

ALMA MATER STUDIORUM Università di Bologna Dipartimento di Informatica - scienza e ingegneria

RECURSIVELY DESCENT PARSING AND LL PARSING

COSIMO LANEVE

cosimo.laneve@unibo.it

CORSO 72671 - COMPLEMENTI DI LINGUAGGI DI PROGRAMMAZIONE

THIS LECTURE

OUTLINE

- * recursive descent parsing
 - problems
 - implementations
- * predictive parsers
- * parsers LL(1)
 - FIRST and FOLLOW sets
 - LL(1) tables
 - ambiguities
- * ANTLR

reference: Torben Morgensen: Basics of Compiler Design, Chapter 3, sections 6—13

RECURSIVE DESCENT PARSING

analyze the sequence of tokens trying to reconstruct the steps of a **leftmost derivation**

these parsers are called **top-down** because they mimic an anticipated visit of the syntax tree — anticipated = from the root to the leaves

idea: the rules for a non-terminal A define a method that recognises A

- * the right-hand sides of the rules define the structure of the method code
- * the sequence of terminals and non-terminals in the rules corresponds to a check that terminals match and to invocations of the methods corresponding to the non-terminal symbols
- * the presence of different rules for A is implemented by a case or a if

RECURSIVE DESCENT PARSING — EXAMPLE

take the grammar

 $E \rightarrow T + E \mid T$ $T \rightarrow (E) \mid (E) * T \mid int \mid int * T$

the tokens returned by the lexer are

lpar rpar plus times int(k) [$k \in Nat$]

assume to analyze the token stream:

int(5) times int(2)

the parsing starts with the expansion of the initial symbol **E** and **every rule** of **E** is checked, one at a time ...

RECURSIVE DESCENT PARSING — EXAMPLE

try $E \rightarrow T + E$

int(5) times int(2)

- * then you check the **first rule** for T: $T \rightarrow (E)$
 - but there is no match with the input token int(5)
- * then you check the second rule for T: $T \rightarrow (E) * T$
 - but there is no match with the input token int(5)
- * then you check the **third rule** for T: $T \rightarrow int$
 - there is match with the input token int(5)
 - but there is no match with the token plus after T and the token times of the input stream
- * then you check the forth rule for T: $T \rightarrow int * T$
 - there is match with int(5) and then times and int(2)
 - but there is no match with the token plus because the input stream ends
- * we have saturated the choices for T without succeeding
 - backtrack to the other choices for E

RECURSIVE DESCENT PARSING — EXAMPLE $E \xrightarrow{T} T + E \mid T \\ T \xrightarrow{T} (E) \mid (E) * T \mid int \mid int * T$ int(5) times int(2)

- then try $E \rightarrow T$ and perform the same steps done for $E \rightarrow T + E$ * the parsing succeeds with the rule $T \rightarrow int * T$ and $T \rightarrow int$
- * the returned parse tree is the following one

RECURSIVE DESCENT PARSING — IMPLEMENTATION

define a method **boolean** that verifies the matches of the token stream

* verify the match with a given **terminal**

```
public boolean term(TOKEN tok){
    TOKEN x = in[next] ;
    next = next + 1 ;
    return x == tok;
}
```

* verify the match with a rule of **S** (say the n-th)

public boolean S_n(){ ... }

* verify the match with a whatever rule of S:

```
public boolean S(){ ... }
```

note: every foregoing method increments **next**

RECURSIVE DESCENT PARSING — IMPLEMENTATION

Е	\rightarrow	т +	E	T						
Т	\rightarrow	(E)		(E)	*	Т	int	int	*	Т

for the rule $E \rightarrow T + E$

```
public boolean E_1( ){
         return (T() && term(plus) && E());
    }
                                          this corresponds to
for the rule E \rightarrow T
                                            boolean B1 = T();
                                            boolean B2 = B1 && term(plus);
   public boolean E 2( ){
                                            return(B2 && E()) ;
         return T();
    }
for (all) the rules of E (with backtracking)
 public boolean E() {
                                                       backtrack!
     int saved = next ;
     if (E 1()) return true ;
        else { next = saved ; return (E 2()) ; }
```

