
CODE GENERATION

COSIMO LANEVE
cosimo.laneve@unibo.it

CORSO 72671
COMPLEMENTI DI LINGUAGGI DI PROGRAMMAZIONE

THIS LECTURE

2

lexical
analysis

syntactic
analysis

semantic
analysis

bytecode
generation

the SimpLan
interpreter

OUTLINE

1. management of run-time resources

2. correspondence between static (compile-time) and dynamic (run-
time) structures

3. storage organisation (in particular, memory management)

4. code generation (for stack machines)

5. the assembly language

6. a simple source language (SimpLan) and its stack-machine
implementation

reference:

Torben Morgensen: Basics of Compiler Design, Chapter 7
3

RUN-TIME ENVIRONMENTS

before discussing code generation, we need to understand what we
are trying to generate

there are a number of standard techniques for structuring executable
code that are widely used

remark: the execution of a program is initially under the control of
the operating system — when a program is invoked:

1. the OS allocates space for the program

2. the code is loaded into part of the space

3. the OS jumps to the entry point (i.e., “main”)

4

MEMORY LAYOUT

traditionally, pictures of machine organization
have areas for different kinds of data:

delimitated by lines

these pictures are simplifications

not all memory needs to be contiguous

what is “other space”?
holds all data for the program

Other Space = data space

the compiler is responsible for:
generating code

managing the use of the data space

Memory

Code

Other Space

5

CODE GENERATION GOALS AND ASSUMPTIONS

two goals:

1. correctness

2. speed

most complications in code generation come from trying to be fast as
well as correct

assumptions:

1. execution is sequential; control moves from one point in a program
to another in a well-defined order

2. when a procedure is called, control eventually returns to the point
immediately after the call

6

ACTIVATIONS AND LIFETIME OF THE VARIABLES

an invocation of function f is an activation of f

the lifetime of an activation of f is

all the steps to execute f

including all the steps in f calls

the lifetime of a variable x is the portion of execution in which
x is defined

note that
lifetime is a dynamic (run-time) concept

scope is a static concept

7

ACTIVATION TREES

trees that indicate the activation lifetime of functions

example:

int g() { return 1 ; }
int f() { return g() ; }
void main() {

g() ; f() ;
}

assumption (2) requires that when f calls g, then g returns before f
continues

lifetimes of procedure activations are properly nested

the activation tree
invocations in sequence are depicted as brother nodes

nested invocations are depicted as father-son nodes
8

main

f()g()

g()

the activation tree

EXAMPLE

compute the activation tree for

int g() { return 1; }
	int f(int x) {
		 if (x == 0) { return g(); }
		 else { return f(x - 1); }
	}
	void main() { f(3); }

9

main

f(3)

f(2)

f(1)

f(0)

g()

the activation tree

REMARKS

the activation tree depends on the run-time behaviour

the activation tree may be different for every program input

since activations are nested, a stack can track currently active
procedures

10

 int g() { return 1; }
	 int f() { return g(); }
	 void main() {

g();
f();

 }

Stack

mainmain

fg

g

g

g

Activation Tree

main

fmain

fmain

REVISED MEMORY LAYOUT

the information needed to manage one
function activation is called an
activation record (AR) or frame

the program starts with the AR of main

then main invokes f

then f calls g

remark: g’s activation record contains a mix of
info about f and g

Code

Memory

Stack

11

Other Space

activation record of main

activation record of f()

activation record of g()

this is a stack of activation records
• the AR have different dimensions
• the dimension depends on the formal parameters

and on the local variables
• you need to implement the stack by means of

pointers

WHAT IS IN G’S AR WHEN F CALLS G?

f is “suspended” until g completes, when this happens, f resumes

g’s AR contains information needed to resume execution of f

g’s AR may also contain:

g’s return value (needed by f)

actual parameters to g (supplied by f)

space for g’s local variables

12

THE CONTENTS OF A TYPICAL AR FOR g

1. space for g’s return value

2. actual parameters

3. pointer to the previous activation record
the control link — points to AR of caller of g

4. machine status prior to calling g

contents of registers & program counter

5. local variables

6. other temporary values

13

int g() { return 1; }
int f(int x) {

 int y = 1 ;
	 	 if (x == 0) { return g(); }
	 	 else { return f(x - y); (**) }
	 }
	 void main() { f(3); (*) }

 AR for f:

THE EXERCISE, REVISITED

14

return address

formal parameters

local variables

pointer to previous AR

growthremarks
• this is a possible structure of AR

• there is no space for the return value
because it will be stored in a register (in
our machine)

• otherwise it is stored below the "pointer
to previous AR". WHY?

