
SEMANTIC ANALYSIS

COSIMO LANEVE
cosimo.laneve@unibo.it

CORSO 72671 - COMPLEMENTI DI LINGUAGGI DI PROGRAMMAZIONE

THIS LECTURE

2

lexical
analysis

syntactic
analysis

semantic
analysis

bytecode
generation

the SimpLan
interpreter

scopes and symbol tables
type checking

OUTLINE

how to build the symbol table

how to use it to find

multiple declared identifiers

undeclared identifiers

symbol tables in ANTLR

reference:

Torben Morgensen: Basics of Compiler Design, Chapter 4

3

THE COMPILER SO FAR

lexical analysis
detects inputs with illegal tokens — e.g. main£ ();

parsing
detects inputs with ill-formed parse trees — e.g. missing semicolons

4

THE PURPOSE OF SEMANTIC ANALYSIS — AN EXAMPLE

class MyClass implements MyInterface {
 string myInteger;
 void doSomething() {
 int[] x = new string;
 x[5] = myInteger * y;
 }
 void doSomething() {
 }
 int fibonacci(int n) {
 return doSomething() + fibonacci(n – 1);
 }
}

5

an erroneous code

how many errors can you find?

THE PURPOSE OF SEMANTIC ANALYSIS — AN EXAMPLE

class MyClass implements MyInterface {
 string myInteger;
 void doSomething() {
 int[] x = new string;
 x[5] = myInteger * y;
 }
 void doSomething() {
 }
 int fibonacci(int n) {
 return doSomething() + fibonacci(n – 1);
 }
}

6

an erroneous code

how many errors can you find?

MyInterface

new string
myInteger y

void doSomething()

doSomething()

Interface is not
declared

wrong typecan't multiply
strings

undeclared id

can't redefine
functions

can't add void

no main function

SEMANTIC ANALYSIS

catches the errors that have not been found by the lexer
and the parser

typical semantic errors:
undeclared variable: a variable should not be used before being
declared

multiple declarations: a variable should be declared (in the same
scope) at most once

type mismatch: type of the left-hand side of an assignment
should match the type of the right-hand side

wrong arguments: functions/methods should be called with the
right number and types of arguments

question: why these errors cannot be caught before?
7

LIMITATIONS OF CONTEXT-FREE GRAMMARS

using context-free grammars
how would you prevent duplicate identifier definitions?
how would you differentiate variables of one type from variables of
another type?
how would you ensure classes implement all interface methods?

for most programming languages, these are provably impossible
use the pumping lemma for context-free languages

8

A SIMPLE SEMANTIC ANALYSER

works in two phases

1. ScopeChecking — it traverses the AST created by the parser and, for each
scope in the program:

processes the declarations that is (a) adds new entries to the symbol table and
(b) reports any variables that are multiply declared

processes the statements that is (a) finds uses of undeclared variables and (b)
updates the "ID" nodes of the AST to point to the appropriate symbol-table
entry

2. TypeChecking — it traverses the AST (again!) and processes all the
statements in the program

uses the symbol-table information to determine the type of each expression,
and to find type errors

9

this is the checkSemantics method in SimpLan

this is the typeCheck method in SimpLan
• actually there is an optimization: the symbol table is defined after

the scope-checking and nodes only contain the relevant infos

A SIMPLE SEMANTIC ANALYSER

why there are two phases?

because this simplifies the analysis

because we show two different ways of raising errors

because they return different values (list-of-errors and types)

remark: modern semantic analysers performs several visits (not just
two!) of the AST

because there are identifiers that are used before their declaration
– methods in oo languages
– mutual recursive functions

10

this is my design choise: not sure it is better than the
other choice (= make just one visit)

public class A {
 char A;
 A A(A A) {
 A.A = 'A';
 return A((A) A);
 }
}

SCOPE CHECKING: WHAT IS IN A NAME?

the same name in programs of modern languages may
refer to fundamentally different things

this is a perfectly legal Java code:

what all these 'A'
are?

public class A {
 char A;
 A A(A A) {
 A.A = 'A';
 return A((A) A);
 }
}

11

int Awful() {
 int x = 137;
 {
 string x = "Scope!";
 if (float x = 0)
 double x = x;
 }
 if (x == 137) cout << "Y";
}

