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OUTLINE

1. management of run-time resources 

2. correspondence between static (compile-time) and dynamic (run-
time) structures 

3. storage organisation (in particular, memory management)  

4. code generation (for stack machines) 

5. the assembly language 

6. a simple source language (SimpLan) and its stack-machine 
implementation 

reference:  

Torben Morgensen: Basics of Compiler Design, Chapter 7
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RUN-TIME ENVIRONMENTS

before discussing code generation, we need to understand what we 
are trying to generate 

there are a number of standard techniques for structuring executable 
code that are widely used 

remark: the execution of a program is initially under the control of 
the operating system — when a program is invoked: 

1. the OS allocates space for the program 

2. the code is loaded into part of the space 

3. the OS jumps to the entry point (i.e., “main”)
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MEMORY LAYOUT

traditionally, pictures of machine organization 
have areas for different kinds of data: 

delimitated by lines 

these pictures are simplifications 

not all memory needs to be contiguous 

what is “other space”? 
holds all data for the program 

Other Space = data space 

the compiler is responsible for: 
generating code 

managing the use of the data space

Memory

Code

Other Space
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CODE GENERATION GOALS AND ASSUMPTIONS

two goals: 

1. correctness 

2. speed 

most complications in code generation come from trying to be fast as 
well as correct 

assumptions: 

1. execution is sequential; control moves from one point in a program 
to another in a well-defined order 

2. when a procedure is called, control eventually returns to the point 
immediately after the call
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ACTIVATIONS AND LIFETIME OF THE VARIABLES

an invocation of function f is an activation of f 

the lifetime of an activation of f is 

all the steps to execute f 

including all the steps in f calls 

the lifetime of a variable x is the portion of execution in which 
x is defined 

note that 
lifetime is a dynamic (run-time) concept 

scope is a static concept
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ACTIVATION TREES

trees that indicate the activation lifetime of functions 

example:    

int g() { return 1 ; } 
int f() { return g() ; } 
void main() {  

g() ; f() ;  
} 

assumption (2) requires that when f calls g, then g returns before f 
continues 

lifetimes of procedure activations are properly nested 

the activation tree 
invocations in sequence are depicted as brother nodes 

nested invocations are depicted as father-son nodes
8

main

f()g()

g()

the activation tree



EXAMPLE

compute the activation tree for  

int g() { return 1; } 
	int f(int x) {  
		 if (x == 0) { return g(); } 
		 else { return f(x - 1); }  
	} 
	void main() { f(3); }
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REMARKS

the activation tree depends on the run-time behaviour 

the activation tree may be different for every program input 

since activations are nested, a stack can track currently active 
procedures
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 int g() { return 1; } 
	  int f() { return g(); } 
	  void main() {  

g();  
f(); 

  }

Stack

mainmain

fg

g

g

g

Activation Tree

main

fmain

fmain



REVISED MEMORY LAYOUT

the information needed to manage one 
function activation is called an 
activation record (AR) or frame 

the program starts with the AR of main 

then main invokes f 

then f calls g 

remark: g’s activation record contains a mix of 
info about f and g

Code

Memory

Stack
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Other Space

activation record of main

activation record of f()

activation record of g()

this is a stack of activation records 
• the AR have different dimensions 
• the dimension depends on the formal parameters 

and on the local variables 
• you need to implement the stack by means of 

pointers



WHAT IS IN G’S AR WHEN F CALLS G?

f is “suspended” until g completes, when this happens, f resumes 

g’s AR contains information needed to resume execution of f 

g’s AR may also contain: 

g’s return value (needed by f) 

actual parameters to g (supplied by f) 

space for g’s local variables
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THE CONTENTS OF A TYPICAL AR FOR g

1. space for g’s return value 

2. actual parameters 

3. pointer to the previous activation record 
the control link — points to AR of caller of g 

4. machine status prior to calling g 

contents of registers & program  counter 

5. local variables 

6. other temporary values
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int g() { return 1; } 
int f(int x) {  

  int y = 1 ; 
	 	     if (x == 0) { return g(); } 
	 	     else { return f(x - y); (**) }  
	    } 
	    void main() { f(3); (*) } 

                                 AR for f:

THE EXERCISE, REVISITED
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return address

formal parameters

local variables

pointer to previous AR

growthremarks 
• this is a possible structure of AR 

• there is no space for the return value 
because it will be stored in a register (in 
our machine) 

• otherwise it is stored below the "pointer 
to previous AR". WHY?



2
(**)

main

(*)
3

1

1

f

f

STACK AFTER TWO CALLS TO f

15

main has no argument or local variables and its 
result is never used; its AR is uninteresting 

(*) and (**) are return addresses of the 
invocations of f

this is only one of many possible AR designs 

it works for many programming languages

Stack



the compiler must determine, at compile-time, the 
layout of activation records and generate code that 
correctly accesses locations in the activation record 

therefore the AR layout and the code generator must be 
designed together!

