RECURSIVELY DESCENT PARSING AND LL PARSING

COSIMO LANEVE
cosimo.laneve@unibo.it

THIS LECTURE

LL-parsing and ANTLR

OUTLINE

* recursive descent parsing
- problems
- implementations
* predictive parsers
* parsers LL(1)
- FIRST and FOLLOW sets
- LL (1) tables
- ambiguities
* ANTLR
reference: Torben Morgensen: Basics of Compiler Design, Chapter 3, sections 6-13

RECURSIVE DESCENT PARSING

analyze the sequence of tokens trying to reconstruct the steps of a leftmost derivation
these parsers are called top-down because they mimic an anticipated visit of the syntax tree - anticipated = from the root to the leaves
idea: the rules for a non-terminal A define a method that recognises A

* the right-hand sides of the rules define the structure of the method code
* the sequence of terminals and non-terminals in the rules corresponds to a check that terminals match and to invocations of the methods corresponding to the non-terminal symbols
* the presence of different rules for A is implemented by a case or a if

RECURSIVE DESCENT PARSING - EXAMPLE

take the grammar

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow(E)|(E) * T| \text { int } \mid \text { int * } T
\end{aligned}
$$

the tokens returned by the lexer are

$$
\text { lpar rpar plus times int(k) }[k \in N a t]
$$

assume to analyze the token stream:

int (5) times int (2)

the parsing starts with the expansion of the initial symbol E and every rule of E is checked, one at a time . . .

RECURSIVE DESCENT PARSING - EXAMPLE

try $\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E}$

```
E E T + E E | T T
```

* then you check the first rule for $\mathrm{T}: ~ \mathrm{~T} \rightarrow(\mathrm{E}) \quad$ int(5) times int (2)
- but there is no match with the input token int (5)
* then you check the second rule for $T: T \rightarrow(E)$ * T
- but there is no match with the input token int(5)
* then you check the third rule for $\mathrm{T}: ~ \mathrm{~T} \rightarrow$ int
- there is match with the input token int (5)
- but there is no match with the token plus after T and the token times of the input stream
* then you check the forth rule for $\mathrm{T}: ~ \mathrm{~T} \rightarrow$ int * T
- there is match with int(5) and then times and int(2)
- but there is no match with the token plus because the input stream ends
* we have saturated the choices for T without succeeding
- backtrack to the other choices for E

RECURSIVE DESCENT PARSING — EXAMPLE


```
int(5) times int(2)
```

then try $\mathrm{E} \rightarrow \mathrm{T}$ and perform the same steps done for $\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E}$ * the parsing succeeds with the rule $T \rightarrow$ int* T and $T \rightarrow$ int * the returned parse tree is the following one

RECURSIVE DESCENT PARSING - IMPLEMENTATION

define a method boolean that verifies the matches of the token stream

* verify the match with a given terminal

```
public boolean term(TOKEN tok){
    TOKEN x = in[next] ;
    next = next + 1 ;
    return x == tok;
}
```

* verify the match with a rule of S (say the n-th)

$$
\text { public boolean S_n() \{ ... \} }
$$

* verify the match with a whatever rule of S :

$$
\text { public boolean S()\{ ... \} }
$$

note: every foregoing method increments next

RECURSIVE DESCENT PARSING - IMPLEMENTATION

```
E P T T + E E | T T * T (E) * int | int * T
```

for the rule $\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E}$
public boolean E_1()\{
return (T() \&\& term(plus) \&\& E()) ;
\}
for the rule $\mathrm{E} \rightarrow \mathrm{T}$
public boolean E_2()\{

```
this corresponds to
boolean B1 = T();
boolean B2 = B1 && term(plus);
```

return (B2 \&\& E()) ;
return $T()$;
\}
for (all) the rules of E (with backtracking)
public boolean E() \{
int saved = next ;

if (E_1()) return true ;
else \{ next = saved ; return (E_2()) ; \}
\}

RECURSIVE DESCENT PARSING - IMPLEMENTATION

$E \rightarrow T+E \mid T$
$T \rightarrow(E)|(E) * T|$ int \mid int * T

```
public boolean T_1(){
    return ( term(lpar) && E() && term(rpar) );
}
public boolean T_2(){
        return ( term(lpar) && E() && term(rpar) && term(times) && T() );
}
public boolean T_3(){ return ( term(int) ); }
public boolean T_4(){
    return ( term(int) && term(times) && T() ); }
public boolean T(){
    int saved = next;
    if (T_1()) return true ;
    else { next = saved ;
        if (T_2()) return true ;
        else { next = saved ;
                        if (T_3()) return true ;
                                else { next = saved ; return T_4() ; }
    }
    }
}
```