9

RECURSIVE DESCENT PARSING — IMPLEMENTATION

methods for the non-terminal T

Е	\rightarrow	т +	Е	T						
т	\rightarrow	(E)		(E)	*	т	int	int	*	т

```
public boolean T 1(){
         return ( term(lpar) && E() && term(rpar) );
}
public boolean T 2(){
   return ( term(lpar) && E() && term(rpar) && term(times) && T() );
}
public boolean T 3(){ return ( term(int) ); }
public boolean T 4(){
         return ( term(int) && term(times) && T() ); }
public boolean T(){
         int saved = next;
         if (T 1()) return true ;
         else { next = saved ;
                if (T 2()) return true;
                else { next = saved ;
                        if (T 3()) return true;
                        else { next = saved ; return T 4() ; }
                }
         }
```

RECURSIVE DESCENT PARSING — REMARKS

to trigger the parsing

- * initialize **next** in such a way it points to the first token
- * invoke E()
- * assume that a special character \$ represents the end of the input stream in the array in[]
- * the parsing ends with success if, at the end of the execution, in[next] == \$
- * remark: the execution of the recursive descent parsing coincides with the abstract execution computed at the beginning
- * other remark: this is simple to implement (also by hand) but it does
 not work, sometimes!

RECURSIVE DESCENT PARSING — LEFT-RECURSIVE GRAMMARS

take the rule $S \rightarrow S a$

and try to analyze this rule in the recursive descent parsing

* why the process does not work?

Definition: left recursive grammar

A grammar (N, T, \rightarrow , S) is **left-recursive** if there is $A \in N$ such that

$$A \rightarrow A \gamma$$
, for some γ

the recursive descent parsing **does not work** for Ir-grammars

* because it performs an infinite cycle

note: in these cases you need to **change the grammar by removing the left-recursion** (see following slides)

RECURSIVE DESCENT PARSING — SUMMING UP

the parsing strategy is **extremely simple**

- * in case you need to **remove the left-recursion** ... but this task can be performed **automatically**
- it is **not common** because it uses the backtracking
- * it is very inefficient
- * in practice, the backtracking may be reduced or eliminated by changing the grammar (left-factorization)

it is good for small grammars

- * you need to be careful: the order of productions is important even after left-recursion is eliminated
- * try to reverse the order of $T \rightarrow int T$ and $T \rightarrow int$
- * what goes wrong? (consider input int*int)

PREDICTIVE PARSERS — MOTIVATIONS

to avoid the backtracking, it would be useful

- * if the recursive-descent parser knows the next production to expand
- * idea: replace the code

```
saved = next ;
if (E_1()) return true;
else { next = saved; return E_2(); }
with
switch ( something ) {
    case L1: return E_1();
    case L2: return E_2();
    default: System.out.print("syntax error") ;
}
```

* what is the meaning of "something", L1, L2 ?
they are defined by a lookahead (analysis of the next tokens)

PREDICTIVE PARSING AND LEFT FACTORING

the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow (E) \mid (E) * T \mid int \mid int * T$

is impossible to predict because

- * the non-terminal T has two productions that begin with "(" and two productions that begin with "int"
- * the non-terminal E has the two productions that begin with T and it is not evident how to predict

this grammar **must be left-factorized** before using predictive parsers (see following slides)

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \mathcal{E}$ $T \rightarrow (E) Y \mid int Y$ $Y \rightarrow * T \mid \mathcal{E}$ 15

PREDICTIVE PARSERS

they are similar to recursive-descent parsers except that they can **predict** which production to use

- * by looking at the next tokens
- * without backtracking

predictive parsers accept LL(k) grammars

- * L means "left-to-right" input scan
- * L means "leftmost derivation"
- * k means "predict using k tokens of lookahead"

we study LL(1) analysis

* **ANTLR** uses **LL(*)**, a sophisticated technique that consider as many token as needed (this technique is not covered in this course)

LL(1) LANGUAGES

in recursive-descent parsers, for each non-terminal and input token there may be several possible productions

LL(1) means: for each non-terminal and input token there may be **at most one production** that can be used

LL(1) parsers can be defined by a 2 dimension table

- * one dimension for the non-terminal to expand
- * one dimension for the next token
- * the table entry contains the production to use