2
(**)

main

(*)
3

1

1

f

f

STACK AFTER TWO CALLS TO f

15

main has no argument or local variables and its
result is never used; its AR is uninteresting

(*) and (**) are return addresses of the
invocations of f

this is only one of many possible AR designs

it works for many programming languages

Stack

the compiler must determine, at compile-time, the
layout of activation records and generate code that
correctly accesses locations in the activation record

therefore the AR layout and the code generator must be
designed together!

THE MAIN POINT

16

WHO BUILDS THE ACTIVATION RECORDS?

both the caller and the callee

17

return address

actual parameters

local variables

pointer to previous AR

growth
this is done by the caller

this is done by the callee

GLOBAL VARIABLES

all references to a global variable point to the same element

it is wrong to store a global variable in an AR

global variables are assigned a fixed address once

variables with fixed address are “statically allocated”

depending on the language, there may
be other statically allocated values

 memory layout with static data:

18

Static Data

Memory

Code

Stack

VARIABLES DECLARED IN OUTER SCOPES

references to a variable declared in an outer scope
should point to a variable stored in another activation record

to which activation record ?
according to the most closely nested rule, an activation record should point to
the most recent activation record of its immediately enclosing scope

use access links …

19

the access links are set to the AR of the enclosing syntactical
block

for function body, this is the block that
contains the function declaration

ACTIVATION RECORDS WITH ACCESS LINKS

20

int x = 1;
{
 int g(int z){ return x+z; }
 int f(int y){ int x = y+1;
 return g(y*x); }
 f(3);
 . . .
}

x: int, 1
g: intint, 2
f: intint, 2

y: int, 3
x: int, 3

the symbol table at this point

y
f(3)

x

return address

3

access link

control link

4

1outer block

access link

control link

x

g(12)z

access link

control link

12

return address

the access links are set to the AR of the
enclosing syntactical block — another example

ACTIVATION RECORDS WITH ACCESS LINKS/2

21

 int x = 1;
 { int g(int z){
 int f(int y){ int x = y+1;
 return g(y*x);
 }
 return f(x+z);
 }
 g(3);
 }
 . . .

x: int, 1g: intint, 2z: int, 3
f: intint, 3

y: int, 4
x: int, 4

the symbol table at this point

y
f(3)

x

return address

5

4

access link

control link

1outer block

access link

control link

x

g(12)z

access link

control link

20

return address

g(3)z

access link

control link

3

return address

SETTING THE ACCESS LINK

the value of the access link of a new activation record is established as
follows:

an inner block is entered or a function declared in the current scope is called:

ACCESS_LINK = address of ACCESS_LINK in current AR

a function calls itself recursively or calls another function declared in the
enclosing syntactical block:

ACCESS_LINK = value of ACCESS_LINK of the current AR

in general, call to a function outside the current scope:

ACCESS LINK = follow the chain of ACCESS_LINKs for
 the difference between current
 nesting level and that of function
 declaration; let AR' be the activation
 record
 address of ACCESS_LINK of AR'

22

a value that outlives the procedure that creates it cannot be kept in the AR

Bar foo() { return new Bar() ; }

the Bar value must survive deallocation of foo’s AR

the ARs in the stack are deallocated when the control exits from the corresponding
scope

what about data in the heap?

languages with dynamically allocated data use a heap
to store dynamic data

HEAP STORAGE

23

GARBAGE COLLECTION

what about data in the heap?
they can be removed when they become “garbage”

at a given point p in the execution of a program, a memory location m is garbage
if no continuation of p can access location m

garbage collection:

detects garbage during program execution

is invoked when more memory is needed

the decision is made by the run-time system, not by the program

24

GARBAGE COLLECTION

in some programming languages, deallocation is under the
responsibility of the programmer

example of deallocation in C

ptr = lst ; flag = true ;
while (ptr!=NULL && flag){

if (ptr->val == 1) { ptr = ptr->next ; flag = false ; }
else { previous = ptr; ptr = ptr->next ; free(previous) ; }
}

problem: in case of sharing (more pointers to the same location) the cell
cannot be actually freed (dangling pointers)

in the above example, lst is a dangling pointer when lst->val != 1

other languages have implicit garbage collection algorithms

25

GARBAGE COLLECTION ALGORITHM/MARK AND SWEEP

mark-and-sweep algorithm

assume tag bits associated with data

assume that the addresses of locations created by a program are
collected into a table

the algorithm:
1. set all tag bits to 0

2. start from each location used directly in the program (look for them
from the AR) and follow all links, changing tag bit to 1