SCOPE CHECKING: WHAT IS IN A NAME?

this is a perfectly legal C++ code:

what all
these 'x' are?int Awful() {

 int x = 137;
 {
 string x = "Scope!";
 if (float x = 0)
 double x = x;
 }
 if (x == 137) cout << "Y";
}

12

SCOPES AND SYMBOL TABLES

the scope of a declaration is the set of locations in a
program where the name refers to the declaration’s name

the introduction of new variables into scope may hide older names

how do we keep track of what's visible?

we use symbol tables

a symbol table is a map from a name to the thing that the name
refers to

as we run our semantic analysis, we continuously update the symbol
table with information about what is in scope

the symbol table design is influenced by what kind of scoping rule
is used by the programming language

13

SCOPES AND SYMBOL TABLES

questions:
what does the symbol table looks like in practice?

what operations need to be defined on it and how do we
implement it?

14

SYMBOL TABLES — A FIRST EXAMPLE

0: int x = 137;
1: int z = 42;
2: int MyFunction(int x, int y) {
3: printf("%d,%d,%d\n",x,y,z);
4: {
5: int x, z;
6: z = y;
7: x = z;
8: {
9: int y = x;
10: {
11: printf("%d,%d,%d\n",x,y,z);
12: }
13: printf("%d,%d,%d\n",x,y,z);
14: }
15: printf("%d,%d,%d\n", x, y, z);
16: }
17: }

symbol table

x 0
z 1

x 2
y 2

x 5
z 5

y 9

z@5 = y@2;
x@5 = z@5;

int y = x@5;

printf("%d,%d,%d\n",x@5,y@9,z@5);

printf("%d,%d,%d\n",x@5,y@9,z@5);

printf("%d,%d,%d\n",x@5,y@2,z@5);

printf("%d,%d,%d\n",x@2,y@2,z@1);

15

SYMBOL TABLES — A SECOND EXAMPLE

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

16

SYMBOL TABLES — A SECOND EXAMPLE

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

17

Another View of Symbol Tables

 0: int x;
 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

SYMBOL TABLES — A SECOND EXAMPLE

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

18

Another View of Symbol Tables

 0: int x;

 1: int y;
 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

Another View of Symbol Tables

 0: int x;
 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

SYMBOL TABLES — A SECOND EXAMPLE

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

19

Another View of Symbol Tables

 0: int x;
 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

Another View of Symbol Tables

 0: int x;

 1: int y;
 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)
 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

SYMBOL TABLES — A SECOND EXAMPLE

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

20

Another View of Symbol Tables

 0: int x;
 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

Another View of Symbol Tables

 0: int x;

 1: int y;
 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)
 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {
 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

SYMBOL TABLES — A SECOND EXAMPLE

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;
 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

21

Another View of Symbol Tables

 0: int x;
 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

Another View of Symbol Tables

 0: int x;

 1: int y;
 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)
 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {
 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

SYMBOL TABLES — A SECOND EXAMPLE

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

22

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;
 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

Another View of Symbol Tables

 0: int x;
 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

Another View of Symbol Tables

 0: int x;

 1: int y;
 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)
 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {
 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {
 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

SYMBOL TABLES — A SECOND EXAMPLE

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

23

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;
 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

Another View of Symbol Tables

 0: int x;
 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

Another View of Symbol Tables

 0: int x;

 1: int y;
 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)
 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {
 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {
 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;
 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

y 6

SYMBOL TABLES — A SECOND EXAMPLE

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

24

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;
 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

Another View of Symbol Tables

 0: int x;
 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

Another View of Symbol Tables

 0: int x;

 1: int y;
 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)
 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {
 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

SYMBOL TABLES — A SECOND EXAMPLE

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

25

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {
 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;
 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

Another View of Symbol Tables

 0: int x;
 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

Another View of Symbol Tables

 0: int x;

 1: int y;
 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)
 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {
 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

SYMBOL TABLES — A SECOND EXAMPLE

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

26

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {
 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;
 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

Another View of Symbol Tables

 0: int x;
 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

Another View of Symbol Tables

 0: int x;