PARSER LL(1)

in practice, instead of using the code

```
switch ( something ) {
    case L1: return E_1();
    case L2: return E_2();
    default: System.out.print("syntax error") ;
}
```

use a table LL(1) and a parsing stack

- * the LL(1) table will replace the switch instruction
- * the parsing stack will replace the call stack

PARSER LL(1) — PARSING TABLE/EXAMPLE

the **LL(1)** parsing table of

$$E \rightarrow T X \qquad X \rightarrow + E | \\T \rightarrow (E) Y | int Y \qquad Y \rightarrow * T |$$

	int	*	+	()	\$
Т	$T \rightarrow int Y$			$T \rightarrow (E)Y$		
Ε	$E \rightarrow T X$			$E \rightarrow T X$		
Х			$X \rightarrow + E$		$X \rightarrow E$	$X \rightarrow E$
Y		Y → * T	$Y \rightarrow \mathcal{E}$		$Y \rightarrow E$	$Y \rightarrow E$

- * for the [E, int] entry: when the non-terminal on the stack is E and the next token in input is int, use the production $E \rightarrow T X$
- * for the [Y,+] entry: when the non-terminal on the stack is Y and the next token in input is + then remove Y (we'll see why)
- * the empty entries indicate an,,error: example [E,*]

PARSER LL(1) — THE PARSING TABLE

the technique is **similar to recursive descent**, but instead of nondeterminism (and the backtrack)

* for every non-terminal S, look at the next token, say a, and the entry
[S,a] in the table

we use a **stack** in order to record the terminals and non-terminals in the rhs of the production in **[S,a]**

- * the input is **rejected** when an erroneous state is found (empty entry in the parsing table)
- * the input is **accepted** when the entry contains **end-of-input** token

PSEUDO-ALGORITHM OF LL(1) PARSING

```
add $ at the end of the array TOKENS ;
next = 0;
stack = \langle S \rangle;
repeat
    switch (stack){
      case \langle X \text{ rest} \rangle: if (LL1_TABLE[X, TOKENS[next]] = \alpha_1 \dots \alpha_n)
                                       stack = \langle \alpha_1 \dots \alpha_n \text{ rest} \rangle;
                            else System.out.println("error");
                           break ;
              <trest>: if (t == TOKENS[next]) {
                                       stack = \langle rest \rangle;
                                       next = next+1;
                            } else System.out.println("error") ;
                            break ;
     }
until (stack == \langle \rangle)
```

LL(1) PARSING: EXAMPLE

	int	*	+	()	\$
Т	$T \rightarrow int Y$			$T \rightarrow (E)Y$		
Ε	$E \rightarrow T X$			$E \rightarrow T X$		
Х			$X \rightarrow + E$		$X \rightarrow E$	$X \rightarrow \varepsilon$
Y		Y → * T	$Y \rightarrow E$		$Y \rightarrow E$	$Y \rightarrow \mathcal{E}$

Stack	Input	Action
Е\$	int * int \$	ТХ
ТХ\$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
ТХ\$	int \$	int Y
int Y X \$	int \$	terminal
Y X \$	\$	3
X \$	\$	3
\$	\$	terminal/ACCEPT
	22	

THE DEFINITION OF THE LL(1) PARSING TABLE

let $G = (N, T, \rightarrow, S)$, its **LL(1)** table is defined as follows:

- 1. it has non-terminal symbols in the rows and terminal symbols in the columns
- 2. for every rule $X \rightarrow \gamma$ in G and for every t such that $\gamma \rightarrow^* t \delta$, add the rule $X \rightarrow \gamma$ in the entry (X, t)
- 3. for every rule $X \to \gamma$ in G such that $\gamma \to {}^* \varepsilon$ add the rule $X \to \gamma$ in the entry (X, t), for every t such that $S \to {}^* \delta X t \delta'$

they seem difficult to compute!

the LL(1) grammars are those with LL(1) parsing tables that **do not have multiple entries**

THE DEFINITION OF THE LL(1) PARSING TABLE — NULLABLE

Definition: the function NULLABLE

Let $G = (N, T, \rightarrow, S)$ be a context-free grammar. NULLABLE is a function on G defined as follows

NULLABLE(G) = { A | $A \rightarrow^* \varepsilon$ }

remark: by definition NULLABLE(G) \subseteq Nexample: $X \rightarrow + E \mid \varepsilon$ $E \rightarrow T X$ $X \rightarrow + E \mid \varepsilon$ $T \rightarrow (E) Y \mid Y$ $Y \rightarrow * T \mid \varepsilon$

then NULLABLE(G) = { X, Y, T, E }. Are you sure about E ?