THE MAIN POINT
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WHO BUILDS THE ACTIVATION RECORDS?

both the caller and the callee
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return address

actual parameters

local variables

pointer to previous AR

growth
this is done by the caller

this is done by the callee



GLOBAL VARIABLES

all references to a global variable point to the same element 

it is wrong to store a global variable in an AR 

global variables are assigned a fixed address once 

variables with fixed address are “statically allocated” 

depending on the language, there may 
be other statically allocated values 

                memory layout with static data:
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VARIABLES DECLARED IN OUTER SCOPES

references to a variable declared in an outer scope 
should point to a variable stored in another activation record 

to which activation record ? 
according to the most closely nested rule, an activation record should point to 
the most recent activation record of its immediately enclosing scope 

use access links …
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the access links are set to the AR of the enclosing syntactical 
block 

for function body, this is the block that  
contains the function declaration

ACTIVATION RECORDS WITH ACCESS LINKS
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int x = 1; 
{ 
  int g(int z){ return x+z; } 
  int f(int y){ int x = y+1;  
                return g(y*x); } 
  f(3); 
  . . . 
}

x: int, 1
g: intint, 2
f: intint, 2

y: int, 3
x: int, 3

the symbol table at this point

y
f(3)

x

return address

3

access link

control link

4

1outer block

access link

control link

x

g(12)z

access link

control link

12

return address



the access links are set to the AR of the 
enclosing syntactical block — another example

ACTIVATION RECORDS WITH ACCESS LINKS/2
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  int x = 1; 
  { int g(int z){ 
        int f(int y){ int x = y+1;  
                      return g(y*x);  
        } 
        return f(x+z);  
    } 
    g(3); 
  } 
  . . . 

x: int, 1g: intint, 2z: int, 3
f: intint, 3

y: int, 4
x: int, 4

the symbol table at this point

y
f(3)

x

return address

5

4

access link

control link

1outer block

access link

control link

x

g(12)z

access link

control link

20

return address

g(3)z

access link

control link

3

return address



SETTING THE ACCESS LINK

the value of the access link of a new activation record is established as 
follows: 

an inner block is entered or a function declared in the current scope is called:  

ACCESS_LINK = address of ACCESS_LINK in current AR 

a function calls itself recursively or calls another function declared in the 
enclosing syntactical block:  

ACCESS_LINK = value of ACCESS_LINK of the current AR 

in general, call to a function outside the current scope: 

ACCESS LINK = follow the chain of ACCESS_LINKs for  
      the difference between current   
      nesting level and that of function  
      declaration; let AR' be the activation  
      record  
      address of ACCESS_LINK of AR'
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a value that outlives the procedure that creates it cannot be kept in the AR 

Bar foo() { return new Bar() ; } 

the Bar value must survive deallocation of foo’s AR 

the ARs in the stack are deallocated when the control exits from the corresponding 
scope 

what about data in the heap?

languages with dynamically allocated data use a heap 
to store dynamic data

HEAP STORAGE
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GARBAGE COLLECTION

what about data in the heap? 
they can be removed when they become “garbage” 

at a given point  p in the execution of a program, a memory location m is garbage 
if no continuation of p can access location m 

garbage collection:  

detects garbage during program execution 

is invoked when more memory is needed 

the decision is made by the run-time system, not by the program
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GARBAGE COLLECTION

in some programming languages, deallocation is under the 
responsibility of the programmer 

example of deallocation in C  

ptr = lst ; flag = true ; 
while (ptr!=NULL  && flag){ 

if (ptr->val == 1) { ptr = ptr->next ; flag = false ; } 
else { previous = ptr; ptr = ptr->next ; free(previous) ; } 
} 

problem: in case of sharing (more pointers to the same location) the cell 
cannot be actually freed (dangling pointers) 

in the above example, lst is a dangling pointer when                   lst->val != 1

other languages have implicit garbage collection algorithms
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GARBAGE COLLECTION ALGORITHM/MARK AND SWEEP

mark-and-sweep algorithm 

assume tag bits associated with data  

assume that the addresses of locations created by a program are 
collected into a table 

the algorithm: 
1. set all tag bits to 0 

2. start from each location used directly in the program (look for them 
from the AR) and follow all links, changing tag bit to 1

3. consider as garbage all cells with tag = 0
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GARBAGE COLLECTION ALGORITHM/REFERENCE COUNTING

reference counting algorithm 

assume each datum in memory has an associated reference 
counter 

the algorithm:  