RECURSIVE DESCENT PARSING — REMARKS

to trigger the parsing

* initialize next in such a way it points to the first token
* invoke E()
* assume that a special character $\$$ represents the end of the input stream in the array in []
* the parsing ends with success if, at the end of the execution, in[next] == \$
* remark: the execution of the recursive descent parsing coincides with the abstract execution computed at the beginning
* other remark: this is simple to implement (also by hand) but it does not work, sometimes!

RECURSIVE DESCENT PARSING — LEFT-RECURSIVE GRAMMARS

take the rule $S \rightarrow S$ a
and try to analyze this rule in the recursive descent parsing

* why the process does not work?

Definition: left recursive grammar

A grammar $(\mathbf{N}, \mathbf{T}, \rightarrow, S)$ is left-recursive if there is $A \in \mathbf{N}$ such that

$$
A \rightarrow^{+} A \gamma, \text { for some } \gamma
$$

the recursive descent parsing does not work for lr-grammars * because it performs an infinite cycle note: in these cases you need to change the grammar by removing the left-recursion (see following slides)

RECURSIVE DESCENT PARSING - SUMMING UP

the parsing strategy is extremely simple

* in case you need to remove the left-recursion ... but this task can be performed automatically
it is not common because it uses the backtracking
* it is very inefficient
* in practice, the backtracking may be reduced or eliminated by changing the grammar (left-factorization)
it is good for small grammars
* you need to be careful: the order of productions is important even after left-recursion is eliminated
* try to reverse the order of $\mathrm{T} \rightarrow$ int* T and $\mathrm{T} \rightarrow$ int
* what goes wrong? (consider input int*int)

PREDICTIVE PARSERS - MOTIVATIONS

to avoid the backtracking, it would be useful

* if the recursive-descent parser knows the next production to expand * idea: replace the code

```
saved = next ;
if (E_1()) return true;
else { next = saved; return E_2(); }
```

with

```
switch ( something ) {
    case L1: return E_1();
    case L2: return E_2();
    default: System.out.print("syntax error") ;
```

\}

* what is the meaning of "something", L1, L2 ?
they are defined by a lookahead (analysis of the next tokens)

PREDICTIVE PARSING AND LEFT FACTORING

the grammar

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow(E)|(E) * T| \text { int } \mid \text { int * } T
\end{aligned}
$$

is impossible to predict because

* the non-terminal T has two productions that begin with " (" and two productions that begin with "int"
* the non-terminal E has the two productions that begin with T and it is not evident how to predict
this grammar must be left-factorized before using predictive parsers (see following slides)

$\mathrm{E} \rightarrow \mathrm{T} X$	$\mathrm{X} \rightarrow+\mathrm{E}$	ε
$\mathrm{T} \rightarrow(\mathrm{E}) \mathrm{Y} \mid$ int Y	$\mathrm{Y} \rightarrow * \mathrm{~T}$	ε

PREDICTIVE PARSERS

they are similar to recursive-descent parsers except that they can predict which production to use

* by looking at the next tokens
* without backtracking
predictive parsers accept LL(k) grammars
* L means "left-to-right" input scan
* L means "leftmost derivation"
* k means "predict using k tokens of lookahead"
we study LL (1) analysis
* ANTLR uses LL (*), a sophisticated technique that consider as many token as needed (this technique is not covered in this course)

LL (1) LANGUAGES

in recursive-descent parsers, for each non-terminal and input token there may be several possible productions

LL (1) means: for each non-terminal and input token there may be at most one production that can be used