remark: this definition is not algorithmic

THE DEFINITION OF THE LL(1) PARSING TABLE — NULLABLE

Algorithmic definition: the function NULLABLE

Let $G = (N, T, \rightarrow, S)$ be a context-free grammar. NULLABLE₁ are functions on G defined as follows

 $|. NULLABLE_0(G) = \{ A | A \rightarrow \varepsilon \text{ in } G \}$

2. NULLABLE_{i+1}(G) = NULLABLE_i(G)

 $\cup \{ A \mid A \rightarrow A_1 \dots A_n \text{ in } \mathcal{G} \land A_1, \dots, A_n \in \text{NULLABLE}_{i}(\mathcal{G}) \}$

* it is easy to show that $\text{NULLABLE}_{i}(\mathcal{G}) \subseteq \text{NULLABLE}_{i+1}(\mathcal{G}) \subseteq \mathbb{N}$

* therefore there is k such that $NULLABLE_k(G) = NULLABLE_{k+1}(G)$

then NULLABLE(G) = NULLABLE_k(G)

FUNCTION NULLABLE: EXAMPLES

grammar $\mathbf{E} \rightarrow \mathbf{T} \mathbf{X}$ $\mathbf{X} \rightarrow + \mathbf{E} \mid \boldsymbol{\varepsilon}$ $\mathbf{T} \rightarrow (\mathbf{E})\mathbf{Y} \mid \text{int } \mathbf{Y}$ $\mathbf{Y} \rightarrow * \mathbf{T} \mid \boldsymbol{\varepsilon}$

predicate NULLABLE

```
NULLABLE<sub>0</sub>(G) = { X, Y }
```

```
NULLABLE<sub>1</sub>(G) = { X, Y }
```

```
NULLABLE(G) = NULLABLE<sub>0</sub>(G)
= { X, Y }
```

FUNCTION NULLABLE: EXAMPLES

grammar $Z \rightarrow b \mid X Y Z$ $X \rightarrow Y \mid a$ $Y \rightarrow \varepsilon \mid c$

predicate NULLABLE

NULLABLE₀(
$$G$$
) = { Y }
NULLABLE₁(G) = { X, Y }
NULLABLE₂(G) = { X, Y }

NULLABLE(
$$G$$
) = NULLABLE₁(G)
= { X, Y }

grammar
$$S \rightarrow a$$
 | X
 $X \rightarrow Y$
 $Y \rightarrow X$
predicate NULLABLE
NULLABLE₀(G) = \emptyset
NULLABLE₁(G) = \emptyset

$$\begin{aligned} \text{NULLABLE}(\mathcal{G}) &= \text{NULLABLE}_{0}(\mathcal{G}) \\ &= \emptyset \end{aligned}$$

DEFINITION OF LL(1) PARSING TABLES: FIRST

Algorithmic definition: the function FIRST

Let $G = (N, T, \rightarrow, S)$ be a context-free grammar. FIRST_i are functions on $N \cup T$ that are defined as follows

3. FIRST_{i+1}(A) = FIRST_i(A) $\bigcup \bigcup_{\substack{A \to \alpha_1 \cdots \alpha_n \text{ in } G \\ \forall i \in 1...k-1 : \alpha_i \in \text{NULLABLE}(G)}} FIRST(\alpha_k) \setminus \{ \epsilon \}$

* it is easy to show that, for every i: $FIRST_i(A) \subseteq FIRST_{i+1}(A) \subseteq T \cup \{ \epsilon \}$ * therefore there is k such that, for every A, $FIRST_k(A) = FIRST_{k+1}(A)$ then $FIRST(A) = FIRST_k(A)$