1. when a datum is allocated in memory, initialize the counter to 0 

2. when a pointer to a datum is set, increments the counter 

3. when a pointer to a datum is reset,  decrement the counter 

4. when the counter turns to be 0, the datum is garbage
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RECAPS

the code area contains object code 
for most languages, fixed size and read only 

the static area contains data (not code) with fixed addresses (e.g., 
global data) 

fixed size, may be readable or writable 

the stack contains an AR for each currently active procedure 
each AR usually has fixed size (for a given procedure), contains locals 

the heap contains all other data 

both the heap and the stack grow 
you must take care that they don’t grow into each other 
solution: start heap and stack at opposite ends of memory and let 
them grow towards each other
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MEMORY LAYOUT WITH HEAP

29
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Code
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CODE GENERATION

several possible code generations! 

it depends on virtual machine and its bytecode instructions 

a simple virtual machine: a stack machine with registers 
stack machines are very common because they use the stack of 
activation records 

the Java Virtual Machine is a stack machine with registers 

the Simple Virtual Machine (SVM) is a stack machine with registers
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CODE GENERATION FOR STACK MACHINES WITH REGISTERS

stack machines with (finitely many) registers are a simple evaluation 
model 

use the stack (of activation records) and registers to store  values for 
intermediate results 

example: consider the instructions 

push n :  places the integer n on top of the stack 

popr A0 : pops the value on top of the stack and stores it in the register A0

add A0 m :  adds the value of A0 to m and puts the result back on the stack 

a program that computes 7 + 5 and stores the result in A0: 

push 7 
popr A0 
add A0 5 
popr A0 
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stack

  popr A0push 7   add A0 5

... ... ... ...
7

7

12

- -A0 7

...

12

  popr A0



IN STACK MACHINES WITH REGISTERS

each operation takes operands either from the stack or from 
registers and puts results on the stack or in a register 

this means a simple compilation scheme 

the location of the operands is either implicit (the stack) or 
explicit (the registers) 

when the operands are implicit, they are always on top of the stack 

therefore there is no need to specify operands explicitly 

there is no need to specify the location of the result
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FROM STACK MACHINES TO ASSEMBLY LANGUAGE

we consider a compiler that generates code for a stack machine 
with registers 

we want to run the resulting code on some processor 

we will define a machine, called SVM (Simple Virtual Machine) and 
an interpreter for the SVM machine code 

the interpreter will be in Java

our assembly language 

has arithmetic operations that use registers for operands and 
results 

we will use  A0, RA, FP, SP, AL, T1 

use load and store instructions for moving values between stack/
memory and registers
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A SAMPLE OF ASSEMBLY INSTRUCTIONS

add R1 R2 
push(R1 + R2)    // the value of R1 plus the value 

                    // of R2 is stored on the stack 
addi R1 n 

push(R1 + n)       // the value of R1 plus n is  
                    // stored on the stack 

sub R1 R2 
push(R1 - R2)    // the value of R1 plus the value 

                    // of R2 is stored on the stack 

storei R1 n       // n is stored in R1 

move R1 R2        // the value of R1 is stored in R2 

pushr R1        // pushes the value of R1 on the stack 

popr R1    // pops the stack, the value is stored in R1
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A BASIC LANGUAGE

a basic language with integers and integer operations 

P → D ; P | E 
D → T id(ARGS) = E 
ARGS → T id, ARGS | T id 
E →  Int | Id | if (E1 == E2) then E3 else E4 

         | E1 + E2 | E1 – E2 | id(E1,…,En) 

Int are integer constants, Id are the identifiers, 

the rightmost expression is the “main”  

there is recursion — the program computing the product of two numbers: 
int product(int m, int n) =  

if (n == 0) then 0 
else if (n == 1) then m 
else m + product(m, n-1) ; 

product(5,7) 

35

T is only int in this language there is no 
variable declaration — there 
are formal parameters only!



for each expression e we generate assembly code that: 

computes the value of e and stores it in A0 (A0 is a special register called 
accumulator) 

preserves  SP  and the contents of the stack 

we define a code generation function  

cgen(SymbolTable Γ, Node e)  

whose result is the code generated for e

the invariant must be satisfied by  cgen(Γ,e)

invariant: the result of computing an expression is always in the 
accumulator 

after computing an expression the stack is as before 

CODE GENERATION STRATEGY
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CODE GENERATION FOR CONSTANTS AND ADD

the code to evaluate a constant simply copies it into the 
accumulator: 

cgen(Γ, n) = storei A0 n 
this preserves the stack, as required 

the code to evaluate an add expression is: 
    cgen(Γ, e1 + e2) = cgen(Γ, e1)  

                    pushr A0 
                    cgen(Γ, e2) 
                    popr T1 
                    add A0 T1 
                    popr A0      

this code preserves the stack, as required 

possible optimization: put the result of e1 directly in register T1 ? 

37

this is ok, but be carefull! 
you need to verify that the  
old value of T1 is useless!