LL (1) parsers can be defined by a 2 dimension table

* one dimension for the non-terminal to expand
* one dimension for the next token
* the table entry contains the production to use

PARSER LL (1)

in practice, instead of using the code

```
switch ( something ) {
                case L1: return E_1();
                case L2: return E_2();
                default: System.out.print("syntax error") ;
```

\}
use a table LL (1) and a parsing stack

* the LL (1) table will replace the switch instruction
* the parsing stack will replace the call stack

PARSER LL (1) — PARSING TABLE/EXAMPLE

$$
\text { the LL(} 1 \text {) parsing table of } \begin{array}{ll}
\mathrm{E} \rightarrow \mathrm{~T} X & \mathrm{X} \rightarrow+\mathrm{E} \\
\mathrm{~T} \rightarrow(\mathrm{E}) \mathrm{Y} \mid \text { int } \mathrm{Y} & \mathrm{Y} \rightarrow * \mathrm{~T} \\
\mathrm{Y} \rightarrow
\end{array}
$$

	int	$*$	+	$($	$)$	$\$$
T	$\mathrm{~T} \rightarrow$ int Y			$\mathrm{T} \rightarrow(\mathrm{E}) \mathrm{Y}$		
E	$\mathrm{E} \rightarrow \mathrm{T} \mathrm{X}$			$\mathrm{E} \rightarrow \mathrm{T} \mathrm{X}$		
X			$\mathrm{X} \rightarrow+\mathrm{E}$		$\mathrm{X} \rightarrow \varepsilon$	$\mathrm{X} \rightarrow \varepsilon$
Y		$\mathrm{Y} \rightarrow * \mathrm{~T}$	$\mathrm{Y} \rightarrow \varepsilon$		$\mathrm{Y} \rightarrow \varepsilon$	$\mathrm{Y} \rightarrow \varepsilon$

* for the [E, int] entry: when the non-terminal on the stack is E and the next token in input is int, use the production $\mathrm{E} \rightarrow \mathrm{T} \mathrm{X}$ for the $[Y,+]$ entry: when the non-terminal on the stack is Y and the next token in input is + then remove Y (we'll see why) the empty entries indicate an, error: example [E_{1}, *]

PARSER LL (1) — THE PARSING TABLE

the technique is similar to recursive descent, but instead of nondeterminism (and the backtrack)

* for every non-terminal S, look at the next token, say a, and the entry [S, a] in the table
we use a stack in order to record the terminals and non-terminals in the rhs of the production in [S, a]
* the input is rejected when an erroneous state is found (empty entry in the parsing table)
* the input is accepted when the entry contains end-of-input token

PSEUDO－ALGORITHM OF LL（1）PARSING

```
add $ at the end of the array TOKENS ;
next = 0 ;
stack =<S $> ;
repeat
    switch (stack){
        case <X rest>: if (LL1_TABLE[X,TOKENS[next]] = \alpha _.. 的)
                        stack = < < _ .. 的 rest\rangle;
                            else System.out.println("error") ;
            break ;
                <t rest>: if (t == TOKENS[next]) {
                stack = 〈rest〉 ;
                next = next+1 ;
                            } else System.out.println("error") ;
                        break ;
    }
until (stack == < >)
```


LL (1) PARSING: EXAMPLE

	int	$*$	+	$($	$)$	$\$$
T	$\mathrm{~T} \rightarrow$ int Y			$\mathrm{T} \rightarrow(\mathrm{E}) \mathrm{Y}$		
E	$\mathrm{E} \rightarrow \mathrm{T} \mathrm{X}$			$\mathrm{E} \rightarrow \mathrm{T} \mathrm{X}$		
X			$\mathrm{X} \rightarrow+\mathrm{E}$		$\mathrm{X} \rightarrow \varepsilon$	$\mathrm{X} \rightarrow \varepsilon$
Y		$\mathrm{Y} \rightarrow * \mathrm{~T}$	$\mathrm{Y} \rightarrow \varepsilon$		$\mathrm{Y} \rightarrow \varepsilon$	$\mathrm{Y} \rightarrow \varepsilon$

