also exists in our represen-
tation. (We are currently proving that our translation from
the applied pi calculus to this representation has this cor-
rectness property.) Performing approximations enables us
to build a much more efficient verifier, which will be able to

tage is that the verifier does not have to limit the number of
runs of the protocol. The price to pay for this is that false
attacks may be found by the verifier: sequences of rule ap-
plications that do not correspond to a protocol run. When
a false attack is found, we cannot know whether the proto-
col is secure or not: a real attack may also exist. A more
precise analysis is required in this case. But our representa-
tion is precise enough so that false attacks are rare. (This is
demonstrated by our experiments, see Section 6.)

handle larger and more complex protocols. Another advan-

2.6. Secrecy

Our goal is to determine secrecy properties: for instance,
can the attacker get the secret s ? That is, can the fact
attacker(s0) be inferred from the rules ? If attacker(s[])
can be inferred, the sequence of rules applied to derive
attacker(s[]) will lead to the description of an attack.

Our notion of secrecy is similar to that of [4, 7, 121: a
term M is secret if the attacker cannot get it by listening
and sending messages, and performing computations. This
notion of secrecy is weaker than non-interference, but it is

86

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

Computation abilities of the attacker:
pencrypt
Pk attacker(&) -+ attacker(pk(sk))
pdecrypt
sign
getrness attacker(sign(m, s k)) -+ attacker(m)
checksign
sencrypt
sdecrypt
Initial knowledge of the attacker:

Protocol:
First message:
Second message:

attacker(m) A attacker($) -+ attacker(pencrypt(m, p k))

attacker(pencrypt(m, pk(sk)) A attacker(&) -+ attacker(m)
attacker(m) A attacker(sk) -+ attacker(sign(m, s k))

removed since implied by getrness
attacker(m) A attacker(k) -+ attacker(sencrypt(m, I C))
attacker(sencrypt(m, k)) A attacker(k) -+ attacker(m)

attacker(pk(skA U)) , attacker(pk(skB U)), attacker(a[])

attacker(pk(z)) 3 attacker(pencrypt(sign(k[pk(z)l, s k ~ [I) , pk(z)))
attacker(pencrypt(sign(k’, &A[]), pk (sk~ []))) -+ attacker(sencrypt(s[], k’))

Figure 2. Summary of our representation of the Denning-Sacco protocol

adequate to deal with the secrecy of fresh names. Non-
interference is better at excluding implicit information flows
or flows of parts of compound values. (See [3, Section 61
for further discussion and references.)

Technically, the hypotheses F1 , .. . , Fn of a rule are
considered as a multiset. This means that the order of the
hypotheses is irrelevant, but the number of times an hypoth-
esis is repeated is important. (This is not related to the ideas
of multiset rewriting: the semantics of a rule does not de-
pend on the number of repetitions of its hypotheses, but
considering multisets is useful to make explicit the elimi-
nation of duplicate hypotheses in our verifier. It will also
be useful in the proof of the algorithm.) Formally, a mul-
tiset of facts S is a function from facts to integers, such
that S (F) is the number of repetitions of F in S . The in-
clusion on multisets is the point-wise order on functions:
S C S’ w V F , S (F) 5 S ’ (F) . I f f is a function from
facts to facts, we can extend it to multisets of facts by

particular when f is a substitution.
We determine whether a given formula can be implied

by a given set of rules. This is more precisely defined as
follows.

(f (S)) (F) = s u c h t h a t f (F ’) = F S(F’)’ This applies in

Definition 1 We define rule implication by:

(H I -+ CI) * (HZ -+ C2) ifandonly if
30, o C ~ = C2, OH^ 2 H2

where H I and H2 are multisets of hypotheses, o is a substi-
tution.

We write R1 R2 when R2 can be obtained by adding
hypotheses to a particular instance of RI. In this case, all
facts that can be derived by Rz can also be derived by R I .

Definition 2 (Derivability) Let F be a closed fact, that is,
a fact without variable. Let B be a set of rules. F is deriv-
able from B if and only if there exists a$nite tree dejined as
follows:

1. Its nodes (except the root) are labelled by rules R E B;

2. Its edges are labelled by closed facts;

3. rfthe tree contains a node labelled by R with one in-
coming edge labelled by Fo and n outgoing edges la-
belled by FI , . . . , Fn, then R * { Fi , . . . , Fn} -+ Fo.

4. The root has one outgoing edge, labelled by F .

Such a tree is a derivation of F from B.

In a derivation, if there is a node labelled by R with one
incoming edge labelled by FO and n outgoing edges labelled
by F1, . . . , Fn, then the rule R can be used to infer FO from
F1 , . . . , F,. Therefore, there exists a derivation of F from
B if and only if F can be inferred from rules in B.

3. Solving algorithm

Our representation is a set of Prolog rules, and our goal
is simply to determine whether a given fact can be inferred
from these rules or not. This is exactly the problem that is
solved by usual Prolog systems. However, we cannot use
these systems here, because they would not terminate. For
instance, the rule:

attacker(pencrypt(m, pk(sk)) A attacker(&)

-+ attacker(m)

leads to considering more and more complex terms, with
an unbounded number of encryptions. We could of course
limit arbitrarily the depth of terms to solve the problem, but

87

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

we can do much better than that. Indeed, even when limiting
the depth of terms, the complexity of the depth-first search
will be very large. There are many rules with conclusion
attacker(%) that can always be applied, when we search a
fact of the form attacker(M). We can get better results with
a more guided search.

The main idea to guide the search is to combine pairs
of rules by unification, when the unified facts are not of
the form attacker(%). When the consequence of a rule R
unifies with one hypothesis of another (or the same) rule
R', we can infer a new rule, that corresponds to applying
R and R' one after the other. Formally, this is defined as
follows:

Definition3 Let R and R' be two rules, R = H + C,
R' = H' + C'. Assume that there exists FO E H' such
that: C and FO are unifiable, and a is the most general
unifier of C and Fo.

In this case, we define

R 0~~ R' = a (H U (HI - Fo)) + oC'.