grammar

 $X \rightarrow + E \mid \varepsilon$ $E \rightarrow T X$ $T \rightarrow (E) Y \mid int Y \quad Y \rightarrow * T \mid \varepsilon$ sets FIRST_i // we only compute FIRST for nonterminals $FIRST_{0}(X) = \{ \varepsilon \} \qquad FIRST_{0}(Y) = \{ \varepsilon \} \qquad FIRST_{0}(E) = \emptyset \qquad FIRST_{0}(T) = \emptyset$ $FIRST_1(X) = \{+, \epsilon\} \qquad FIRST_1(Y) = \{*, \epsilon\} \qquad FIRST_1(E) = \emptyset \qquad FIRST_1(T) = \{(, int\}\}$ $FIRST_2(X) = \{+, \varepsilon\} \qquad FIRST_2(Y) = \{*, \varepsilon\} \qquad FIRST_2(E) = \{(, int\} \qquad FIRST_2(T) = \{(, int\} \ FIRST_2($ $FIRST(X) = \{+, \epsilon\}$ $FIRST(Y) = \{*, \epsilon\}$

 $FIRST(E) = \{(, int\}) | FIRST(T) = \{(, int\})\}$

grammar

 $S \rightarrow (S) S \mid \varepsilon$

sets **FIRST**_i

FIRST₀(S) = { ε } FIRST₁(S) = {(, ε }

 $FIRST(S) = FIRST_1(S) = \{(, \varepsilon)\}$

grammar

Ζ	\rightarrow	b	Х	Y	Ζ
Х	\rightarrow	Y	a		
Y	\rightarrow	З	С	ļ ,	

sets **FIRST**_i:

FIRST₀(Z) = \emptyset FIRST₀(X) = { ε } FIRST₀(Y) = { ε } FIRST₁(Z) = {b} FIRST₁(X) = {a, ε } FIRST₁(Y) = {c, ε } FIRST₂(Z) = {a, b, c} FIRST₂(X) = {a, c, ε } FIRST₂(Y) = {c, ε }

$$FIRST(X) = \{a, c, \epsilon\} \qquad FIRST(Y) = \{c, \epsilon\}$$
$$FIRST(Z) = \{a, b, c\}$$

grammar

sets **FIRST**_i:

 $FIRST_0(S) = \{ \varepsilon \} \qquad FIRST_0(X) = \{ \varepsilon \}$

 $FIRST_0(S) = \{ \varepsilon \} \qquad FIRST_0(X) = \{ \varepsilon \}$

FIRST(S) = { ε } FIRST(X) = { ε }

ESTENSIONE DI FIRST A SEQUENZE IN $\textbf{N} \cup \textbf{T}$

it is easy to compute **FIRST** (γ) where $\gamma \in (\mathbf{N} \cup \mathbf{T})^*$

FIRST (ε) = { ε } FIRST ($t\gamma$) = {t}, with $t \in T$ FIRST ($A\gamma$) = FIRST (A), with $A \notin \text{NULLABLE}(G)$ FIRST ($A\gamma$) = FIRST (A)\{ ε } U FIRST (γ), with $A \in \text{NULLABLE}(G)$

the algorithm for computing FOLLOW uses this extension

DEFINITION OF LL(1) PARSING TABLES: FOLLOW

Algorithmic definition: the function FOLLOW

Let $G = (N, T, \rightarrow, S)$ be a context-free grammar. FOLLOW_i are functions on **N** and defined as follows

|. FOLLOW₀(S) = { \$ } and FOLLOW₀(A) = \emptyset

2. FOLLOW_{i+1}(X) = FOLLOW_i(X) $\bigcup_{Z \to \delta X_{\gamma} \text{ in } G} \text{FIRST}(\gamma) \setminus \{\epsilon\}$ $\bigcup_{Z \to \delta X_{\gamma} \text{ in } G \text{ and } \text{NULLABLE}(\gamma)} \text{FOLLOW}_i(Z)$

* it is easy to show that, for every i: $FOLLOW_i(A) \subseteq FOLLOW_{i+1}(A) \subseteq T \cup \{\$\}$ * therefore there is k such that, for every A, $FOLLOW_k(A) = FOLLOW_{k+1}(A)$ then $FOLLOW(A) = FOLLOW_k(A)$

remarks: (1) when the initial symbol does not appear on the rhs of productions, "\$" is the unique symbol in its **FOLLOW**

(2) FOLLOW never contains " ϵ "