ANOTHER CODE FOR ADD

possible optimization: put the result of e1 directly in  T1 

         cgen(Γ, e1 + e2) =  
      cgen(Γ, e1) 

                    move A0 T1   // T1 ← A0 
                    cgen(Γ, e2) 
                    add A0 T1 

           popr A0 

this is wrong!  

try to generate code for : 3 + (7 + 5)
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REMARKS ABOUT CODE GENERATION

1. the code for  + is a template with “holes” for code for 

evaluating e1 and e2 

2. stack-machine code generation is recursive 

3. code for e1 + e2 consists of code for e1 and e2 glued 
together 

4. code generation can be written as a recursive-descent visit of 
the AST
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CODE GENERATION FOR SUB

the code is 

           cgen(Γ, e1 - e2) =  
               cgen(Γ, e1)  

          pushr A0 
          cgen(Γ, e2) 
          popr T1 
          sub T1 A0 
          popr A0          

this code preserves the stack, as required 

the old value of T1 is useless
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CODE GENERATION FOR CONDITIONAL — ATTEMPT 1

we need a flow control instructions 

beq R1 R2 label 

branch to  label  if   R1 = R2 
another branching instruction: b label (unconditional jump to 
label)

41

cgen(Γ, if (e1==e2) then e3 else e4) =  
            cgen(Γ, e1)  
            pushr A0 
            cgen(Γ, e2) 
            popr T1 
            beq A0 T1 true_branch 

                    false_branch: 
              cgen(Γ, e4) 
              b end_if 
        true_branch: 
              cgen(Γ, e3) 
        end_if:



CODE GENERATION FOR CONDITIONAL — SOLUTION

we have added labels 
the code for   if (e1 = e2) then e3 else e4 : 

 cgen(Γ, if (e1 == e2) then e3 else e4) =  
              false_branch = newlabel(); 
              true_branch = newlabel(); 
              end_if = newlabel(); 
            cgen(Γ, e1)  
            pushr A0 
            cgen(Γ, e2) 
            popr T1 
            beq A0 T1 true_branch 

                         false_branch: 
              cgen(Γ, e4) 
              b end_if 
            true_branch: 
              cgen(Γ, e3) 
            end_if:

42

the labels must be fresh 
to avoid name clashes

false_branch is useless!



RECAP OF THE BYTECODE

the bytecode language is the following one (up-to now) 

bytecode =  ( storei R1 n 
      | add R1 R2 

| sub R1 R2 
| addi R1 n 
| pushr R1 
| popr R1 
| move R1 R2 
| beq R1 R2 label 
| b label  
| label: )*           ; 

we have used the registers    A0, T1
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THE ACTIVATION RECORD

code for function calls and function definitions depends on the 
layout of the activation record 

a very simple AR suffices for this language: 

the result is always in the accumulator 
no need to store the result in the AR 

the activation record holds actual parameters 

for f(x1,…,xn) push xn,…,x1 on the stack 

these are the only variables in this language 

the stack discipline guarantees that on function exit SP is the 
same as it was on function entry 

there is no need to store SP in the AR 

we need to store the     return address44



THE ACTIVATION RECORD (CONT.)

we need to implement the stack of activation records 

the AR must store a pointer to an address of caller's AR  

this is the chain of control links used before 

this pointer is stored in the register FP (frame pointer) 

we take FP to point below the position of the first parameter 
of the called function (to the old value of FP) 

FP is used by generated code to locate AR elements, e.g. 
parameters, based on offsets
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THE ACTIVATION RECORD (CONT.)

what about the access link? 

access links are not needed because we do not have nested 
declarations  

we just have local parameter declarations and functions that are all 
declared in the global scope that is allocated statically 
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THE ACTIVATION RECORD: SUMMARY

for our simple language, an AR with the caller’s frame pointer 
(control link), the actual parameters, and the return address 
suffices 

consider a call to f(x,y), the AR will be:
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part of AR of f built by caller stack growth

part of AR of f built by callee

x
y

old FP

return address
SP

RA is the return
address

FP



 CODE GENERATION FOR VARIABLES

in our simple language the “variables” of a function are just its 
parameters 

they are all in the AR 

pushed by the caller 

problem: because the stack grows when intermediate results are 
saved, the variables are not at a fixed offset from SP 

example: int f(x) = 3+x 

solution: use the frame pointer 
it always points to the first variable

48



CODE GENERATION FOR VARIABLES: EXAMPLE

we use the instruction 

store R1 offset(R2) 

that stores in  R1 the value at address  R2+offset 

for int f(x1,x2) = e the activation and frame  
pointer are set up as follows: 

x1 is at  FP - 1 

x2 is at  FP - 2 

thus, the access to  xi  is 

cgen(Γ,xi) = store A0 z(FP) 

with   z = i  

the offset of a parameter needs to be inserted in its symbol table 
entry
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store A0 lookup(Γ,xi).offset(FP)

gives the offset 
of xi inside the AR 

return 
address

...