For example, if R is the rule (2), and R' is the rule (1), the
fact FO is FO = attacker(pencrypt(m, pk(sk))), R OF^ R'
is

attacker(pk(z)) A attacker(z)

-+ attacker (sign (I C [p k (z)] , slc A [I))
with the substitution a = {slc I+ z , m e sign(k[pk(z)],
s k ~ o) } . In terms of logic programming, R 0~~ R' is the
result of resolving R' with R upon Fo. Of course, if this op-
eration is applied without limitations, it does not terminate
(consider the same rule as above). We specify conditions to
limit it. As far as we know, these conditions are new.

Let S be a finite set of facts. We define F E, S by:
there exists a substitution a mapping variables to variables
such that aF E S. By default, S = {attacker(z)}, but the
algorithm is also correct with other values of S. The idea is
to only unify facts F such that F er S . The precise formal
condition is slightly more complex (see below).

The solving algorithm works in two phases, which are
described in Figures 3 and 4 respectively. The first phase
transforms the rule base into a new one, that implies the
same facts. The second one uses a depth-first search to de-
termine whether a fact can be inferred or not from the rules.

The first phase (Figure 3) contains 3 steps. The first step
inserts in B the initial rules representing the protocol and
the attacker (rules that are in Bo). These rules are simpli-
fied by eliminating duplicate hypotheses, and if a rule R
implies a rule R', R' is removed (definition of add). The
second step is a fixed point iteration, that adds rules created
by resolution. The composition of rules R and R' is only
added if

Let B be the rule base, Bo be the set of rules representing
the attacker and the protocol.
We define

add(R,B) =
if 3R' E B , R' 3 R, i" { R } U {R' E BIR + RI} otherwise.

We also define elimdup(H + C) = (H n 1) + C,
where 1 is the multiset which contains one copy of each
fact: VF, 1(F) = 1. The function elimdup eliminates the
duplicate hypotheses from a rule.

1. For each R E Bo, B t add(elimdup(R), B) .

2. Let R E B , R = H + C and R' E B, R' = H' -+
C'. Assume that there exists FO E H' such that:

(a) R 0~~ R' is defined;

(b) V F E H , F E, S ;
(c> FO e r S .

In this case, we execute

B t add(elimdup(R OF,, R'), B) .

This procedure is executed until a fixed point is
reached.

3. Let B' = { (H + C) E BIVF E H , F Er S } .

Figure 3. First phase: completion of the rule
base

the hypotheses of R contain only facts F which sat-
isfy F er S (i.e. by default they are of the form
attacker(z)),

and the hypothesis Fo of R' that we unify does not
S (i.e. by default FO is not of the form satisfy FO

attacker(%)).

When a rule is created by this composition, it is added to the
rule base B, after simplification (duplicate hypotheses are
removed and if a rule R implies a rule R', R' is removed).
At last, the third step is to extract from B the new rule base
B', by taking only the rules whose all hypotheses F sat-
isfy F Er S (by default, this means that F is of the form
attacker(z)). The following remarks can help understand
the algorithm:

0 This algorithm corresponds to a kind of forward
search. In a forward search, a fact is unified with an

88

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

hypothesis of a rule, and a new rule is created that con-
tains one hypothesis less. This is performed until no
new fact can be inferred.

Here, assume S = 0. Hypothesis (b) means that R
has no hypothesis, that is, R is a fact. Hypothesis (c)
is always true. Then a fact R = C is unified with an
hypothesis of the rule R'. In this case, we have exactly
a forward search.

When S # 0, the algorithm resembles a forward
search for a modified notion of facts. Let S-facts be the
rules H -+ C, where V F E H , F E, S. Let S-rules be
the rules H' -+ FS where V F E HI, F er S and Fs is
an S-fact. Notice that all rules are S-rules, simply by
writing first the hypotheses that satisfy F qr S. Hy-
pothesis (b) means that R is an S-fact. Hypothesis (c)
means that FO is an hypothesis of an S-rule RI. The
S-fact and S-rule are combined, to give a new S-rule
(that can be an S-fact). When all combinations have
been performed, only S-facts are kept in B'.

0 This algorithm is similar to an unfolding of the logic
program [37], but there is one important difference: In
the unfolding, a rule R' and an hypothesis FO of R' are
chosen, and the resolution is performed with all rules
R whose consequence is unifiable with Fo. Here, the
resolution is only applied with rules R whose hypothe-
ses F satisfy F E, S .

0 The speed of the algorithm comes essentially from the
fact that there are not many rules H -+ C such that
V F E H U {C}, F Er S. (In our uses of this al-
gorithm, S is always a very small set.) For the other
rules, (b) implies C er S , therefore, using the default
definition of S , C is not of the form attacker(z): C
cannot be unified with any hypothesis of any rule, only
few hypotheses of rules will correspond. Similarly, FO
is not of the form attacker(z), so only few conclusions
of rules can be unified with Fo. Therefore, in general,
few unifications are performed, and the algorithm is
very fast.

We prove that the rules in B' imply exactly the same facts
as the rules in Bo.

Lemma 1 (Correctness of phase 1) Let F be a closed
fact. F is derivable from the rules in Bo if and only if F
is derivable from the rules in B'.

Proof sketch We only give a proof sketch here, a detailed
proof can be found in Appendix A.

Assume that F is derivable from Bo and consider a
derivation of F from Bo. The key idea of the proof is the
following. Assume that the rules R and R' are applied one
after the other in the derivation of F . Also assume that these

We define derivablerec(R, B") by

1. derivablerec(R, B") = 0 if 3R' E B", R' 3 R;

2 . derivablerec(0 + C, B") = {C} otherwise;

3. derivablerec(R, B") =
U{derivablerec(elimdup(R' OF, R), { R } U B")JR' E
B', FO such that R' OF^ R is defined } otherwise.

derivable(F) = derivablerec({F} -+ F, 0).

Figure 4. Second phase: backward depth-first
search

rules have been combined by R OF^ RI, yielding rule RI'. In
this case, we replace R and R' by RI' in the derivation of F.
When no more replacement can be done, we show that all
the hypotheses FO of the remaining rules satisfy FO Er S.
Then all these rules are in B', and we have built a derivation

0

The second phase (Figure 4) searches the facts that
can be inferred from B'. This is simply a backward
depth-first search. The search is performed by calling
derivablerec(R, B") with two parameters: a rule R and a
set of rules B". The hypotheses of R are the facts that we
currently want to prove. Its conclusion is an instance of the
fact F that we initially wanted to prove. Moreover, the rule
R is always a consequence of the rules in B': the conclusion
of R can be proved by rules of B' from the hypotheses of
R. The set B" is the set of rules that we have already seen
during the search. derivablerec({F} -+ F, B'I) returns the
set of instances of F that can be proved.