FOLLOW SETS — EXAMPLES

grammar

 $E \rightarrow T X \qquad X \rightarrow + E \mid \varepsilon$ $T \rightarrow (E) Y \mid int Y \qquad Y \rightarrow * T \mid \varepsilon$

sets FOLLOWi

FOLLOW₀(E) = { \$ } FOLLOW₀(T) = \emptyset FOLLOW₀(X) = \emptyset FOLLOW₀(Y) = \emptyset FOLLOW₁(E) = { \$, }} FOLLOW₁(T) = {+, \$ } FOLLOW₁(X) = { \$ } FOLLOW₁(Y) = \emptyset FOLLOW₂(E) = { \$, }} FOLLOW₂(T) = {+, \$, }} FOLLOW₂(X) = {\$, }} FOLLOW₂(Y) = {+, \$} FOLLOW₃(E) = { \$, }} FOLLOW₃(T) = {+, \$, }} FOLLOW₃(X) = {\$, }} FOLLOW₃(Y) = {+, \$, }}

FOLLOW SETS — EXAMPLES

grammar

 $S \rightarrow (S) S | \varepsilon$

FOLLOW_i sets

FOLLOW₀(S) = { \$ } FOLLOW₁(S) = { \$, } }

 $FOLLOW(S) = FOLLOW_1(S) = \{ \$, \}$

FOLLOW SETS — EXAMPLES

grammar

Ζ	\rightarrow	b	X	Y	Ζ
Χ	\rightarrow	Y	a		
Y	\rightarrow	3	C		

 $FOLLOW_i$ sets

 $FOLLOW_0(Z) = \{\$\}$ $FOLLOW_0(X) = \emptyset$ $FOLLOW_0(Y) = \emptyset$

FOLLOW₁(Z) = { \$ } FOLLOW₁(X) = FOLLOW₀(X) \cup FIRST(Y)\{ ϵ } \cup FIRST(Z) = { c } \cup {a, b, c} FOLLOW₁(Y) = FOLLOW₀(Y) \cup FIRST(Z) \cup FOLLOW₀(X) = {a, b, c}

> FOLLOW(Z) = { \$ } FOLLOW(X) = {a, b, c} FOLLOW(Y) = {a, b, c}

DEFINITION OF LL(1) PARSING TABLES

the parsing table \mathbf{LL}^{1}_{G} for a grammar G:

```
for every A \rightarrow \alpha in G do:
```

1. for every terminal $t \in FIRST(\alpha)$ do

* $LL^{1}_{G}[A, t] = A \rightarrow \alpha$

2. if $\mathcal{E} \in \text{FIRST}(\alpha)$, for each $t \in \text{FOLLOW}(A)$ do

*
$$LL^{1}_{G}[A, t] = A \rightarrow \alpha$$

[this rule applies also to \$, i.e. when $\$ \in FOLLOW(A)$:

if $\mathcal{E} \in \text{FIRST}(\alpha)$ and $\$ \in \text{FOLLOW}(A)$ do $\text{LL}^{1}_{G}[A, \$] = A \rightarrow \alpha$

DEFINITION OF LL(1) PARSING TABLES: EXAMPLE

take the grammar

 $E \rightarrow T X$ $X \rightarrow + E \mid \varepsilon$ $T \rightarrow (E) Y \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

where in the line of Y we put $Y \rightarrow *T$? * in the columns of FIRST(*T) = { * }

where in the line of Y we put $Y \rightarrow \varepsilon$? * in the columns of FOLLOW(Y) = { \$, +, }

	int	*	+	()	\$
Т	$T \rightarrow int Y$			$T \rightarrow (E)Y$		
E	$E \rightarrow T X$			$E \rightarrow T X$		
Х			$X \rightarrow +E$		$X \rightarrow E$	$X \rightarrow \varepsilon$
Y		$\Upsilon \rightarrow *T$	$Y \rightarrow E$		$Y \rightarrow E$	$Y \rightarrow \varepsilon$

REMARKS ABOUT LL(1) TABLES

if any entry is **multiply defined** then G is not LL(1)

- in particular when
- * G is left recursive
- * G is not left-factored
- * G is ambiguous
- \ast and in other cases as well

most programming language grammars are not LL(1)

- * there are tools that build LL(1) tables
- * the parser generator **ANTLR** uses the **LL** approach