3. consider as garbage all cells with tag = 0

26

GARBAGE COLLECTION ALGORITHM/REFERENCE COUNTING

reference counting algorithm

assume each datum in memory has an associated reference
counter

the algorithm:

1. when a datum is allocated in memory, initialize the counter to 0

2. when a pointer to a datum is set, increments the counter

3. when a pointer to a datum is reset, decrement the counter

4. when the counter turns to be 0, the datum is garbage

27

RECAPS

the code area contains object code
for most languages, fixed size and read only

the static area contains data (not code) with fixed addresses (e.g.,
global data)

fixed size, may be readable or writable

the stack contains an AR for each currently active procedure
each AR usually has fixed size (for a given procedure), contains locals

the heap contains all other data

both the heap and the stack grow
you must take care that they don’t grow into each other
solution: start heap and stack at opposite ends of memory and let
them grow towards each other

28

MEMORY LAYOUT WITH HEAP

29

Static Data

Memory

Code

Heap

Stack

CODE GENERATION

several possible code generations!

it depends on virtual machine and its bytecode instructions

a simple virtual machine: a stack machine with registers
stack machines are very common because they use the stack of
activation records

the Java Virtual Machine is a stack machine with registers

the Simple Virtual Machine (SVM) is a stack machine with registers

30

CODE GENERATION FOR STACK MACHINES WITH REGISTERS

stack machines with (finitely many) registers are a simple evaluation
model

use the stack (of activation records) and registers to store values for
intermediate results

example: consider the instructions

push n : places the integer n on top of the stack

popr A0 : pops the value on top of the stack and stores it in the register A0

add A0 m : adds the value of A0 to m and puts the result back on the stack

a program that computes 7 + 5 and stores the result in A0:

push 7
popr A0
add A0 5
popr A0

	

31

stack

 popr A0push 7 add A0 5

...
7

7

12

- -A0 7

...

12

 popr A0

IN STACK MACHINES WITH REGISTERS

each operation takes operands either from the stack or from
registers and puts results on the stack or in a register

this means a simple compilation scheme

the location of the operands is either implicit (the stack) or
explicit (the registers)

when the operands are implicit, they are always on top of the stack

therefore there is no need to specify operands explicitly

there is no need to specify the location of the result

32

FROM STACK MACHINES TO ASSEMBLY LANGUAGE

we consider a compiler that generates code for a stack machine
with registers

we want to run the resulting code on some processor

we will define a machine, called SVM (Simple Virtual Machine) and
an interpreter for the SVM machine code

the interpreter will be in Java

our assembly language

has arithmetic operations that use registers for operands and
results

we will use A0, RA, FP, SP, AL, T1

use load and store instructions for moving values between stack/
memory and registers

33

A SAMPLE OF ASSEMBLY INSTRUCTIONS

add R1 R2
push(R1 + R2) // the value of R1 plus the value

 // of R2 is stored on the stack
addi R1 n

push(R1 + n) // the value of R1 plus n is
 // stored on the stack

sub R1 R2
push(R1 - R2) // the value of R1 plus the value

 // of R2 is stored on the stack

storei R1 n // n is stored in R1

move R1 R2 // the value of R1 is stored in R2

pushr R1 // pushes the value of R1 on the stack

popr R1 // pops the stack, the value is stored in R1

34

A BASIC LANGUAGE

a basic language with integers and integer operations

P → D ; P | E
D → T id(ARGS) = E
ARGS → T id, ARGS | T id
E → Int | Id | if (E1 == E2) then E3 else E4

 | E1 + E2 | E1 – E2 | id(E1,…,En)

Int are integer constants, Id are the identifiers,

the rightmost expression is the “main”

there is recursion — the program computing the product of two numbers:
int product(int m, int n) =

if (n == 0) then 0
else if (n == 1) then m
else m + product(m, n-1) ;

product(5,7)

35

T is only int in this language there is no
variable declaration — there
are formal parameters only!

for each expression e we generate assembly code that:

computes the value of e and stores it in A0 (A0 is a special register called
accumulator)

preserves SP and the contents of the stack

we define a code generation function

cgen(SymbolTable Γ, Node e)

whose result is the code generated for e

the invariant must be satisfied by cgen(Γ,e)

invariant: the result of computing an expression is always in the
accumulator

after computing an expression the stack is as before

CODE GENERATION STRATEGY

36

CODE GENERATION FOR CONSTANTS AND ADD

the code to evaluate a constant simply copies it into the
accumulator:

cgen(Γ, n) = storei A0 n
this preserves the stack, as required

the code to evaluate an add expression is:
 cgen(Γ, e1 + e2) = cgen(Γ, e1)

 pushr A0
 cgen(Γ, e2)
 popr T1
 add A0 T1
 popr A0

this code preserves the stack, as required

possible optimization: put the result of e1 directly in register T1 ?