If R is implied by a rule in B", the current branch of the
search fails: this is a cycle, we are looking for instances of
facts that we have already looked for (first point in the defi-
nition of derivablerec). We backtrack to try finding another
derivation of the goal. If R has no hypothesis, the search
succeeds: the conclusion of R is proved (second point of
the definition of derivablerec). Otherwise, we have to go
on searching. We try to use rule R' E B' to prove one of
the hypotheses of R, Fo. That is, we call derivablerec with
the rule R' OF^ R (in which FO has been replaced by the
hypotheses of R', R' and R being instantiated so that the
conclusion of R' and FO are unified).

The following theorem gives the correctness of the whole
algorithm. It shows that we can use our algorithm to de-
termine whether a fact is derivable or not from the initial
rules. The first part of the theorem shows that when calling
derivable with a not necessarily closed fact F' , the instances
of F' that can be derived from the rules are the instances of
the facts returned by derivable(F'). The second part deals
with the particular case of closed facts.

of F from B'. The converse is easy to prove.

89

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

Theorem 2 (Correctness) Let F be a closed fact. Let F’
such that there exists a substitution a such that aF’ = F.
F is derivable from the rules in Bo if and only i f3F” E
derivable(F’), 3a, F = uF”.

In particular; F is derivable from Bo if and only if F E
derivable(F).

Proof sketch Using Lemma I , we only have to prove
that F is derivable from B’ if and only if 7F” E
derivable(F’), 37, F = aF”.

Essentially, derivablerec performs a classical depth-first
search of the rule base B’ to find the desired fact. This
search is stopped in case of cycle. F is derivable if and only
if it is found by the depth-first search. The detailed proof

0 can be found in Appendix A.

4. Termination

4.1. Termination of the basic algorithm

The fixed point iteration of the first phase does not al-
ways terminate, even if it terminates in most examples of
protocols. We will see below several ways to force its ter-
mination.

The following proposition shows that the depth-first
search of the second phase terminates on the rule base B’
built by the first phase.

Proposition 3 ZfF is closed and S = {attacker(z)}, then
derivable(F) terminates. (Otherwise, the termination of
derivable(F) is not guaranteed.)

Proof sketch The hypotheses of the rules in B’ are
smaller than the conclusion. Hence the depth-first search
considers smaller and smaller terms, and thus terminates.

0 The proof can be found in Appendix B.

4.2. Detecting (and solving) some non-termination
cases

Assume that a rule R = {Fo} --+ C is inferred, with
C = aFo, where a is such that 32, (2 E fv(az) A z # ax),
where f v (M) is the set of variables in the term M . Assume
that FO er S, and there exists a derivation of an instance of
FO (more precisely, the verifier generates a rule H’ --+ a’Fo,
whose hypotheses F E H‘ satisfy F E, S).

Then, in general, the completion process (phase I) does
not terminate. Indeed, the rule R can be combined with the
rule H’ + a‘Fo, yielding H’ --+ a’C = H’ + a‘aF0,
then this rule can combined again with R, yielding H’ -+
daC = H‘ --+ a’a2F0. We can go on this way, and obtain
for all integers n: H‘ -+ a’a*Fo, and in general none of
these rules implies another, therefore all these rules will be
generated by the solving algorithm.

An example of such an exploding rule is:

attacker (f (z)) --+ attacker (f (g (2))) .
A solution to this non-termination case is of course to add
Fo to the set S , thus forbidding the above combinations
of the rule R. Another solution is to add a new rule, that
implies all the previous rules, for n large enough. For ex-
ample, let a be a renaming of variables that has an image
disjoint from the variables appearing in H’. Then the rule
H’ + aa”0C implies all the previous rules for n 2 no.
When such a rule is present, the previous rules are automat-
ically removed, and the non-termination is avoided. From
the point of view of abstract interpretation, adding a new
rule in this way can be considered as a widening [15], that
we use to force the convergence of the fixed point iteration.

This non-termination case can be detected automatically
by the verifier.

4.3. Enforcing termination

Termination can be enforced by limiting the depth of
terms. Each term that starts at a depth greater than a limit
fixed by the user is replaced by a new variable.

This way, if a fact can be generated by the system with-
out depth limitation, it can also be generated by the sys-
tem with depth limitation. The converse is of course wrong.
The system remains correct (if it says that a protocol does
not leak certain secrets, then the protocol definitely does not
leak these secrets), but some precision is lost.

In practice, the algorithm terminates for many protocols
without limiting the depth of terms. That is why, by default,
the depth of terms is not limited in our tool. Moreover, lim-
iting the depth of terms that appear in the rules does not
limit the depth of terms that can be built by the attacker,
since even with rules of bounded depth, the attacker can cre-
ate terms of unbounded depth. Therefore, even if limiting
the depth of terms in the rules leads to approximations, it is
more precise than limiting the depth of terms in the usual
depth-first search algorithm of Prolog.

5. Optimizations and extensions

5.1. Tuples

The tuples are denoted by (M I , . . . , Mn). Tuples of dif-
ferent arity are considered as different functions. But the
user does not have to define each of these functions: they
are all built-in.

The attacker rules:

attacker(M1) A . . . A attacker(M,)

-+ attacker((M1,. . . , M n))
attacker((Ml,. . . , M,)) --+ attacker(Mi)

90

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

are also built-in, and treated in a specially optimized way.
Indeed, these rules mean that attacker((Ml , . . . , M n))
is derivable if and only if V i E (1,. . . , n},
attacker(M,) is derivable. When a fact of the
form attacker((M1,. . . M n)) is met, it is replaced
by attacker(M1) A . . . A attacker(Mn). If this
replacement is done in the conclusion of a rule
H -+ attacker((M1,. . . 7 M n)) , n rules are created:
H -+ attacker(Mi) for each i E {l,. . . ,n} . This
replacement is of course done recursively: if Mi itself is a
tuple, it is replaced again.