REMOVING LEFT RECURSION

[see def. slide 12] a grammar si called **left-recursive** if it has a non-terminal **A** such that $A \Longrightarrow^+ A \gamma$, for some γ

case of **DIRECT LEFT-RECURSION**, i.e. there is **A** such that

$$\begin{array}{c} A \rightarrow A \, \chi_1 \\ \vdots \\ A \rightarrow A \, \chi_m \\ A \rightarrow \delta_1 \\ \vdots \\ A \rightarrow \delta_n \end{array} \right\} \, \delta_1 \dots \delta_n \ \text{do not start with} \ A \end{array}$$

remark: the grammar is equivalent to the regular expression

$$(\delta_1|\ldots|\delta_n)(\gamma_1|\ldots|\gamma_m)*$$

REMOVING DIRECT LEFT RECURSION

$$\begin{array}{ccc} A \rightarrow A \gamma_{1} & A \rightarrow \delta_{1} \\ \vdots & \vdots \\ A \rightarrow A \gamma_{m} & A \rightarrow \delta_{n} \end{array} \end{array} \right\} \delta_{1} \dots \delta_{n} \text{ do not start with } A$$

is rewritten into — we use a new non terminal A'

remarks

- * since the δ_{1} do not start with A there is no direct left-recursion anymore
- * since the A' is a new non-terminal, the γ_1 cannot start with it
- * there may be indirect left-recursions if, for some i, NULLABLE(γ_1)

REMOVING DIRECT LEFT RECURSION/EXAMPLE

ਸ	\rightarrow	ਸ	+	ਸ	is rewritten into	Ţ		T	· .	1 1
نط		نىل		L		Ľ	\rightarrow	Г	E	1
Ε	\rightarrow	Ε	-	F		Е'	\rightarrow	+	F	Е'
Ε	\rightarrow	F				Е'	\rightarrow	_	F	Е'
F	\rightarrow	F	*	т		Е'	\rightarrow	З		
F	\rightarrow	F	/	Т		\mathbf{F}	\rightarrow	т	F	I
F	\rightarrow	Т				F'	\rightarrow	*	т	F'
Т	\rightarrow	nı	ım			- म	\rightarrow	/	т	- म'
Т	\rightarrow	(E	Ξ)			-		/	-	-
_		(-	- /			\mathbf{F}'	\rightarrow	8		
						т	\rightarrow	nı	ım	

 $T \rightarrow (E)$

exercise: build the LL(1) table

REMOVING INDIRECT LEFT RECURSION

there are several possibilities

1. case of MUTUAL LEFT-RECURSION:

A_1 –	→	$A_2 \gamma_1$		break the mutual recursion, e.g. replace
A ₂ –	>	$A_3 \gamma_2$		$A_1 \rightarrow A_2 \gamma_1$
	•		}	with
A_{k-1} –	→	$A_k \gamma_{k-1}$		$A_1 \rightarrow A_1 \gamma_k \dots \gamma_1$
A_k –	>	$A_1 \gamma_k$		and solve the direct left recursion

2. there is a production

 $A \rightarrow \gamma A \delta$ where NULLABLE(γ)

- 3. any combination of 1 and 2
- it is always possible to rewrite indirect left recursion into direct one * the **process is a bit complex**

LEFT FACTORING

the grammar

 $E \rightarrow T + E \mid T$ $T \rightarrow (E) \mid (E) * T \mid int \mid int * T$

is impossible to predict because

- * the non-terminal T has **two productions** that begin with "(" and **two productions** that begin with "int"
- * the non-terminal E has the two productions that begin with T and it is not evident how to predict

the above grammar **must be left-factored** before using predictive parsers

LEFT-FACTORING — AN EXAMPLE

the grammar

 $E \rightarrow T + E \mid T$ T \rightarrow (E) \| (E) *T \| int \| int * T

is left-factored as follows

 $E \rightarrow T E'$ $E' \rightarrow + E \mid \varepsilon$ $T \rightarrow (E) T' \mid \text{int } T'$ $T' \rightarrow *T \mid \varepsilon$

PROBLEM: left-factoring the standard if-then-else statement Stat \rightarrow if Exp then Stat else Stat | if Exp then Stat

AMBIGUITY

a grammar is **ambiguous** if it has **more than one parse tree** for some string

* equivalently, there is more than one rightmost or leftmost
 derivation for some string

example: $E \rightarrow E + E \mid E * E \mid (E) \mid int$ is ambiguous because int+int+int int*int+int have two parse trees