Stack

E	$\$$			
T	X	$\$$		
int	Y	X	$\$$	
Y	X	$\$$		
$*$	T	X	$\$$	
T	X	$\$$		
int	Y	X	$\$$	
Y	X	$\$$		
X	$\$$			
S				

Input
int * int \$
int * int \$
int * int \$

* int \$
* int \$
int \$
int \$
\$
\$
\$

Action
T X
int Y
terminal

* T
terminal
int Y
terminal
ε
ε
terminal/ACCEPT

THE DEFINITION OF THE LL(1) PARSING TABLE

let $G=(\mathbf{N}, \mathbf{T}, \rightarrow, \mathrm{S})$, its $\mathrm{LL}(1)$ table is defined as follows:

1. it has non-terminal symbols in the rows and terminal symbols in the columns
2. for every rule $x \rightarrow \gamma$ in G and for every t such that $\gamma \rightarrow^{*} t \delta$, add the rule $x \rightarrow \gamma$ in the entry (x, t)
3. for every rule $x \rightarrow \gamma$ in G such that $\gamma \rightarrow^{*} \varepsilon$ add the rule $x \rightarrow \gamma$ in the entry (X, t), for every t such that $S \rightarrow{ }^{*} \delta \mathrm{x} t \delta^{\prime}$
they seem difficult to compute!
```
the LL(1) grammars are those with LL (1) parsing tables that do not have multiple entries
```

THE DEFINITION OF THE LL (1) PARSING TABLE - NULLABLE

Definition: the function NULLABLE

Let $G=(\mathbf{N}, \mathbf{T}, \rightarrow, S)$ be a context-free grammar. NULLABLE is a function on G defined as follows

$$
\operatorname{NULLABLE}(G)=\left\{A \mid A \rightarrow^{*} \varepsilon\right\}
$$

remark: by definition $\operatorname{NULLABLE}(G) \subseteq \mathbf{N}$ example:

$$
\begin{array}{ll|l|l}
\mathrm{E} \rightarrow \mathrm{~T} X & \mathrm{X} \rightarrow+\mathrm{E} & \varepsilon \\
\mathrm{~T} \rightarrow(\mathrm{E}) \mathrm{Y} \mid \mathrm{Y} & \mathrm{Y} \rightarrow * \mathrm{~T} & \varepsilon
\end{array}
$$

then $\operatorname{NulLAbLe}(G)=\{X, Y, T, E\}$. Are you sure about E ?
remark: this definition is not algorithmic

THE DEFINITION OF THE LL (1) PARSING TABLE - NULLABLE

Algorithmic definition: the function NULLABLE

Let $G=(\mathbf{N}, \mathbf{T}, \rightarrow, S)$ be a context-free grammar. NULLABLE ${ }_{i}$ are functions on G defined as follows

1. $\operatorname{NULLABLE} 0(G)=\{A \mid A \rightarrow \varepsilon$ in $G\}$
2. $\operatorname{NULLABLE}_{i+1}(G)=\operatorname{NULLABLE}_{i}(G)$
$\cup\left\{A \mid A \rightarrow A_{1} \ldots A_{n}\right.$ in $\left.G \wedge A_{1}, \ldots, A_{n} \in \operatorname{NULLABLE}_{i}(G)\right\}$

* it is easy to show that $\operatorname{NULLABLE}_{i}(G) \subseteq \operatorname{NULLABLE}_{i+1}(G) \subseteq \mathbf{N}$
* therefore there is k such that $\operatorname{NULLABLE}_{k}(G)=\operatorname{NULLABLE}_{k+1}(G)$

$$
\text { then } \operatorname{NULLABLE}(G)=\operatorname{NULLABLE}(G)
$$

FUNCTION NULLABLE: EXAMPLES

predicate NULLABLE

$$
\begin{aligned}
& \operatorname{NULLABLE}_{0}(G)=\{\mathrm{X}, \mathrm{Y}\} \\
& \operatorname{NULLABLE}_{1}(G)
\end{aligned}=\{\mathrm{X}, \mathrm{Y}\}
$$