Notice that (5, y, z) , (2, (y, 2)) and ((2, y), z) are differ-
ent terms. Tuples are different from the concatenation. This
can have important consequences. For instance, the Otway-
Rees protocol [32] is flawed when using concatenation, not
when using tuples. Similarly, the simplified version of the
Yahalom protocol of [111 is correct from the point of view
of secrecy when using tuples, whereas it is flawed when us-
ing concatenation [36, Attack 11. (The second attack of [36]
exposes an authentication flaw, not a secrecy problem.) Of
course, the implementation of the protocol must correspond
to the model of the verifier.

5.2. Removing useless rules and useless hypotheses

If a rule has a conclusion which is already in the hy-
potheses, this rule does not generate new facts. Such rules
are therefore removed as soon as they are encountered by
our verifier.

If a rule H + C contains in its hypotheses attacker(z),
where z is a variable that does not appear elsewhere in
the rule, the hypothesis attacker(%) can be removed. In-
deed, the attacker always has at least a message. Therefore
attacker(z) is always satisfied.

5.3. Secrecy assumptions

When the user knows that a fact will not be derivable,
he can tell it to the verifier. (When this fact is of the form
attacker(M), the user tells that M remains secret.) The tool
then removes all rules which have this fact in their hypothe-
ses. At the end of the computation, the program checks that
the fact is indeed underivable from the obtained rules. If
the user has given erroneous information, an error message
is displayed. Even in this case, the verifier never wrongly
claims that a protocol is secure.

Mentioning such underivable facts prunes the search
space, by removing useless rules. This speeds up the search
process. In most cases, the secret keys of the principals can-
not be known by the attacker. So, examples of underivable
facts are a t tacker(sk~[]) , a t tacker(sk~[]) , . . .

5.4. Diffie-Hellman key agreement

The Diffie-Hellman key agreement [181 enables two
principals to build a shared secret. It is used as an elemen-
tary step in more complex protocols, such as Skeme [24].

Formally, the Diffie-Hellman key agreement can be mod-
eled by using two functions f and g that satisfy the equation

(3)

In practice, the functions are f(z, y) = y" mod p and
g(z) = cyz where p is prime and cy is a generator of
Z;. The equation f (y ,g(z)) = (a")Y mod p = (cyy)"

mod p = f (z ,g(y)) is satisfied. In our verifier, follow-
ing the ideas used in the applied pi calculus [SI, we do not
consider the underlying number theory; we work abstractly
with the equation (3). The Diffie-Hellman key agreement
involves two principals A and B. A chooses a random
name 2 0 , and sends g(z0) to B. Similarly, B chooses a
random name z1, and sends g(z1) to A. Then A com-
putes f(z0, g(z1)) and B computes f (q , g(z0)). Both
values are equal by (3), and they are secret: assuming that
the attacker cannot have z o or z1, it can compute neither

The equation (3) cannot be written directly in our frame-
work that uses only constructors and destructors. Neverthe-
less, i t can be encoded as follows: the constructors are g,
ho, and hl, and f is a destructor defined by

f b o , g(z1)) nor f b l , g(z0)).

f (y ,g (z)) = hl(GY)I
f(z, dY)) = h l k Y),
f b l Y) = h0(? Y).

Notice that this definition o f f is non-deterministic: a term
such as f (a , g (b)) can be reduced to h l (a , b) , hl(b, a) , and
ho(a, g (b)) . When two terms MI and Mz are equal accord-
ing to the equation (3) then there exists a common term M
such that both M1 and M2 reduce to M . (Both sides reduce
to hl (2, y) when there is at least one g in the second param-
eter of f , and to ho(z, ?J) otherwise.) The equation is then
modeled correctly.

5.5. Key compromise

The weakness of some protocols is that when an attacker
manages to get some session keys, then it can also get the
secrets of other sessions. Such a problem appears for exam-
ple in the Needham-Schroeder shared-key protocol. It can
be detected by our protocol verifier.

The strategy to model the compromise of some session
keys is as follows. We say that a name is a session name if
it is created at each session of the protocol. (In general, all
names except long-term secret keys are session names.) We
add a parameter (session identifier) to each session name a.

91

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

The session identifier of a is a given constant so when a has
been created during a session compromised by the attacker.
The session identifier is s1 when a has been created in a ses-
sion that has not been compromised. We define a predicate
comp such that comp(M) is true when all session names
in M have session identifier S O . This can be defined by the
following rules:

For each constructor f,
comp(z1) A . . . A comp(zk) -+ comp(f(z1 7 . . . zk))
For each session name a,
comp(z1) A . . . A comp(zk) -+ comp(a[so,q,. . . ,zk])

For each non-session name a,
comp(z1) A . . . A comp(zk) -+ comp(a[zl,. . . ,zk])

We define a predicate attacker0 by the rules normally used
to encode the protocol, with session identifier S O , and a
predicate attacker1 by the same rules with session identi-
fier s1. Then we add rules

comp(z1) A . . . A comp(zk)

+ attackero(a[so,zl,. . . ,zk])

for each session name a. These rules express that the at-
tacker attacker0 has the names of session identifier so.
Moreover, we add the rule

attackero(z) -+ attackerl (z).

The intuitive meaning of the predicates is the following:
attackero(M) is true if and only if M can be obtained by
the attacker by compromising the sessions of identifier so;
attackerl (M) is true if M can be obtained by the attacker in
a non-compromised session, using the knowledge obtained
in the compromised sessions. We can then use our tool to
query the fact attackerl(s[sl]), where s is a session secret.
If this fact is underivable, then the protocol does not have
the weakness mentioned above: the attacker cannot have the
secret s of a session that it has not compromised. In con-
trast, it is normal that attackerl(s[so]), since the attacker
has compromised the sessions of identifier SO.

Our translation from the applied pi calculus can auto-
matically add the rules described above to model the com-
promise of session keys. Also notice that our solving algo-
rithm uses S = {comp(z), attackero(z), attackerl(z)} in
this case.

Remark. We could also use a single predicate attacker in-
stead of attackero and attackerl. However, this would yield
a less precise model, leading to more false attacks. For ex-
ample, we could not prove that the corrected version of the
Needham-Schroeder shared key protocol [3 11 is secure with
this model.