old FP

x1

x2

FP

SP



CODE GENERATION FOR FUNCTION CALL

the calling sequence consists of instructions (of both caller and callee) 
that set up a function invocation 

new instruction: jsub label 

jump to label, save address of next instruction in RA

      cgen(Γ,f(e1,…,en)) = pushr FP 
                           cgen(Γ, e1) 
                           pushr A0 

                 . . . 
                 cgen(Γ, en) 
                 pushr A0 
                 move SP FP 

                 addi FP n+1 
                 jsub lookup(Γ, f).label

50

the caller saves its value of the frame 
pointer

then it saves the actual parameters in 
reverse order

then it saves the return address in 
register RA 

the AR so far is n+1 words

the label is set when the symbol table is 
created for function definitions

store in  FP the address of 
the old value of FP which 
is at SP+n+1 
this must be done after 
having evaluated the 
actual parameters! WHY?



CODE GENERATION FOR FUNCTION DEFINITION

new instruction: rsub RA // jump to address in RA

cgen(Γ,int f(int x1,…,int xn) = e) =  
         lookup(Γ,f).label: 

            pushr RA 
            cgen(Γ,e) 
            popr RA 
            addi SP n  
            popr FP 
            rsub RA

the frame pointer does point to the bottom of the frame 

the callee pops the return address, the actual arguments and the saved value of 
the frame pointer 

n is the number of formal parameters  of f // the addi is equivalent to pop n 
times 

the return value is left in   A0 51



SP

FP

old FP

x
y

on entry

CALLING SEQUENCE: EXAMPLE FOR F(X,Y)
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FP

SP

before call

return 
address

in the body

...

old FP

x
y

FP

SP

FP

SP

after call

because the stack grows when intermediate results are saved, 
ARs are not adjacent on stack! 

example: int f(int x, int y) = (x+3)+g(y) 

upon execution, the value of x+3 is on the stack between the AR of 
f and the AR of g



CODE GENERATION FOR PROGRAMS

what is cgen(∅, D1; … ; Dn; E) ? 

we are in a very simple case: 

there is no declaration of variables 

Di are all function definitions 

cgen(∅, D1; … ; Dn; E) =  
            storei SP max_value 
            storei FP max_value 
            cgen(Γ,E)           // where  ∅  D1; … ; Dn : Γ 
            halt                // end of the program 
            cgen(∅, D1; … ; Dn) // the sequence of fun declar. 

cgen(Γ, D; D') = cgen(Γ, D)   // D is a single function 
                 cgen(Γ', D') // Γ ⊢ D : Γ' a single function 
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FP SP

growth

working 
area



SUMMARY

the activation record layout must be designed together with the code 
generator  

code generation can be done by recursive traversal of the AST 

to simplify the presentation we have not discusses the access links! 

but access links can be easily added (as discussed in “memory 
management”): 

check the difference in the nesting level between the caller and the declaration of 
the callee, and follow the already settled access links accordingly 
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RECAP OF THE BYTECODE

the bytecode language is the following one 

      bytecode =  ( storei R1 n  

        | add R1 R2 

| sub R1 R2 
| addi R1 n 

| pushr R1 

| popr R1 

| move R1 R2 

| beq R1 R2 label 

| b label  

| label:  

| store R1 offset(R2) 

| jsub label 

| rsub R1 )*           ; 

we have used the registers A0, T1, SP, RA, FP 
55

in red: new instructions  
and new registers



EXAMPLE: CODE GENERATION FOR PRODUCT
cgen(Γ, n) = storei A0 n 
cgen(Γ, e1 + e2) = cgen(Γ, e1) 
                  pushr A0 
                  cgen(Γ, e2) 
                  popr T1 
                  add A0 T1 
                  popr A0 

cgen(Γ, if (e1 == e2) then e3 else e4) = 
               true_branch = newlabel(); 
               end_if = newlabel(); 
               cgen(Γ, e1)  
               pushr A0 
               cgen(Γ, e2) 
               popr T1 
               beq A0 T1 true_branch 
               cgen(Γ, e4) 
               b end_if 
  true_branch: cgen(Γ, e3) 
       end_if:
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cgen(Γ,x) = store A0 lookup(Γ,x).offset(FP)

cgen(Γ,f(e1,…,en)) = pushr FP 
cgen(Γ, e1) 
pushr A0 
. . . 
cgen(Γ, en) 
pushr A0   
move SP FP 
addi FP n+1 
jsub lookup(Γ, f).label

cgen(Γ,int f(int x
1
,…,int x

n
) = e) =  

  lookup(Γ,f).label: pushr RA 
     cgen(Γ,e) 
     popr RA 
     addi SP n 
     popr FP 
     rsub RA

int product(int m, int n) = if (n == 0) then 0 
                 else if (n == 1) then m 
                 else m + product(m, n-1) ; 

product(5,7) 