FUNCTION NULLABLE: EXAMPLES

grammar	Z	$\rightarrow \mathrm{b}$	X	Y
X	Z			
X	$\rightarrow \mathrm{Y}$	a		
Y	\rightarrow	ε	C	

predicate NULLABLE
$\operatorname{NULLABLE}_{0}(G)=\{\mathrm{Y}\}$
$\operatorname{NULLABLE}_{1}(G)=\{\mathrm{X}, \mathrm{Y}\}$
$\operatorname{NULLABLE}_{2}(G)=\{\mathrm{X}, \mathrm{Y}\}$

$$
\begin{aligned}
\operatorname{NULLABLE}(G) & =\operatorname{NULLABLE}_{1}(G) \\
& =\{\mathrm{X}, \quad \mathrm{Y}\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{NULLABLE}(G) & =\operatorname{NULLABLE} 0(G) \\
& =\varnothing
\end{aligned}
$$

$\operatorname{NULLABLE}_{0}(G)=\varnothing$
$\operatorname{NULLABLE}_{1}(G)=\varnothing$

DEFINITION OF LL(1) PARSING TABLES: FIRST

Algorithmic definition: the function FIRST

Let $G=(\mathbf{N}, \mathbf{T}, \rightarrow, S)$ be a context-free grammar. FIRST $_{i}$ are functions on $\mathbf{N} \cup \mathbf{T}$ that are defined as follows
I. $\operatorname{FIRST}_{i}(\mathrm{t})=\{\mathrm{t}\}$, with $\mathrm{t} \in \mathbf{T} \quad / /$ for every i
2. $\operatorname{FIRST}_{0}(A)=\left\{\begin{array}{cl}\{\varepsilon\} & \text { if } A \in \operatorname{NULLABLE}(G) \\ \varnothing & \text { if } A \notin \operatorname{NULLABLE}(G) \wedge A \in \mathbf{N}\end{array}\right.$

* it is easy to show that, for every i: $\operatorname{FIRST}_{i}(A) \subseteq \operatorname{FIRST}_{i+1}(A) \subseteq \mathbf{T} \cup\{\varepsilon\}$
* therefore there is k such that, for every $A, \operatorname{FIRST}_{k}(A)=\operatorname{FIRST}_{k+1}(A)$

$$
\text { then } \operatorname{FIRST}(A)=\operatorname{FIRST}_{k}(\mathrm{~A})
$$

SETS FIRST: EXAMPLES

grammar

| $\mathrm{E} \rightarrow \mathrm{T} X$ | X | $\rightarrow+\mathrm{E}$ | ε | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T} \rightarrow$ | $(\mathrm{E}) \mathrm{Y} \mid$ int Y | $\mathrm{Y} \rightarrow *$ | T | ε | sets FIRST $_{i} \quad / /$ we only compute FIRST for nonterminals

$$
\begin{aligned}
& \operatorname{FIRST}_{0}(X)=\{\varepsilon\} \quad \operatorname{FIRST}_{0}(Y)=\{\varepsilon\} \quad \operatorname{FIRST}_{0}(E)=\varnothing \quad \operatorname{FIRST}_{0}(T)=\varnothing \\
& \operatorname{FIRST}_{1}(\mathrm{X})=\{+, \varepsilon\} \quad \operatorname{FIRST}_{1}(\mathrm{Y})=\{*, \varepsilon\} \quad \operatorname{FIRST}_{1}(\mathrm{E})=\varnothing \quad \operatorname{FIRST}_{1}(\mathrm{~T})=\{(\text {, int }\} \\
& \operatorname{FIRST}_{2}(\mathrm{X})=\{+, \varepsilon\} \quad \operatorname{FIRST}_{2}(\mathrm{Y})=\{*, \varepsilon\} \quad \operatorname{FIRST}_{2}(\mathrm{E})=\{(\text {, int }\} \quad \operatorname{FIRST}(\mathrm{T})=\{(\text {, int }\} \\
& \operatorname{FIRST}(X)=\{+, \varepsilon\} \quad \operatorname{FIRST}(Y)=\{*, \varepsilon\} \\
& \operatorname{FIRST}(E)=\{(\text {, int }\} \quad \operatorname{FIRST}(T)=\{(\text {, int }\}
\end{aligned}
$$