6. Experimental results

We have implemented our verifier in Ocaml, and have
performed tests on a Pentium MMX 233 MHz, under Linux
2.0.32 (RedHat 5.0). The results are summarized in Fig-
ure 5, with references to the papers that describe the proto-
cols and the attacks. In these tests, the protocols are fully
modeled, including interaction with the server for all ver-
sions of the Needham-Schroeder, Denning-Sacco, Otway-
Rees, and Yahalom protocols. We use secrecy assumptions
to speed up the search. These assumptions say that the se-
cret keys of the principals, and the random values of the
Diffie-Hellman key agreement and the session keys in the
Skeme protocol, remain secret. Thanks to these secrecy as-
sumptions, the analysis time of Skeme is 23 s instead of
70 s. The column “#Rules” indicates the number of Prolog
rules in our representation of each protocol. The large num-
ber of rules for the Needham-Schroeder shared-key proto-
col comes from the encoding of the compromise of session
keys. In the Needham-Schroeder shared key protocol, the
last messages are

Message 4. B + A : { N B } K
Message 5. A -+ B : { N B - l } ~

where N B is a nonce. Representing this with a function
minusone(z) = z- 1, this yields aloop in our verifier, since
it believes that 1 can be subtracted any number of times
from NB. Moreover, the techniques mentioned previously
to force termination lead to a false attack. The purpose of
the subtraction is to distinguish the reply of A from B’s
message. A s mentioned in [6] , i t would be clearer to have:

Message 4. B -+ A : {Message 4 : N B } K
Message 5. A -+ B : {Message 5 : N B } K

We use this encoding. Our tool then terminates, and the
analysis is precise. There was no other termination problem
in the tests of Figure 5.

These results show that our analysis can be used to verify
secrecy properties of standard cryptographic protocols, in a
small amount of time. It takes only a very small amount of
memory (less than 2 Mb in all these tests).

7. Conclusion

We believe that our protocol verifier can provide new
possibilities to verify cryptographic protocols: it is very
efficient, and thus can handle complex protocols; it also
avoids limiting the number of runs of the protocol. This is
achieved by using a simple representation of the protocol,
and a new solving algorithm.

Directions for further work include generalizing the tool
to be able to handle general equational theories. A more

92

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

Protocol
Needham-Schroeder public key [30]
Needham-Schroeder public key corrected [25]
Needham-Schroeder shared key [30, 111
Needham-Schroeder shared key corrected [3 I]
Denning-Sacco [171
Denning-Sacco corrected [1 11
Otway-Rees [32]
Otway-Rees, variant of [33]
Yahalom [1 13
Simpler Yahalom [111
Main mode of Skeme r241

#Rules
14
14
47
51
15
15
9
9

10
10
23

Result
Attack [25]
Secure
Attack [171
Secure
Attack [1 I]
Secure
Secure
Attack [33]
Secure
Secure
Secure

Time (ms)
70
60

760
1190

40
40

270
260
110
310

23070

Figure 5. Experimental results

general study of the termination of the algorithm would also
be interesting, to find conditions that guarantee the termina-
tion of the basic algorithm, and new ways of forcing termi-
nation when these conditions are not satisfied.

Acknowledgments

This work owes much to discussions with Martin Abadi.
I am very grateful to him for what he taught me. I would like
to thank the anonymous reviewers for their helpful com-
ments and suggestions.

References

[I] M. Abadi. Explicit Communication Revisited: Two New
Attacks on Authentication Protocols. IEEE Transactions on
Software Engineering, 23(3): 185-1 86, Mar. 1997.

[2] M. Abadi. Secrecy by Typing in Security Protocols. Journal
ofthe ACM, 46(5):749-786, Sept. 1999.

[3] M. Abadi. Security Protocols and their Properties. In
E Bauer and R. Steinbrueggen, editors, Foundations of
Secure Computation, NATO Science Series, pages 39-60.
10s Press, 2000. Volume for the 20th Intemational Sum-
mer School on Foundations of Secure Computation, held in
Marktoberdorf, Germany (1 999).

[4] M. Abadi and B. Blanchet. Secrecy Types for Asymmet-
ric Communication. In E Honsell and M. Miculan, editors,
Foundations of Sofhvare Science and Computation Struc-
tures (FoSSaCS 2001), volume 2030 of Lecture Notes on
Computer Science, pages 25-41, Genova, Italy, Apr. 2001.
Springer Verlag.

[5] M. Abadi and C. Fournet. Mobile Values, News Names, and
Secure Communication. In 28th Annual ACM SICPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL’OI), pages 104-1 15, London, United King-
dom, Jan. 2001. ACM Press.

[6] M. Abadi and R. Needham. Prudent engineering practice
for cryptographic protocols. IEEE Transactions on Sofhvare
Engineering, 22(1):6-15, Jan. 1996.

[7] C. Bodei. Security Issues in Process Calculi. PhD thesis,
Universith di Pisa, Jan. 2000.

[8] C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Control
Flow Analysis for the r-calculus. In International Confer-
ence on Concurrency Theory (Concur’98), volume 1466 of
Lecture Notes on Computer Science, pages 84-98. Springer
Verlag, Sept. 1998.

[9] D. Bolignano. Towards a Mechanization of Cryptographic
Protocol Verification. In 0. Grumberg, editor, 9th In-
ternational Conference on Computer Aided Ver$cation
(CAV’97), volume 1254 of Lecture Notes on Computer Sci-
ence, pages 131-142. Springer Verlag, 1997.

[lo] P. Broadfoot, G. Lowe, and B. Roscoe. Automating Data
Independence. In 6th European Symposium on Research in
Computer Security (ESORICS 2000), volume 1895 of Lec-
ture Notes on Computer Science, pages 175-1 90, Toulouse,
France, Oct. 2000. Springer Verlag.

[I I] M. Burrows, M. Abadi, and R. Needham. A Logic of Au-
thentication. Proceedings of the Royal Society of London A,
426:233-271, 1989. A preliminary version appeared as Dig-
ital Equipment Corporation Systems Research Center report
No. 39, February 1989.

121 L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and Group
Creation. In C. Palamidessi, editor, CONCUR 2000: Con-
currency Theory, volume 1877 of Lecture Notes on Com-
puter Science, pages 365-379. Springer Verlag, Aug. 2000.