 1: int y;
 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)
 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {
 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;
10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

y 6 w 9

SYMBOL TABLES — A SECOND EXAMPLE

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

27

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;
 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

w

z 4

4

Another View of Symbol Tables

 0: int x;
 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

Another View of Symbol Tables

 0: int x;

 1: int y;
 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)
 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

Another View of Symbol Tables

 0: int x;

 1: int y;

 2: int MyFunction(int x, int y)

 3: {
 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

x

y 2

2

SYMBOL TABLES — A SECOND EXAMPLE

0: int x;
1: int y;
2: int MyFunction(int x, int y)
3: {
4: int w, z;
5: {
6: int y;
7: }
8: {
9: int w;
10: }
11: }

28

the structure does not
mention MyFunction,
which is incorrect!

Another View of Symbol Tables

 0: int x;
 1: int y;

 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

Another View of Symbol Tables

 0: int x;

 1: int y;
 2: int MyFunction(int x, int y)

 3: {

 4: int w, z;

 5: {

 6: int y;

 7: }

 8: {

 9: int w;

10: }

11: }

Root Scope

x 0

y 1

SYMBOL TABLES = STACK OF SCOPES

logically, the symbol table is a linked structure of scopes

each scope stores a pointer to its parents, but not vice-versa

from any point in the program, the symbol table appears to be
a stack

every point of the program (e.g every node of the syntax tree)
has its own symbol table

the symbol table implementation may use pointers between
nodes to avoid copying

29

WHAT OPERATION DO WE NEED?

given the above assumptions, we will need:

add a new name into the symbol table with its attributes
in the type checking this operation will be insert(Env,x,T) = Env[x
⟼ T]

lookup a name in the current and enclosing scopes
• to check if it is multiply declared

• to check for a use of an undeclared name, and

• to link a use with the corresponding symbol-table entry

do what must be done when a new scope is entered
in the type checking this operation will be newScope(Env) = Env ⦁[]

do what must be done when a scope is exited
in the type checking this operation will be exitScope(Env ⦁Env') = Env

30

SYMBOL TABLE, FORMALLY = ENVIRONMENT

formally, a scope is a map from variables to something

a scope is denoted by the Greek letter Γ, and it is called
environment

the simplest symbol table consisting of one scope is therefore
an environment

also stacks of scopes will be called environments

31

in SimpLan , "something" is an object of STentry

• STentry contains the infos about the type

• and other infos

FORMAL DEFINITION OF Γ

32

the environment Γ is a finite partial map Id → STentry

that takes identifiers (variables and function symbols) and returns STentries

Γ may be extended: for example we want to extend Γ with the binding
[z ⟼ T]

Γ[z ⟼ T] means the environment Γ' such that

Γ'(u)=

Definition: environment

Γ may be formalized by explicitating the list of the bindings

example: let Γ = [x ⟼ T1,y ⟼ T2] then
Γ(x) = T1 and Γ(y) = T2

∅ is the empty map (that may be also noted with [])
the notation Γ[x ⟼ T3] also means updating:

T if u = z

Γ(u) otherwise

⎧
⎨
⎩

Γ[x ⟼ T3] = [x ⟼ T3,y ⟼ T2]

STACK OF ENVIRONMENTS

stacks of environments are denoted Γ ⦁ Γ' (Γ' is the top-

envitonment)

lookup: Γ ⦁ Γ'(x) =

the add operation (Γ ⦁ Γ')[x⟼T] becomes Γ ⦁ (Γ'[x⟼T]), i.e.
add x in the top environment

if Γ is a sequence of environments, top(Γ) returns the top
environment

the add-new-scope operation is Γ ⦁ []
33

Γ'(x) if x ∈ dom(Γ')

Γ(x) otherwise

⎧
⎨
⎩

abuse of notation! Γ indicates a single
environment and a sequence of environments!

stack of environments are called environments and are denoted with Γ

ASSUMPTIONS

from now on, assume that our language:

uses static scoping

requires that all names be declared before they are used

does not allow multiple declarations of a name in the same scope
even for different kinds of names

does allow the same name to be declared in multiple nested
scopes

but only once per scope

uses the same scope for function's/method's parameters and for the
local variables declared at the beginning of the method

34

SYMBOL TABLE IMPLEMENTATION

assume that the symbol table will be used to answer two questions
(additional simplification):

1. given a declaration of a name, is there already a declaration of the same
name in the current scope ?