EXAMPLE: CODE GENERATION FOR PRODUCT
      storei SP max_value 
      storei FP max_value 
       pushr FP 
       storei A0 5 
       pushr A0 
       storei A0 7 
       pushr A0 
       move SP FP 
       addi FP 3 
       jsub Prod 
       halt  

Prod: pushr R 
      store A0 -2(FP)  
       pushr A0 
       storei A0 0 
       popr T1 
       beq A0 T1 true_E 
       store A0 -2(FP)  
       pushr A0 
       storei A0 1 
       popr T1 
       beq A0 T1 true_I 
       store A0 -1(FP) 
       b end_I 
true_I: store A0 -1(FP)  
       pushr A0 
       pushr FP 
       store A0 -1(FP) 
       pushr A0 
       store A0 -2(FP) 
       pushr A0 
       storei A0 1 
       popr T1  
       sub T1 A0 
       popr A0 
       pushr A0 
       move SP FP 
       addi FP 3 
       jsub Prod 
      popr T1 
      add A0 T1 
      popr A0            
 end_I: b end_E 
true_E: storei A0 0 
end_E: popr RA 
       addi SP 2 
       popr FP 
       rsub RA 57

int product(int m, int n) = if (n == 0) then 0 
          else if (n == 1) then m 
          else m + product(m, n-1) ; 

product(5,7) 

cgen(Γ, if_esterno)

cgen(Γ, if_interno)

else 
if interno

then 
if interno

cgen(Γ, product(5,7))



THE BASIC LANGUAGE WITH ACCESS LINKS AND STATEMENTS

the basic language grows . . .  

P    →  D ; P | E | S 
D    →  T id(ARGS) = P 
ARGS →  id, ARGS | id 
E    →  int | id | if (E1 == E2) then E3 else E4 

                    | E1 + E2 | E1 – E2 | id(E1,…,En)  
S    →  ( id = E ; | id(E1,…,En) ; )+ 
T    →  int | void 

int and  void  are the types 

there are nested declarations of functions  

example:  
void foo(int x,int y) = void gee(int z) x = x+z ; 
                 if (y == 0) then skip ; 
                 else ( gee(y) ; foo(x,y-1) ; ) 
foo(0,10) ;
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skip   is e.g. x=x ;



STATEMENTS

we discuss assignments x = e ; 

simple case: x is in the current RA  

offsetx is at an offset with respect to the 
current value of FP 

we use a new instruction: 

load R1 offset(R2) 

that loads in  the address  R2+offset the value at R1 

thus     cgen(Γ, x = e;) =  
     cgen(Γ, e)  
     load A0 offsetx(FP)
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return 
address

...

old FP

x

FP

$sp

offsetx

lookup(Γ, x).offset(FP)

where is offsetx?



THE ACCESS TO GLOBAL VARIABLES: ACCESS LINKS

the AR for our language has  

the caller’s frame pointer,  

the access link to the enclosing environment (in the static chain),  

the actual parameters,  

and the return address 

consider a call to f(x,y), the AR will be:
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stack growth
this is used to  
go through the 
static chain 

RA

stores 
the return 
address

points to FP of the AR  
in the dynsmic chain

old AL

x

old FP

return address

y

FP
AL

SP



THE ACCESS TO GLOBAL VARIABLES: ACCESS LINKS

cgen(Γ,x) =  
    move AL T1  

          for (i=0;  
               i < nesting_level -  
                   lookup(Γ, x).nesting_level;  
               i++) store T1 0(T1) ; 
          subi T1 lookup(Γ, x).offset 
          store A0 0(T1)     

cgen(Γ, x = e;) =  
  cgen(Γ, e)  

               move AL T1 
               for (i=0;  
                    i < nesting_level -  
                        lookup(Γ, x).nesting_level;  
                    i++) store T1 0(T1) ; 
               subi T1 lookup(Γ, x).offset  
               load A0 0(T1)
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this is the  
dereferentiation of AL

gives the nesting level of  
x  wrt the current one 

exercise: define   cgen(Γ, S ; S’) 

we do not use anymore FP!



CODE GENERATION FOR FUNCTION CALL WITH ACCESS LINKS

the code for the invocation in slide 51 must be refined … managing access 
links 

cgen(Γ, f(e1,…,en)) =  
      pushr FP 
      move SP FP 
      addi FP 1 
      move AL T1 
      for ( i=0;  

            i < nesting_level -  
                lookup(Γ,f).nesting_level;  
            i++ ) store T1 0(T1) ; 

      pushr T1  
      cgen(Γ, e1) 
      pushr A0 
        . . . 
      cgen(Γ, en) 
      pushr A0 
      move FP AL 
      subi AL 1 
      jsub lookup(Γ, f).label
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the label is taken 
from the symbol table

y
x

old FP

return address

stack growth

old AL
points to the 
beginning of 
the previous  
frame

points to the 
second element 
of the frame 
in the static  
environment

management of 
the access link



NEW CODE GENERATION FOR FUNCTION DEFINITION

there may be several functions called in the same way 

the label of the first instruction must be taken from the symbol table!