Specifying Authentication Protocols Using
Rewriting and Strategies. In I. Ramakrishnan, editor, Prac-
tical Aspects of Declarative Languages (PADL’OI), volume
1990 of Lecture Notes on Computer Science, pages 138-
152, Las Vegas, Nevada, Mar. 2001. Springer Verlag.

141 E. M. Clarke, S. Jha, and W. Marrero. Using State Space
Exploration and a Natural Deduction Style Message Deriva-
tion Engine to Verify Security Protocols. In Proceedings
of the IFIP Working Conference on Programming Concepts
and Methods (PROCOMET), June 1998.

151 P. Cousot and R. Cousot. Comparing the Galois Connection
and WideningINarrowing Approaches to Abstract Interpre-
tation. In M. Bruynooghe and M. Wirsing, editors, Proceed-
ings of the fourth international symposium PLILP’92 (Pro-
gramming Language Implementation and Logic Program-

131 H. Cirstea.

93

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

ming), Lecture Notes on Computer Science, pages 269-295.
Springer Verlag, Aug. 1992'.
G. Denker, J. Meseguer, and C. Talcott. Protocol Specifi-
cation and Analysis in Maude. In N. Heintze and J. Wing,
editors, Proc. of Workshop on Formal Methods and Security
Protocols, Indianapolis, Indiana, 25 June 1998.
D. E. Denning and G. M. Sacco. Timestamps in Key Dis-
tribution Protocols. Commun. ACM, 24(8):533-536, Aug.
1981.
W. Diffie and M. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, IT-22(6):644-
654, Nov. 1976.
N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov.
Undecidability of bounded security protocols. In Workshop
on Formal Methods and Security Protocols (FMSP'99),
Trento, Italy, 5 July 1999.
J. Goubault-Larrecq. A Method for Automatic Crypto-
graphic Protocol Verification (Extended Abstract), invited
paper. In Fifrh International Workshop on Formal Meth-
ods for Parallel Programming: Theory and Applications
(FMPPTA '2000), Canclin, Mexique, May 2000. Springer-
Verlag.
J. Heather and S. Schneider. Towards automatic verifi-
cation of authentication protocols on an unbounded net-
work. In 13th IEEE Computer Security Foundations Work-
shop (CSFW-I3), pages 132-143, Cambridge, England, July
2000.
M. Hennessy and J. Riely. Information Flow vs. Resource
Access in the Asynchronous Pi-Calculus. In Proceedings
of the 27th International Colloquium on Automata, Lan-
guages and Programming, Lecture Notes on Computer Sci-
ence, pages 415427. Springer Verlag, 2000.
D. Kindred and J. M. Wing. Fast, Automatic Checking of
Security Protocols. In USENIX 2nd Workshop on Electronic
Commerce, pages 41-52, Nov. 1996.
H. Krawczyk. SKEME: A Versatile Secure Key Exchange
Mechanism for Internet. In Proceedings ofthe Internet So-
ciety Symposium on Network and Distributed Systems Secu-
rity, Feb. 1996. Available at h t t p : / /bilbo . i s u . edul
sndss/sndss96.html.
G. Lowe. Breaking and Fixing the Needham-Schroeder
Public-Key Protocol using FDR. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 1055
of Lecture Notes on Computer Science, pages 147-166.
Springer Verlag, 1996.

[26] C. Meadows. A Model of Computation for the NRL Pro-
tocol Analyzer. In Proceedings of 1994 Computer Security
Foundations Workshop (CSFW-7), Franconia, New Hamp-
shire, June 1994. IEEE Computer Society.

[27] J. K. Millen, S. C. Clark, and S. B. Freedman. The Inter-
rogator: Protocol Security Analysis. IEEE Transactions on
Software Engineering, SE-13(2):27&288, Feb. 1987.

[28] J. C. Mitchell, M. Mitchell, and U. Stem. Automated Analy-
sis of Cryptographic Protocols Using Murp. In Proceedings
of the I997 IEEE Symposium on Security and Privacy, pages

[29] D. Monniaux. Abstracting Cryptographic Protocols with
Tree Automata. In Static Analysis Symposium (SAS'99),
volume 1694 of Lecture Notes on Computer Science, pages
149-163. Springer Verlag, Sept. 1999.

141-151, 1997.

[30] R. M. Needham and M. D. Schroeder. Using Encryption for
Authentication in Large Networks of Computers. Commun.
ACM, 21(12):993-999, Dec. 1978.

[31] R. M. Needham and M. D. Schroeder. Authentication Re-
visited. Operating Systems Review, 2l(l):7, 1987.

[32] D. Otway and 0. Rees. Efficient and Timely Mutual Au-
thentication. Operating Systems Review, 2I(l):8-10, 1987.

[33] L. C. Paulson. The Inductive Approach to Verifying Cryp-
tographic Protocols. Journal of Computer Security, 6(1-

[34] A. W. Roscoe and P. J. Broadfoot. Proving Security Pro-
tocols with Model Checkers by Data Independence Tech-
niques. Journal of Computer Security, 7(2, 3): 147-190,
1999.

[35] D. X. Song. Athena: a New Efficient Automatic Checker for
Security Protocol Analysis. In Proc. of 12th IEEE Computer
Security Foundation Workshop (CSFW-I2), Mordano, Italy,
June 1999.

[36] P. Syverson. A Taxonomy of Replay Attacks. In Proceed-
ings of the 7th IEEE Computer Security Foundations Work-
shop (CSFW-94), pages 131-136, 1994.

[37] H. Tamaki and T. Sato. UnfoldFold Transformation of
Logic Programs. In S. Ake Tamlund, editor, Proceedings
of the Second International Logic Programming Conference
(ICLP'M), pages 127-138, Uppsala, Sweden, July 1984.

2):85-128, 1998.

A. Proof of correctness of our algorithm

Lemma 4 A t the end of the first phase, B satisfies the fol-
lowing properties:

1. VREBo,3R 'EB1R '=+-R;

2. Let R E B, R = H -+ C and R' E B, R' = H' +
C'. Assume that there exists FO E H' such that:

(a) R OF^ R' is defined;

(b) V F E H I F Er S;
fc) FO #r S.

In this case, there exists R" E B, RI' + R 0~~ R'.

Proof To prove the first property, let R E Bo. We show
that during the whole execution of phase 1,3R' E B , R' +
R.