2. given a use of a name, to which declaration does it correspond (using the
"most closely nested" rule), or is it undeclared?

remark: point 2 is also relevant when you generate code because you
need to store an offset in the activation record

therefore, the symbol table, or part of it, must be kept till the end of the
compilation

35

we keep "part of it"

TWO POSSIBLE SYMBOL TABLE IMPLEMENTATIONS

1. a list of (hash)tables

2. a (hash)table of lists

for each approach, we will consider
what must be done when processing a declaration,

when processing a use, and

when entering and exiting a scope.

simplification: assume each symbol-table entry includes only
the symbol name

its type

the nesting level of its declaration

36

IMPLEMENTATION 1: LIST OF HASHTABLES

the idea:
the symbol table is a list of hashtables

one hashtable for each currently visible scope

when processing a scope S:

front of list end of list

declarations made in S declarations made in scopes that enclose S

37

EXAMPLE:

void f(int a, int b) {
 double x;
 while (...) { int x, y; ... }
}
void g() { f(4,5); }

at the symbol table is :

x: int, 3  
y: int, 3

a: int, 2  
b: int, 2  
x: double, 2

f: (int,int)àvoid, 1

method type:

function with domain → codomainmethod g has still
not been parsed

38

LIST OF HASHTABLES: THE OPERATIONS

1. on scope entry:
increment the current level number and add a new empty hashtable to
the front of the list

2. to process a declaration of x:
lookup x in the first table in the list

if it is there, then issue a "multiply declared variable" error

otherwise, add x to the first table in the list

3. to process a use of x:
lookup x starting in the first table in the list

if it is not there, then look up x in each successive table in the list

if it is not in any table then issue an "undeclared variable" error

4. on scope exit:
remove the first table from the list and decrement the current level number

39

REMEMBER

function/method names belong to the hashtable for the
outermost scope

not to the same table as the method's variables

for instance, in the example above:

the function name f is in the symbol table for the outermost scope

name f is not in the same scope as parameters a and b, and variable x

therefore, when the use of name f in method g is processed, the name
is found in an enclosing scope's table

40

THE COMPUTATIONAL COMPLEXITY OF OPERATIONS

1. scope entry

a) time to initialize a new, empty hashtable

b) probably proportional to the size of the hashtable

2. process a declaration
a) using hashing, constant expected time (O(1))

3. process a use:
a) using hashing to do the lookup in each table in the list, the worst-

case time is O(depth of nesting), when every table in the list must
be examined

4. scope exit
a) time to remove a table from the list, which should be O(1)

41

EXERCISE

assume to have Java? (an imaginary language different
from Java) that allows a function to have both a parameter
and a local variable with the same name

any use of the name in the body of the function refers to the local
variable

consider the code
void g(int x, int a) { }
void f(int x, int y, int z) { int a, b, x; ... }

draw the symbol table as it would be after processing the
declarations in the body of f under:

the scoping rules we have been assuming

Java? scoping rules
42

EXERCISE
void g(int x, int a) { }
void f(int x, int y) { int a, b, x; ... }

symbol table with Java scoping rules:

Java? scoping rules

x: int, 2
y: int, 2
a: int, 2
b: int, 2

x 😭

g: (int,int)àvoid, 1
f: (int,int)àvoid, 1

when we enter in the body of f

a: int, 3
b: int, 3
x: int, 3

x: int, 2
y: int, 2

g: (int,int)àvoid, 1
f: (int,int)àvoid, 1

ERROR!