cgen(Γ, T f(T1 x1,…,Tn xn) = e) =  
 lookup(Γ,f).label: 

    pushr RA 
    cgen(Γ, e) 
    popr RA 
    addi SP n 
    pop 
    store FP 0(FP) 
    move FP AL 
    subi AL 1 
    pop 
    rsub RA
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the label is set 
when the symbol table 
is created for function  
definitions

two pop: one for AL and  
the other for FP



ADVANCED TOPICS

the implementation of higher order functions 

the implementation of oo languages and of dynamic 
dispatch

64



HIGHER-ORDER FUNCTIONS

in some languages, functions can be passed as parameters 

	 fun bool f( x:(int,int) → bool, a:int, b:int){ 
...  
bool z = x(a,b) ;  
... 

} 

function f should prepare the activation record for the 
execution of x(a,b) 

PROBLEM: f has no knowledge about how to set the “access 
link” 

should point to most recent AR where the called function is 
declared (based on difference with nesting level of such a 
declaration, computed at compile time) 
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HIGHER-ORDER FUNCTIONS (CONT.)

solution: 

the caller of f, that passes the actual value for the parameter x, 
should also pass a pair containing:  

1. the address of the code of the function g that is actually passed 
(usual value of identifier g) 

2. the address of the most recent AR in which g is declared (additional 
context information) 

this pair is called closure of the function to be passed 

the value of x is set to such a pair (values of identifiers of function 
type are pairs) 

when x(a,b) is executed the access link will be set to the 
second element of this pair 
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CODE GENERATION FOR OO LANGUAGES

two issues: 

1. how are objects represented in memory? 

2. how is dynamic dispatch implemented? 

example
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class A { 
	 int a = 0; 
	 int d = 1; 
	 int f(){ return a + d; } 
} 

class  B extends A { 
	 int b = 2; 
	 int f(){ return a ; }          //override 
	 int g(){ return a - b; } 
} 

class  C extends A { 
	 int c = 3; 
	 int h(A x) { return x.f()*c; } 
}

fields of A are inherited by 
classes B and C 

all methods in all classes 
refer to a 

for methods to work 
correctly in A, B, and C 
objects, field a must be in 
the same “place” in each 
object

dynamic dispatch!

A u = new B() ; C w = new C() ; w.h(u) ;



PROBLEM 1: OBJECT LAYOUT

an object is like a struct in C 

the reference foo.field is an index into a foo struct at an offset 
corresponding to field 

an objects is stored in a contiguous memory 

each field stored at a fixed offset in the object 

the offset needs to be inserted in its symbol table entry 

on object creation, the corresponding layout is instantiated in the heap (it 
will be either eventually removed by the garbage collector or with an 
explicit delete operation)
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PROBLEM 1: OBJECT REPRESENTATION OF SUBCLASSES

remark: given a layout for class A, a layout for subclass B can be 
defined by extending the layout of A with additional slots for the 
additional fields of B 

this leaves the layout of A unchanged (layout of B is an 
extension of it)
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PROBLEM 2: DYNAMIC DISPATCH
consider again our example
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class A { 
	 int a = 0; 
	 int d = 1; 
	 int f(){ return a + d; } 
} 

class  B extends A { 
	 int b = 2; 
	 int f(){ return a ; }         //override 
	 int g(){ return a - b; } 
} 

class  C extends A { 
	 int c = 3; 
	 int h(A x) { return x.f()*c; } 
}

e.g() calls method g of B if e yields a B object
e.f() calls method f of A if e yields an A or C object (f is inherited in the case of C) calls 
method f of B if e yields a B object (even if static type of e is A)

the implementation of methods and dynamic dispatch strongly resembles the 
implementation of fields



PROBLEM 2: DYNAMIC DISPATCH/DISPATCH TABLES

every class has a fixed set of methods (including inherited methods) 
a dispatch table indexes these methods 

an array of method addresses 

a method f lives at a fixed offset in the dispatch table for a class and 
all of its subclasses 

example: the dispatch table for class A has only 1 method 

the tables for B and C extend the 
table for A 

because methods can be overridden,  
the code for f is not the same in  
every class, but is always at the  
same offset
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class A pointer to 
f of A offset 0

offset 4

class B pointer to 
f of B offset 0

offset 4pointer to 
g of B

class C pointer to 
f of A offset 0

offset 4pointer to 
h of C

this is also called VIRTUAL TABLE



USING DISPATCH TABLES

the dispatch pointer in an object of class C points to the dispatch table for 
class C 

every method  f of class C is assigned an offset Of in the dispatch table at 
compile time 