37

this is ok, but be carefull!
you need to verify that the
old value of T1 is useless!

ANOTHER CODE FOR ADD

possible optimization: put the result of e1 directly in T1

 cgen(Γ, e1 + e2) =
 cgen(Γ, e1)

 move A0 T1 // T1 ← A0
 cgen(Γ, e2)
 add A0 T1

 popr A0

this is wrong!

try to generate code for : 3 + (7 + 5)

38

REMARKS ABOUT CODE GENERATION

1. the code for + is a template with “holes” for code for

evaluating e1 and e2

2. stack-machine code generation is recursive

3. code for e1 + e2 consists of code for e1 and e2 glued
together

4. code generation can be written as a recursive-descent visit of
the AST

39

CODE GENERATION FOR SUB

the code is

 cgen(Γ, e1 - e2) =
 cgen(Γ, e1)

 pushr A0
 cgen(Γ, e2)
 popr T1
 sub T1 A0
 popr A0

this code preserves the stack, as required

the old value of T1 is useless

40

CODE GENERATION FOR CONDITIONAL — ATTEMPT 1

we need a flow control instructions

beq R1 R2 label

branch to label if R1 = R2
another branching instruction: b label (unconditional jump to
label)

41

cgen(Γ, if (e1==e2) then e3 else e4) =
 cgen(Γ, e1)
 pushr A0
 cgen(Γ, e2)
 popr T1
 beq A0 T1 true_branch

 false_branch:
 cgen(Γ, e4)
 b end_if
 true_branch:
 cgen(Γ, e3)
 end_if:

CODE GENERATION FOR CONDITIONAL — SOLUTION

we have added labels
the code for if (e1 = e2) then e3 else e4 :

 cgen(Γ, if (e1 == e2) then e3 else e4) =
 false_branch = newlabel();
 true_branch = newlabel();
 end_if = newlabel();
 cgen(Γ, e1)
 pushr A0
 cgen(Γ, e2)
 popr T1
 beq A0 T1 true_branch

 false_branch:
 cgen(Γ, e4)
 b end_if
 true_branch:
 cgen(Γ, e3)
 end_if:

42

the labels must be fresh
to avoid name clashes

false_branch is useless!

RECAP OF THE BYTECODE

the bytecode language is the following one (up-to now)

bytecode = (storei R1 n
 | add R1 R2

| sub R1 R2
| addi R1 n
| pushr R1
| popr R1
| move R1 R2
| beq R1 R2 label
| b label
| label:)* ;

we have used the registers A0, T1

43

THE ACTIVATION RECORD

code for function calls and function definitions depends on the
layout of the activation record

a very simple AR suffices for this language:

the result is always in the accumulator
no need to store the result in the AR

the activation record holds actual parameters

for f(x1,…,xn) push xn,…,x1 on the stack

these are the only variables in this language

the stack discipline guarantees that on function exit SP is the
same as it was on function entry

there is no need to store SP in the AR

we need to store the return address44

THE ACTIVATION RECORD (CONT.)

we need to implement the stack of activation records

the AR must store a pointer to an address of caller's AR

this is the chain of control links used before

this pointer is stored in the register FP (frame pointer)

we take FP to point below the position of the first parameter
of the called function (to the old value of FP)

FP is used by generated code to locate AR elements, e.g.
parameters, based on offsets

45

THE ACTIVATION RECORD (CONT.)

what about the access link?

access links are not needed because we do not have nested
declarations

we just have local parameter declarations and functions that are all
declared in the global scope that is allocated statically

46

THE ACTIVATION RECORD: SUMMARY

for our simple language, an AR with the caller’s frame pointer
(control link), the actual parameters, and the return address
suffices

consider a call to f(x,y), the AR will be:

47

part of AR of f built by caller stack growth

part of AR of f built by callee

x
y

old FP

return address
SP

RA is the return
address

FP

 CODE GENERATION FOR VARIABLES

in our simple language the “variables” of a function are just its
parameters

they are all in the AR

pushed by the caller

problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from SP

example: int f(x) = 3+x

solution: use the frame pointer
it always points to the first variable

48

CODE GENERATION FOR VARIABLES: EXAMPLE

we use the instruction

store R1 offset(R2)

that stores in R1 the value at address R2+offset

for int f(x1,x2) = e the activation and frame
pointer are set up as follows:

x1 is at FP - 1

x2 is at FP - 2

thus, the access to xi is

cgen(Γ,xi) = store A0 z(FP)

with z = i

the offset of a parameter needs to be inserted in its symbol table
entry

49

store A0 lookup(Γ,xi).offset(FP)

gives the offset
of xi inside the AR

return
address

...