NO ERROR!
43

IMPLEMENTATION 2: HASHTABLE OF LISTS

the idea:
when processing a scope S, the structure of the symbol table
is

there is just one big hashtable, containing an entry for each name
for which there is

some declaration in scope S or

in a scope that encloses S

each name has an associated list of symbol-table entries
the first item corresponds to the most closely enclosing declaration

the other list items correspond to declarations in enclosing scopes

x:

y:

z:

44

EXAMPLE

void f(int a) {
double x;
while (...) { int x, y; ... }
void g() { f(); }

}

at the symbol table is

the nesting level information is crucial

the level-number attribute stored in each list item enables us to
determine whether the most closely enclosing declaration was made

in the current scope or

in an enclosing scope

f:

a:

x:

y:

int, 2

int, 3 double, 2

int, 3

(int)àvoid, 1

45

HASHTABLE OF LISTS: THE OPERATIONS

1. on scope entry:
increment the current level number

2. to process a declaration of x:
look up x in the symbol table

if x is there, fetch the level number from the first list item

if that level number = the current level then issue a "multiply declared variable"
error

otherwise, add a new item to the front of the list with the appropriate type and the current
level number

3. to process a use of x:
look up x in the symbol table

if it is not there, then issue an "undeclared variable" error

4. on scope exit:
scan all entries in the symbol table, looking at the first item on each list

if that item's level number = the current level number, then remove it from its list (and if the
list becomes empty, remove the entire symbol-table entry)

finally, decrement the current level number
46

THE COMPUTATIONAL COMPLEXITY OF OPERATIONS

1. scope entry: time to increment the level number, O(1)

2. process a declaration: using hashing, constant expected time
(O(1))

3. process a use: using hashing, constant expected time (O(1))

4. scope exit: time proportional to the number of names in the
symbol table

47

EXERCISE

assume that the symbol table is implemented using a
hashtable of lists

draw pictures to show how the symbol table changes as each
declaration in the following code is processed

void g(int x, int a) {
double d;
while (...) { int d, w;

 double x, b;
 if (...) { int a,b,c; }

 }
 while (...) { int x,y,z;
 }

}

48

SCOPING

the scope rules of a language:

determine which declaration of an identifier corresponds to each
occurrence of the identifier

i.e., scoping rules map identifier occurrences to their declarations

C++ and Java use static scoping:

mapping from uses to declarations is made at compile time

C++ uses the "most closely nested" rule

an occurrence of x matches the declaration in the most closely
enclosing scope such that the declaration precedes the use

a deeply nested variable x hides x declared in an outer scope

in Java:

inner scopes cannot define variables defined in outer scopes
49

SCOPE LEVELS

each function in languages like Java and C has one or more
scopes:

one for the parameters and for the function body

and possibly additional scopes in the function (for each for
loop and for each nested block delimited by curly braces)

50

SCOPE LEVELS

example:
void f(int k) {

 int y = 0;
int x = 3;

 while (y) {
int x = 1; // another local var x

} // (legal in C++, not legal in Java)
}

the outermost scope includes just the name "f"

function f itself has two (nested) scopes in Java (e in C++):

1. the first one includes k, y and x

2. the innermost scope is for the body of the while loop, and
includes the variable x that is initialized to 1

51

EXERCISE

this is a C++ program

match each var-occurrence to its declaration, or say when an
occurrence is undeclared

class Foo {
int k=10, x=20;
void foo(int k) {

 int a = x; int x = k; int b = x;
 while (...) {
 int x=11;
 if (x == k) {
 int k, y;
 k = (y = x);
 }
 if (x == k) { int x, y; }

 }
 }
}

52

SUMMING UP

in order to manage symbol tables you need 4 functions

1. SymbolTable newScope(SymbolTable st)
// extends the st with a new scope (called add in SimpLan)

2. SymbolTable add(SymbolTable st, String id, Type t)

// if there is no clash of names, adds id ⟼ t to st

3. Type lookup(SymbolTable st, String id)
// looks for the type of id in st, if any

4. SymbolTable remove(SymbolTable st)
// exits the current scope

it is crucial to take care of exceptions!
53

USED BEFORE DECLARED?

can a name be used before it is defined?
Java: a method or field name can be used before the definition
appears

not true for a variable!

example:

class Test {
 void f() {

val = 0; // field val has not yet been declared -- OK
g(); // method g has not yet been declared -- OK
x = 1; // var x has not yet been declared -- ERROR
int x;

 }
 void g() {}
 int val;

}

54

SCOPING: EXAMPLE

Java: you may use a same name for

a class,

field of the class,

a method of the class, and

a local variable of the method

example: legal Java program:

class Test {

int Test;