the offset is inserted in the symbol table entry of method f of class C as usual 

to implement a dynamic dispatch e.f() we 

let Of be the offset of the method f in the dispatch-table associated to the static 
type of e  

evaluate e, obtaining an object  o  (that could be of any subclass) 

let D be the dispatch-table of  o 

execute the method pointed by D[Of]
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THE SVM GRAMMAR

use MEMORY to store data; use registers SP,  RA,  RV,  FP,  HP,  IP,

assembly: ( 'load' REG NUMBER '(' REG ')' // = memory[NUMBER+REG_r]<-REG_l  
    | 'store' REG NUMBER '(' REG ')'	// = REGleft <- memory[NUMBER + REGright] 
    	| 'storei' REG NUMBER	 	 	 // = REG <- NUMBER  
    	| 'move' REG REG		 	 	 	 // = REGleft <- REGright 
    	| 'add' REG REG		 	 	 	 // = top <- REGleft + REGright 
    	| 'addi' REG NUMBER		 	 	 // = top <- REGleft + NUMBER 
    	| 'sub' REG REG 		 	 	 	 // = top <- REGleft - REGright 
    	| 'subi' REG NUMBER    		 	 // = top <- REGleft - NUMBER 
    	| 'mul' REG REG		 	 	 	 // = top <- REGleft * REGright 
    	| 'muli' REG NUMBER		 	 	 // = top <- REGleft * NUMBER 
    	| 'div' REG REG		 	 	 	 // = top <- REGleft / REGright 
    	| 'divi' REG NUMBER		 	 	 // = top <- REGleft / NUMBER 
    	| 'push' (n=NUMBER | l=LABEL)	 // = memory[sp] = number|label , sp = sp-1 
    	| 'pushr' REG	 	 	 	 	 // = memory[sp] = REG , sp = sp-1 
    	| 'pop'		 	 	 	 	 	 // = sp = sp+1 
    	| 'popr' REG 	 	 	 	     // = REG <- memory[SP+1] == STORE REG 0(SP) 
    	| 'b' LABEL		 	 	 	     // = ip = LABEL 
    	| 'beq' REG REG LABEL	 	     // = if REGleft == REGright => ip = LABEL 
    	| 'bleq' REG REG LABEL 	        // = if REGleft <= REGright => ip = LABEL 
    	| 'jsub' LABEL 
    	| 'rsub' REG                    // = REG = RA 
    	| l=LABEL ':' 
 	 | 'halt'                        //terminate the execution    
	 )* ;
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points to CODE[]
point to MEMORY[]

in SVM.g4



COMMENTS ABOUT SVM 

example: the PLUS node 

public String codeGeneration() { 
	 	 return left.codeGeneration()+ 

		 	    "pushr A0 \n" + 
		 	    right.codeGeneration()+ 
		 	    "popr T1 \n" + 
		 	    "add A0 T1 \n" + 
		 	    "popr A0 \n" ; 
}
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the code in the SimpLan compiler for invoking  
functions 

    public String codeGeneration() { 
	     String parCode=""; 
	     for (int i = 0; i < parameters.size() ; i = i+1) 
	     	 	 parCode += parameters.get(i).codeGeneration() + "pushr A0\n" ; 
	      
	     String getAR=""; 
	 	 for (int i=0; i < nesting - entry.getnesting() ; i++)  
	 	     	 getAR+="store T1 0(T1) \n"; 
	 	   	 	 	 	 	  
	 	 return  "pushr FP \n"	 	 	 	 	 	 	  
                + "move SP FP \n" 
	 	 	 	 + "addi FP 1 \n"	  
                + "move AL T1\n" 
	 	 	 	 + getAR 
	 	 	 	 + "pushr T1 \n" 
	 	 	 	 + parCode 
	 	 	 	 + "move FP AL \n" 
	 	 	 	 + "subi AL 1 \n" 
	 	 	 	 + "jsub " + entry.getlabel() + "\n" ; 
    }

Dichiarazioni Locali
Return Address

PARAMETRI ATTUALI
Access Link

Frame Pointer

THE SVM GRAMMAR
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FUNCTION DEFINITION IN SIMPLAN

see the code!

cgen(Γ,int f(int x1,…,int xn) = e) =  
         lookup(Γ,f).label: 

            pushr RA 
            cgen(Γ,e) 
            popr RA 
            addi SP n 

                       popr SP 
            popr FP 
            rsub RA
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this is put into a file/string 
called Function that 
collects all the functions and 
and will be justapoxed to 
the code of the main 
expression

add(Function,

) push lookup(Γ,f).label

this is what has 
been done in the 
SimpLan prototype



NEXT LECTURE
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lexical 
analysis

syntactic 
analysis

semantic 
analysis

bytecode 
generation

the SimpLan  
interpreter

the implementation of 
the SimpLan interpreter