old FP

x1

x2

FP

SP

CODE GENERATION FOR FUNCTION CALL

the calling sequence consists of instructions (of both caller and callee)
that set up a function invocation

new instruction: jsub label

jump to label, save address of next instruction in RA

 cgen(Γ,f(e1,…,en)) = pushr FP
 cgen(Γ, e1)
 pushr A0

 . . .
 cgen(Γ, en)
 pushr A0
 move SP FP

 addi FP n+1
 jsub lookup(Γ, f).label

50

the caller saves its value of the frame
pointer

then it saves the actual parameters in
reverse order

then it saves the return address in
register RA

the AR so far is n+1 words

the label is set when the symbol table is
created for function definitions

store in FP the address of
the old value of FP which
is at SP+n+1
this must be done after
having evaluated the
actual parameters! WHY?

CODE GENERATION FOR FUNCTION DEFINITION

new instruction: rsub RA // jump to address in RA

cgen(Γ,int f(int x1,…,int xn) = e) =
 lookup(Γ,f).label:

 pushr RA
 cgen(Γ,e)
 popr RA
 addi SP n
 popr FP
 rsub RA

the frame pointer does point to the bottom of the frame

the callee pops the return address, the actual arguments and the saved value of
the frame pointer

n is the number of formal parameters of f // the addi is equivalent to pop n
times

the return value is left in A0 51

SP

FP

old FP

x
y

on entry

CALLING SEQUENCE: EXAMPLE FOR F(X,Y)

52

FP

SP

before call

return
address

in the body

...

old FP

x
y

FP

SP

FP

SP

after call

because the stack grows when intermediate results are saved,
ARs are not adjacent on stack!

example: int f(int x, int y) = (x+3)+g(y)

upon execution, the value of x+3 is on the stack between the AR of
f and the AR of g

CODE GENERATION FOR PROGRAMS

what is cgen(∅, D1; … ; Dn; E) ?

we are in a very simple case:

there is no declaration of variables

Di are all function definitions

cgen(∅, D1; … ; Dn; E) =
 storei SP max_value
 storei FP max_value
 cgen(Γ,E) // where ∅ D1; … ; Dn : Γ
 halt // end of the program
 cgen(∅, D1; … ; Dn) // the sequence of fun declar.

cgen(Γ, D; D') = cgen(Γ, D) // D is a single function
 cgen(Γ', D') // Γ ⊢ D : Γ' a single function

53

FP SP

growth

working
area

SUMMARY

the activation record layout must be designed together with the code
generator

code generation can be done by recursive traversal of the AST

to simplify the presentation we have not discusses the access links!

but access links can be easily added (as discussed in “memory
management”):

check the difference in the nesting level between the caller and the declaration of
the callee, and follow the already settled access links accordingly

54

RECAP OF THE BYTECODE

the bytecode language is the following one

 bytecode = (storei R1 n

 | add R1 R2

| sub R1 R2
| addi R1 n

| pushr R1

| popr R1

| move R1 R2

| beq R1 R2 label

| b label

| label:

| store R1 offset(R2)

| jsub label

| rsub R1)* ;

we have used the registers A0, T1, SP, RA, FP
55

in red: new instructions
and new registers

EXAMPLE: CODE GENERATION FOR PRODUCT
cgen(Γ, n) = storei A0 n
cgen(Γ, e1 + e2) = cgen(Γ, e1)
 pushr A0
 cgen(Γ, e2)
 popr T1
 add A0 T1
 popr A0

cgen(Γ, if (e1 == e2) then e3 else e4) =
 true_branch = newlabel();
 end_if = newlabel();
 cgen(Γ, e1)
 pushr A0
 cgen(Γ, e2)
 popr T1
 beq A0 T1 true_branch
 cgen(Γ, e4)
 b end_if
 true_branch: cgen(Γ, e3)
 end_if:

56

cgen(Γ,x) = store A0 lookup(Γ,x).offset(FP)

cgen(Γ,f(e1,…,en)) = pushr FP
cgen(Γ, e1)
pushr A0
. . .
cgen(Γ, en)
pushr A0
move SP FP
addi FP n+1
jsub lookup(Γ, f).label

cgen(Γ,int f(int x
1
,…,int x

n
) = e) =

 lookup(Γ,f).label: pushr RA
 cgen(Γ,e)
 popr RA
 addi SP n
 popr FP
 rsub RA

int product(int m, int n) = if (n == 0) then 0
 else if (n == 1) then m
 else m + product(m, n-1) ;

product(5,7)