Test() { double Test; }

}

55

SCOPING: OVERLOADING

Java and C++ (but not in Pascal or C):

can use the same name for more than one method as long as the
number and/or types of parameters are unique

example:
int add(int a, int b);

float add(float a, float b);

56

SNIPPETS OF THE SIMPLAN COMPILER

the ProgLetInNode.java has the following method for defining symbol
tables:

 public ArrayList<SemanticError> checkSemantics(SymbolTable ST, int _nesting) {
 nesting = _nesting + 1 ;

 HashMap<String,STentry> H = new HashMap<String, STentry>();
 ST.add(H);

 //declare resulting list
 ArrayList<SemanticError> errors = new ArrayList<SemanticError>();

 for (Node d : dec) {
 errors.addAll(d.checkSemantics(ST, nesting)) ;
 }

 //check semantics in the exp body
 errors.addAll(exp.checkSemantics(ST, nesting)) ;

 //clean the scope, we are leaving a let scope
 ST.remove();

 //return the result
 return errors;

 }

hashtable
list of hashtables

ProgLetInNode st

ExpNode stDecListNodest

the environment is removed!

the nesting level is increased!

57

SNIPPETS OF THE SIMPLAN COMPILER

the DecNode.java has the following method for defining
symbol tables:

 public ArrayList<SemanticError> checkSemantics(SymbolTable ST, int _nesting) {
 ArrayList<SemanticError> errors = new ArrayList<SemanticError>();

 nesting = _nesting ;

 errors.addAll(exp.checkSemantics(ST, nesting));

 if (ST.top_lookup(id) == true)
 errors.add(new SemanticError("Var id " + id + " already declared"));
 else ST.insert(id, (Type) type, nesting, "") ;

 return errors ;
 }

buid an entry with right
nesting-level and type (""
because there is no label …)

verify that id is not in
the top-level hash table

DecNode st

id

ExpNode st
58

 public ArrayList<SemanticError> checkSemantics(SymbolTable ST, int _nesting) {
ArrayList<SemanticError> errors = new ArrayList<SemanticError>();
nesting = _nesting ;
if (ST.lookup(id) != null)

errors.add(new SemanticError("Identifier " + id + " already declared"));
else {

HashMap<String,STentry> HM = new HashMap<String,STentry>() ;
ArrayList<Type> partypes = new ArrayList<Type>() ;

ST.add(HM);

for (ParNode arg : parlist){
 partypes.add(arg.getType());
 if (ST.top_lookup(arg.getId()))
 errors.add(new SemanticError("Parameter id "+ arg.getId() +" already declared"));
 else ST.insert(arg.getId(), arg.getType(), nesting+1, "") ;
 }

type = new ArrowType(partypes, returntype) ;
ST.increaseoffset() ; // offset aumentato per il return value: SEE CODE GENERATION
for (Node dec : declist)

 errors.addAll(dec.checkSemantics(ST, nesting+1));

errors.addAll(body.checkSemantics(ST, nesting+1));
ST.remove();

flabel = SimpLanlib.freshFunLabel() ;
ST.insert(id, type, nesting, flabel) ;

}
return errors ;

}

IN FUNNODE.JAVA OF THE SIMPLAN COMPILER

59

buid an entry with right nesting-level and
type (offset is used in the code generation)

adds an empty environment
ahead

look for comments in the code!

adds the formal parameters in the top
environment: notice the nesting level!

generate the label for the function in the
bytecode!

SNIPPETS OF THE SIMPLAN COMPILER

the IdNode.java has the following method for defining
symbol tables:

 public ArrayList<SemanticError> checkSemantics(SymbolTable ST, int _nesting) {
ArrayList<SemanticError> errors = new ArrayList<SemanticError>();

 nesting = _nesting ;

STentry st_type = ST.lookup(id) ;
if (st_type == null)

errors.add(new SemanticError("Id " + id + " not declared"));
else type = st_type ;

return errors;
}

error if there is no type

take the type of id (and
other infos…)

60

NEXT LECTURE

lexical
analysis

syntactic
analysis

semantic
analysis

bytecode
generation

the SimpLan
interpreter

scopes and symbol tables
type checking

61