At the beginning, we execute the instruction B t
add(elimdup(R), B). If there exists no R' E B such that
RI + elimdup(R), elimdup(R) is added to B. We have
elimdup(R) + R (with ~7 the identity). Therefore, after the
execution of this instruction 3R' E B, R' + R.

Assume that we execute B t add(R", B), and before
this execution 3R' E B , R' + R. Either R' is kept in B ,
then this property is true after the execution of add. Or R'
is removed, and RI' + R'. Then R" + R (+ is transitive)
and the property is still satisfied.

The second property simply means that the fixed point is
reached at the end of phase 1 (using elimdup(R 0~~ R') +
R 0~~ RI). 0

94

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

Lemma 5 If R 0~~ R’ is deJned, R1 + R and R’, + R’
then either there exists F1 such that R1 09 Ri is dejined
and RI 09 R’, + R op0 RI, or R’, + R OF^ R’.

Proof Let R = H -+ C , R‘ = H’ -+ C’, R1 = H1 -+

can arrange such that the variables of R1 and R’, are dis-
tinct. Then there exists a substitution U such that aC1 = C,

n’ to n) are labelled by elements of H and H‘ - C1.
And the incoming edge of n’ is labelled by C’.

0 In the second case, we remove n, and link directly its
incoming and outgoing edges to n’. We have R’ +
and outgoing edges of n’ are now labelled by elements
of H U (H’ - C l) , its incoming edge by c‘.

C1, R’, = Hi -+ Ci. By renaming the variables, we (H -+ C1) 0c1 (HI -+ C’) = H U (H’ - C,) -+ C’,

(T H ~ c H , aCi = C’, aHi C H‘.
We have R OF^ R’ = u‘(H U (HI - Fo)) -+ dC‘ . We

have two cases.
First case: 3F1 E H i , aF1 = Fo. Since R 0~~ R’ is

defined, FO and C are unifiable, let O’ be the most general
unifier. O‘CTFI = cr’uC1, then F1 and C1 are unifiable,
therefore RI OF* R’, is defined. Let a1 be the most general
unifier. There exists O: such that d o = O: ~ 7 1 . We have
RI 0pl R’, = al (H1 U (H i - F i)) -+ alCi, 0’,01(H1 U
(H i - F i)) = o ’ o (H ~ U (H ~ - F ~)) E d (H U (H ’ - F o)) ,
aia1Ci = a’crCi = a’C‘. Then R1 OF^ R’, + R op0 RI.

Second case: OH; C H’ - Fo. Then a H i 2 (HU (H’ -
0 Fo)) and oC: = C’. Therefore R’, + R 0~~ R’.

Lemma 1 (Correctness of phase 1) Let F be a closed
fact. F is derivable from Bo if and only if F is derivable
from B’.

Proof Assume that F is derivable from Bo and consider
a derivation of F from Bo. For each rule R in Bo, there
exists a rule R‘ in B such that R’ + R (Lemma 4, Property
1) .

Assume that R is the label of a node with an incoming
edge labelled F and n outgoing edges labelled F1 , . . . , F,.
We have R j { F l , . . . ,F,} -+ F . Then R’ +
{ F I , . . . , F,} -+ F (+ transitive).

Therefore, we can replace the node labelled R by a node
labelled R’. This way, we obtain a derivation of F from B.

Assume that there are two nodes n and n‘ in this deriva-
tion of F , linked by an edge from n‘ to n labelled C1. As-
sume that n is labelled R and n’ is labelled R’. Let H
be the set of labels of outgoing edges of n, H’ the same
for n’, C’ the label of the incoming edge of n’. Then
(H -+ C1) ocl (H‘ -+ C’) is defined (with a substitu-
tion o being the identity). By Lemma 5, there exists F
such that R OF R‘ is defined, and two cases may arise:
either R O F R’ + (H -+ C1) ocl (HI -+ C’), or
R’ =+ (H -+ C,) 0c1 (H’ -+ C’).

0 In the first case, assume that the hypotheses (b) and
(c) of Lemma 4, Property 2 are satisfied. Then there
exists RI’ E B such that R“ + R O F R’. Then RI’ +
(H -+ C1) 0c1 (H’ -+ C‘) = H U (HI - C1) -+
C’ (+ transitive). Then the two nodes n and n’ can
be replaced by a node n” labelled R”. Indeed, the
outgoing edges of n and n’ (excluding the edge from

We perform this replacement process as long as there exist
nodes on which it can be applied. Once the replacement
process is done, we show that the remaining rules are all in
B’.

The rules labelling leaves of the tree are all in B‘ since
they have no hypotheses.

0 Let n’ be a node such that all sons of n’ are labelled by
a rule in B‘. Therefore, the hypothesis (b) is satisfied
for all sons n of n’ (the hypotheses F of the rule R la-
belling n satisfy F Er S). Since n and n’ cannot have
been merged with another node by the above replace-
ment process, hypothesis (c) is not satisfied for all sons
n of n’. Then all hypotheses FO of the rule labelling n’
satisfy FO Er S. That is, n’ is also labelled by a rule of
B’.

By induction, this proof shows that all nodes are labelled by
a rule of B’, which is the expected result.

For the converse implication, notice that if a fact is deriv-
able from B’ then it is derivable from B, and that all rules
added to B do not create new derivable terms: when com-
posing two rules R and R’, the created rule can derive terms

0 that could also by derived by R and R’.

Theorem2 Let F be a closed fact. Let F’ such that
there exists a substitution a such that OF’ = F . F
is derivable from the rules in Bo if and only if 3F” E
derivable(F’), 30, F = aF”.

In particular; F is derivable from Bo if and only if F E
derivable(F) .

Proof Using Lemma 1, we only have to prove
that F is derivable from B’ if and only if 3F” E
derivable(F’), 30, F = aF”.

Let us prove the direct implication. We consider a deriva-
tion of F from B’. We cut this derivation on certain edges,
and remove the branches that start from these edges. We call
the remaining part a partial derivation of F . Let F1, . . . , F,
be the labels of the cut edges. We prove that 3R‘, R‘ +
{ F I , . . . , F,} -+ F,derivablerec(R’, B”) c derivable(F’)
and QR” E B“ , RI’ + R’. The proof is by induction on the
number of nodes in the partial derivation.