EXAMPLE: CODE GENERATION FOR PRODUCT
 storei SP max_value
 storei FP max_value
 pushr FP
 storei A0 5
 pushr A0
 storei A0 7
 pushr A0
 move SP FP
 addi FP 3
 jsub Prod
 halt

Prod: pushr R
 store A0 -2(FP)
 pushr A0
 storei A0 0
 popr T1
 beq A0 T1 true_E
 store A0 -2(FP)
 pushr A0
 storei A0 1
 popr T1
 beq A0 T1 true_I
 store A0 -1(FP)
 b end_I
true_I: store A0 -1(FP)
 pushr A0
 pushr FP
 store A0 -1(FP)
 pushr A0
 store A0 -2(FP)
 pushr A0
 storei A0 1
 popr T1
 sub T1 A0
 popr A0
 pushr A0
 move SP FP
 addi FP 3
 jsub Prod
 popr T1
 add A0 T1
 popr A0
 end_I: b end_E
true_E: storei A0 0
end_E: popr RA
 addi SP 2
 popr FP
 rsub RA 57

int product(int m, int n) = if (n == 0) then 0
 else if (n == 1) then m
 else m + product(m, n-1) ;

product(5,7)

cgen(Γ, if_esterno)

cgen(Γ, if_interno)

else
if interno

then
if interno

cgen(Γ, product(5,7))

THE BASIC LANGUAGE WITH ACCESS LINKS AND STATEMENTS

the basic language grows . . .

P → D ; P | E | S
D → T id(ARGS) = P
ARGS → id, ARGS | id
E → int | id | if (E1 == E2) then E3 else E4

 | E1 + E2 | E1 – E2 | id(E1,…,En)
S → (id = E ; | id(E1,…,En) ;)+
T → int | void

int and void are the types

there are nested declarations of functions

example:
void foo(int x,int y) = void gee(int z) x = x+z ;
 if (y == 0) then skip ;
 else (gee(y) ; foo(x,y-1) ;)
foo(0,10) ;

58

skip is e.g. x=x ;

STATEMENTS

we discuss assignments x = e ;

simple case: x is in the current RA

offsetx is at an offset with respect to the
current value of FP

we use a new instruction:

load R1 offset(R2)

that loads in the address R2+offset the value at R1

thus cgen(Γ, x = e;) =
 cgen(Γ, e)
 load A0 offsetx(FP)

59

return
address

...

old FP

x

FP

$sp

offsetx

lookup(Γ, x).offset(FP)

where is offsetx?

THE ACCESS TO GLOBAL VARIABLES: ACCESS LINKS

the AR for our language has

the caller’s frame pointer,

the access link to the enclosing environment (in the static chain),

the actual parameters,

and the return address

consider a call to f(x,y), the AR will be:

60

stack growth
this is used to
go through the
static chain

RA

stores
the return
address

points to FP of the AR
in the dynsmic chain

old AL

x

old FP

return address

y

FP
AL

SP

THE ACCESS TO GLOBAL VARIABLES: ACCESS LINKS

cgen(Γ,x) =
 move AL T1

 for (i=0;
 i < nesting_level -
 lookup(Γ, x).nesting_level;
 i++) store T1 0(T1) ;
 subi T1 lookup(Γ, x).offset
 store A0 0(T1)

cgen(Γ, x = e;) =
 cgen(Γ, e)

 move AL T1
 for (i=0;
 i < nesting_level -
 lookup(Γ, x).nesting_level;
 i++) store T1 0(T1) ;
 subi T1 lookup(Γ, x).offset
 load A0 0(T1)

61

this is the
dereferentiation of AL

gives the nesting level of
x wrt the current one

exercise: define cgen(Γ, S ; S’)

we do not use anymore FP!