AMBIGUITY

- ambiguity is **bad**
- * leaves meaning of some programs ill-defined
- ambiguity is **common** in programming languages
- * arithmetic expressions
- * if-then-else
- in LL parsing it is possible to deal with ambiguity by
- * rewriting grammars

DEALING WITH AMBIGUITY

rewrite the grammar for expressions in an unambiguous way:

 $E \rightarrow E + T \mid T$ $T \rightarrow T * int \mid T * (E) \mid int \mid (E)$

* enforces precedence of * over +

* enforces left-associativity of + and *

the new grammar is neither LL(1) nor adeguate for rec.descent parsing (left-recursion)

DEALING WITH AMBIGUITY: THE DANGLING ELSE

the grammar

S → ID '=' E | 'if' E 'then' S | 'if' E 'then' S 'else' S is also **ambiguous** because the statement

if E_1 then if E_2 then S_3 else S_4

has two (abstract) parse trees

in programming languages we want the tree in the right

THE DANGLING ELSE: A FIX

else matches the closest unmatched then

we can factorize the if-then part and rewrite the grammar as follows:

$$S \rightarrow ID = E$$

| if E then S ELSE
ELSE \rightarrow else S | ϵ

(this new grammar describes the same set of strings and allows the same derivations)

THE DANGLING ELSE: A THEORETICAL FIX

see Gabbrielli-Martini

statement	<pre>: statementNoIf ifThenStatement ifThenElseStatement;</pre>
statementNoIf	: // the statements without if
ifThenStatement	<pre>; 'if' '(' exp ')' 'then' statement ;</pre>
ifThenElseStatement	: 'if' '(' exp ')' 'then' statementNoShortIf 'else' statement ;
statementNoShortIf	<pre>: statementNoIf 'if' '(' exp ')' 'then' statementNoShortIf 'else' statementNoShortIf ;</pre>

the grammar is NOT LL(1): it must be left-factorized! even if it is accepted in ANTLR!

AMBIGUITY

there is no general techniques for handling ambiguity by transforming grammar

* it is always preferable **not to change a grammar**

instead of rewriting the grammar

- * use the more natural (ambiguous) grammar
- * along with **disambiguating declarations**

ANTLR

- ✤ start rule
- * ambiguity
- * left recursion
- * non-LL(*) decision errors

ANTLR — START RULE

it is not so anymore in ANTLR v4

any grammar needs a so-called start rule

- * start rule is a rule that is not referenced by another rule
- * if your grammar does not have such rule, **ANTLR** generator will issue a warning:

no start rule (no rule can obviously be followed by EOF)

to avoid it, add a dummy start rule to your grammar:

```
start_rule: someOtherRule ;
```

ANTLR — AMBIGUITY

example:

```
exp : exp '+' exp | exp '*' exp | NUM | '(' exp ')';
NUM: ('0'..'9')+;
```

this grammar should recognize inputs for a simple calculator

- * ANTLR v4 behaves badly
- * to understand the problem, recall that **ANTLR** goes from **left to right** whenever parsing an input
 - it first decides which alternative it will use following the order of the rules
 - then it sticks with the decision
- * remark: left-factorization is solved automatically by ANTLR

ANTLR — AMBIGUITY

example:

```
exp : exp '+' exp | exp '*' exp | NUM | '(' exp ')';
NUM: ('0'..'9')+;
```

* try to simulate it on the input

1 + 3 * 4

* does it match an exp '+' exp alternative, or an exp '*' exp alternative?

* the error suggests to reorder the rules as follows:

```
exp : exp '*' exp | exp '+' exp | NUMBER | '(' exp ')';
NUMBER: ('0'..'9')+;
```

ANTLR — PROBLEMS WITH ASSOCIATIVITY

problem: extend the grammar with "/" and force it to be right-associative

```
exp : exp '/' exp | exp '*' exp | exp '+' exp | '(' exp ')' | NUM ;
NUM: ('0'..'9')+;
```

solution: use a new nonterminal!

```
exp : term | exp '+' term ;
term : factor | factor '/' term | term '*' factor ;
factor : '(' exp ')' | NUM ;
```

better solution: use the "right-associativity" annotation!

NEXT LECTURE