If there are no nodes in the partial derivation, that is
we have cut the edge starting from the root, let R’ =

95

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

{F’} + F’, B” = 0. We have derivablerec(R’,B”) =
derivable(F’) hence the result.

For the induction step, consider a partial derivation with
k + 1 nodes. Let n be a node of this derivation whose
all outgoing edges have been cut (a leaf of the partial
derivation). Assume that n is labelled by R, that its in-
coming edge is labelled by Fl, its outgoing edges by
F;, . . . , FA,. The other edges that have been cut to build
the partial derivation are labelled by F2,. . . F,. By in-
duction hypothesis on the partial derivation without node
n, there exists R’ such that R’ + {Fl, . . . , F,} -+
F, derivablerec(R’,B”) C derivable(F’) and VR” E
B”, RI’ + RI. We show that there exists R j

deriva blerec(R j , B”) C derivable(F’) and VR” E
B”, RI’ + Rj . By definition of a derivation, R j

{F;, . . . ,FA,} -+ F1. Notice that the composition
({Pi , . . . ,FA!} + PI) OF^ ({FI , . . . ,Fn} -+ F) =
{F;,. . .FA,, F2,. . . , F,} + F is defined (the unifier 0
being the identity). Then by Lemma 5, two cases may
arise. First case: RI + {F;, . . .FA,, Fz , . . . , F n } -+
F, and the expected result is obvious with R j =
RI. Second case: there exists F” such that R O F I I

R’ + {F;,. . .FA,, F2,. . . , F,} + F . Let Ro =
elimdup(R OF,, RI). Then, by transitivity of +, Ro +
{Fi, . . .FA,, F 2 , . . . , F,} -+ F. By the step (c) of the
definition of derivablerec, derivablerec(R0, {RI} U B”) g
derivable(F’). If VR1 E {RI} U B”,R1 + Ro, we
have the expected result with R j = Ro. Otherwise,
3R1 E {RI} U B”, R1 + Ro. By transitivity of +,
R1 + {Fi, . . . FA,, F2,. . , , F,} -+ F . There is an older
call to derivablerec, of the form derivablerec(R1, Bl), such
that derivablerec(R1, B1) C derivable(F’). If B1 satisfies
VR2 E B1, RZ + RI, we have the result with R j = RI.
Otherwise, we go on taking a previous call to derivablerec
as above. The process terminates, since B” is finite.

We can apply the result we have just proved to the par-
ticular case when the partial derivation is in fact the whole
derivation of F. We obtain 3R’, RI j 0 -+ F and
derivablerec(R’, B”) derivable(F’), VR” E B”, RI’ +
R‘. Therefore R’ = 0 + F”, with aF“ = F .
derivablerec(R’, B”) = {F”}. (The case (a) of the defi-
nition of derivablerec cannot be applied because of the con-
dition VR” E B”, R” + RI.) Then F” E derivable(F’).
We have the expected result.

The proof of the converse inclusion is left to the reader.
(essentially, the rule R OF R’ does not generate facts that

0

such that R j + {F;, . . . , FA!, F z , . . . , Fn} + F,

cannot be generated by applying R and RI).

B. Termination

Lemma3 r f F is closed and S = {attacker(z)}, then
derivable(F) terminates.

Proof derivablerec(R,B”) is only called with R =
{ F } -+ F o r R = attacker(M1)A.. .Aattacker(M,) -+ F
where M I , . . . , M , are closed terms, or a variable that ap-
pears only once. This is proved by induction in the fol-
lowing. Moreover, we prove that the pair p = (total
size of the M I , . . . , M,,, that are closed terms, number of
M1, . . . , M , that are variables) ordered lexicographically
strictly decreases. This decrease proves the termination.

At the beginning, the rule is indeed R = {F} -+ F. For
recursive calls to derivablerec, the rule is R‘ 0~~ R, where
R’ = attacker(x1) A . . . A attacker(xk) + F’.

1. First case: FO is a closed fact.
After unification of F’ and Fo, xi is substituted by a

closed term Ni if zi appears in F‘. Otherwise, xi remains
unchanged, and we define Ni = xi.

0 If R = {F} + F, the resulting rule R’ 0~~ R is
attacker(N1) A . . . A attacker(Nk) -+ F .

0 Otherwise, R = attacker(M1)A.. .Aattacker(M,) +
F , FO = attacker(Mi). Assume that Mi is a closed
term. The resulting rule is attacker(N1) A . . . A
attacker (Nk) A attacker (Ml) A. . . A attacker (Mi - 1) A
attacker(Mi+l) A . . . A attacker(Mn) + F . More-
over, the N I , . . . , NI, that are closed terms are dis-
joint subterms of Mi, therefore the total size of the
NI, . . . , Nk that are closed terms is strictly smaller
than the size of Mi (except when R’ = attacker(z) -+
attacker(x), but in this case, R‘ op0 R = R, and the
call derivablerec(R’ 0~~ R, {R} U B”) stops immedi-
ately because R’ OF^ R = R E { R} U B”, by the first
point of the definition of derivablerec). Therefore the
total size of the closed terms in the hypotheses strictly
decreases. Hence the pair p ordered lexicographically
strictly decreases.

2. Second case: R = attacker(M1) A . . . A
attacker(M,) + F, FO = attacker(Mi), Mi = zi.

If R’ has some hypotheses, the resulting rule is
RI op0 R = attacker(xl) A . . . A attacker(xk) A
attacker(M1) A . . . A attacker(Mi-1) A attacker(Mi+l) A
. . . A attacker(M,) + F . We clearly have R’ OF^ R + R.
Therefore the call derivablerec(R’ OF^ R, {R} U B“) stops
immediately because R’ OF^ R j R and R E { R } U B“.

If R’ has no hypothesis, the resulting rule is R’ 0~~ R =
attacker(M1) A . . . A attacker(Mi-l) A attacker(Mi+l) A
. . . A attacker(M,) -+ F , and the total size of closed terms
in the hypotheses is constant, whereas the number of vari-
ables strictly decreases. Hence the pair p ordered lexico-
graphically strictly decreases. n

Remark. The cases RI = attacker(z) -+ attacker(z) and
FO = attacker(xi) are removed by the optimizations of
Section 5.2.

96

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on September 24,2024 at 09:39:47 UTC from IEEE Xplore. Restrictions apply.