CODE GENERATION FOR FUNCTION CALL WITH ACCESS LINKS

the code for the invocation in slide 51 must be refined … managing access
links

cgen(Γ, f(e1,…,en)) =
 pushr FP
 move SP FP
 addi FP 1
 move AL T1
 for (i=0;

 i < nesting_level -
 lookup(Γ,f).nesting_level;
 i++) store T1 0(T1) ;

 pushr T1
 cgen(Γ, e1)
 pushr A0
 . . .
 cgen(Γ, en)
 pushr A0
 move FP AL
 subi AL 1
 jsub lookup(Γ, f).label

62

the label is taken
from the symbol table

y
x

old FP

return address

stack growth

old AL
points to the
beginning of
the previous
frame

points to the
second element
of the frame
in the static
environment

management of
the access link

NEW CODE GENERATION FOR FUNCTION DEFINITION

there may be several functions called in the same way

the label of the first instruction must be taken from the symbol table!

cgen(Γ, T f(T1 x1,…,Tn xn) = e) =
 lookup(Γ,f).label:

 pushr RA
 cgen(Γ, e)
 popr RA
 addi SP n
 pop
 store FP 0(FP)
 move FP AL
 subi AL 1
 pop
 rsub RA

63

the label is set
when the symbol table
is created for function
definitions

two pop: one for AL and
the other for FP

ADVANCED TOPICS

the implementation of higher order functions

the implementation of oo languages and of dynamic
dispatch

64

HIGHER-ORDER FUNCTIONS

in some languages, functions can be passed as parameters

	 fun bool f(x:(int,int) → bool, a:int, b:int){
...
bool z = x(a,b) ;
...

}

function f should prepare the activation record for the
execution of x(a,b)

PROBLEM: f has no knowledge about how to set the “access
link”

should point to most recent AR where the called function is
declared (based on difference with nesting level of such a
declaration, computed at compile time)

65

HIGHER-ORDER FUNCTIONS (CONT.)

solution:

the caller of f, that passes the actual value for the parameter x,
should also pass a pair containing:

1. the address of the code of the function g that is actually passed
(usual value of identifier g)

2. the address of the most recent AR in which g is declared (additional
context information)

this pair is called closure of the function to be passed

the value of x is set to such a pair (values of identifiers of function
type are pairs)

when x(a,b) is executed the access link will be set to the
second element of this pair

66

CODE GENERATION FOR OO LANGUAGES

two issues:

1. how are objects represented in memory?

2. how is dynamic dispatch implemented?

example

67

class A {
	 int a = 0;
	 int d = 1;
	 int f(){ return a + d; }
}

class B extends A {
	 int b = 2;
	 int f(){ return a ; } //override
	 int g(){ return a - b; }
}

class C extends A {
	 int c = 3;
	 int h(A x) { return x.f()*c; }
}

fields of A are inherited by
classes B and C

all methods in all classes
refer to a

for methods to work
correctly in A, B, and C
objects, field a must be in
the same “place” in each
object

dynamic dispatch!

A u = new B() ; C w = new C() ; w.h(u) ;

PROBLEM 1: OBJECT LAYOUT

an object is like a struct in C

the reference foo.field is an index into a foo struct at an offset
corresponding to field

an objects is stored in a contiguous memory

each field stored at a fixed offset in the object

the offset needs to be inserted in its symbol table entry

on object creation, the corresponding layout is instantiated in the heap (it
will be either eventually removed by the garbage collector or with an
explicit delete operation)

68

PROBLEM 1: OBJECT REPRESENTATION OF SUBCLASSES

remark: given a layout for class A, a layout for subclass B can be
defined by extending the layout of A with additional slots for the
additional fields of B

this leaves the layout of A unchanged (layout of B is an
extension of it)

69

PROBLEM 2: DYNAMIC DISPATCH
consider again our example

70

class A {
	 int a = 0;
	 int d = 1;
	 int f(){ return a + d; }
}

class B extends A {
	 int b = 2;
	 int f(){ return a ; } //override
	 int g(){ return a - b; }
}

class C extends A {
	 int c = 3;
	 int h(A x) { return x.f()*c; }
}

e.g() calls method g of B if e yields a B object
e.f() calls method f of A if e yields an A or C object (f is inherited in the case of C) calls
method f of B if e yields a B object (even if static type of e is A)

the implementation of methods and dynamic dispatch strongly resembles the
implementation of fields

PROBLEM 2: DYNAMIC DISPATCH/DISPATCH TABLES

every class has a fixed set of methods (including inherited methods)
a dispatch table indexes these methods

an array of method addresses

a method f lives at a fixed offset in the dispatch table for a class and
all of its subclasses

example: the dispatch table for class A has only 1 method

the tables for B and C extend the
table for A

because methods can be overridden,
the code for f is not the same in
every class, but is always at the
same offset

71

class A pointer to
f of A offset 0

offset 4

class B pointer to
f of B offset 0

offset 4pointer to
g of B

class C pointer to
f of A offset 0

offset 4pointer to
h of C

this is also called VIRTUAL TABLE

USING DISPATCH TABLES

the dispatch pointer in an object of class C points to the dispatch table for
class C

every method f of class C is assigned an offset Of in the dispatch table at
compile time

the offset is inserted in the symbol table entry of method f of class C as usual

to implement a dynamic dispatch e.f() we

let Of be the offset of the method f in the dispatch-table associated to the static
type of e

evaluate e, obtaining an object o (that could be of any subclass)

let D be the dispatch-table of o

execute the method pointed by D[Of]

72

THE SVM GRAMMAR

use MEMORY to store data; use registers SP, RA, RV, FP, HP, IP,

assembly: ('load' REG NUMBER '(' REG ')' // = memory[NUMBER+REG_r]<-REG_l
 | 'store' REG NUMBER '(' REG ')'	// = REGleft <- memory[NUMBER + REGright]
 	| 'storei' REG NUMBER	 	 	 // = REG <- NUMBER
 	| 'move' REG REG		 	 	 	 // = REGleft <- REGright
 	| 'add' REG REG		 	 	 	 // = top <- REGleft + REGright
 	| 'addi' REG NUMBER		 	 	 // = top <- REGleft + NUMBER
 	| 'sub' REG REG 		 	 	 	 // = top <- REGleft - REGright
 	| 'subi' REG NUMBER 		 	 // = top <- REGleft - NUMBER
 	| 'mul' REG REG		 	 	 	 // = top <- REGleft * REGright
 	| 'muli' REG NUMBER		 	 	 // = top <- REGleft * NUMBER
 	| 'div' REG REG		 	 	 	 // = top <- REGleft / REGright
 	| 'divi' REG NUMBER		 	 	 // = top <- REGleft / NUMBER
 	| 'push' (n=NUMBER | l=LABEL)	 // = memory[sp] = number|label , sp = sp-1
 	| 'pushr' REG	 	 	 	 	 // = memory[sp] = REG , sp = sp-1
 	| 'pop'		 	 	 	 	 	 // = sp = sp+1
 	| 'popr' REG 	 	 	 	 // = REG <- memory[SP+1] == STORE REG 0(SP)
 	| 'b' LABEL		 	 	 	 // = ip = LABEL
 	| 'beq' REG REG LABEL	 	 // = if REGleft == REGright => ip = LABEL
 	| 'bleq' REG REG LABEL 	 // = if REGleft <= REGright => ip = LABEL
 	| 'jsub' LABEL
 	| 'rsub' REG // = REG = RA
 	| l=LABEL ':'
 	 | 'halt' //terminate the execution
)* ;

73

points to CODE[]
point to MEMORY[]

in SVM.g4

COMMENTS ABOUT SVM

example: the PLUS node

public String codeGeneration() {
	 	 return left.codeGeneration()+

		 	 "pushr A0 \n" +
		 	 right.codeGeneration()+
		 	 "popr T1 \n" +
		 	 "add A0 T1 \n" +
		 	 "popr A0 \n" ;
}

74

the code in the SimpLan compiler for invoking
functions

 public String codeGeneration() {
	 String parCode="";
	 for (int i = 0; i < parameters.size() ; i = i+1)
	 	 	 parCode += parameters.get(i).codeGeneration() + "pushr A0\n" ;
	
	 String getAR="";
	 	 for (int i=0; i < nesting - entry.getnesting() ; i++)
	 	 	 getAR+="store T1 0(T1) \n";
	 	 	 	 	 	 	
	 	 return "pushr FP \n"	 	 	 	 	 	 	
 + "move SP FP \n"
	 	 	 	 + "addi FP 1 \n"	
 + "move AL T1\n"
	 	 	 	 + getAR
	 	 	 	 + "pushr T1 \n"
	 	 	 	 + parCode
	 	 	 	 + "move FP AL \n"
	 	 	 	 + "subi AL 1 \n"
	 	 	 	 + "jsub " + entry.getlabel() + "\n" ;
 }

Dichiarazioni Locali
Return Address

PARAMETRI ATTUALI
Access Link

Frame Pointer

THE SVM GRAMMAR

75

FUNCTION DEFINITION IN SIMPLAN

see the code!

cgen(Γ,int f(int x1,…,int xn) = e) =
 lookup(Γ,f).label:

 pushr RA
 cgen(Γ,e)
 popr RA
 addi SP n

 popr SP
 popr FP
 rsub RA

76

this is put into a file/string
called Function that
collects all the functions and
and will be justapoxed to
the code of the main
expression

add(Function,

) push lookup(Γ,f).label

this is what has
been done in the
SimpLan prototype

NEXT LECTURE

77

lexical
analysis

syntactic
analysis

semantic
analysis

bytecode
generation

the SimpLan
interpreter

the implementation of
the SimpLan interpreter