SETS FIRST: EXAMPLES

grammar

$$
S \rightarrow(S) S \quad \mid \varepsilon
$$

sets FIRST_{i}

$$
\begin{aligned}
& \operatorname{FIRST}_{0}(S)=\{\varepsilon\} \\
& \operatorname{FIRST}_{1}(S)=\{(, \varepsilon\}
\end{aligned}
$$

$\operatorname{FIRST}(S)=\operatorname{FIRST}_{1}(S)=\{(, \varepsilon\}$

SETS FIRST: EXAMPLES

grammar

$$
\begin{array}{lll|lll}
\mathrm{Z} & \rightarrow & \mathrm{~b} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\
\mathrm{X} \rightarrow & \mathrm{Y} & \mathrm{a} & \\
\mathrm{Y} \rightarrow & \varepsilon & \mathrm{c}
\end{array}
$$

sets FIRST_{i} :

$$
\begin{aligned}
& \operatorname{FIRST}_{0}(Z)=\varnothing \quad \operatorname{FIRST}_{0}(X)=\{\varepsilon\} \quad \operatorname{FIRST}_{0}(Y)=\{\varepsilon\} \\
& \operatorname{FIRST}_{1}(Z)=\{b\} \quad \operatorname{FIRST}_{1}(X)=\{a, \varepsilon\} \quad \operatorname{FIRST}_{1}(Y)=\{c, \varepsilon\} \\
& \operatorname{FIRST}_{2}(Z)=\{a, b, c\} \quad \operatorname{FIRST}_{2}(X)=\{a, c, \varepsilon\} \quad \operatorname{FIRST}_{2}(Y)=\{c, \varepsilon\}
\end{aligned}
$$

$$
\operatorname{FIRST}(X)=\{a, c, \varepsilon\} \quad \operatorname{FIRST}(Y)=\{c, \varepsilon\}
$$

$$
\operatorname{FIRST}(Z)=\{a, b, c\}
$$

SETS FIRST: EXAMPLES

grammar

$$
\begin{array}{lll|l}
\mathrm{S} & \rightarrow \mathrm{X} & \mathrm{XS} \\
\mathrm{X} & \rightarrow & \mathrm{X} & \varepsilon
\end{array}
$$

sets $\mathrm{FIRST}_{\mathrm{i}}$:

$$
\begin{array}{ll}
\operatorname{FIRST}_{0}(S)=\{\varepsilon\} & \operatorname{FIRST}_{0}(X)=\{\varepsilon\} \\
\operatorname{FIRST}_{0}(S)=\{\varepsilon\} & \operatorname{FIRST}_{0}(X)=\{\varepsilon\}
\end{array}
$$

$$
\operatorname{FIRST}(S)=\{\varepsilon\} \quad \operatorname{FIRST}(X)=\{\varepsilon\}
$$

ESTENSIONE DI FIRST A SEQUENZE IN NUT

it is easy to compute $\operatorname{FIRST}(\gamma)$ where $\gamma \in(\mathbf{N} \cup \mathbf{T})^{\star}$

```
FIRST (\varepsilon) ={ \varepsilon }
FIRST(t\gamma) ={t}, with t\inT
FIRST (A\gamma) = FIRST (A), with A # NULLABLE(G)
FIRST(A\gamma) = FIRST (A)\{\varepsilon} U FIRST ( }\gamma)\mathrm{ , with A A NULLABLE(G)
```

the algorithm for computing FOLLOW uses this extension

DEFINITION OF LL (1) PARSING TABLES: FOLLOW

Algorithmic definition: the function FOLLOW

Let $G=(\mathbf{N}, \mathbf{T}, \rightarrow, S)$ be a context-free grammar. FOLLOW $_{i}$ are functions on \mathbf{N} and defined as follows
I. FOLLOWo $_{0}(\mathrm{~S})=\{\$\}$ and FOLLOW $_{0}(A)=\varnothing$
2. $\operatorname{FOLLOW}_{i+1}(\mathrm{X})=\operatorname{FOLLOW}_{i}(\mathrm{X}) \bigcup_{\mathrm{z} \rightarrow \delta \mathrm{X}_{\gamma} \text { in } G \operatorname{FIRST}(\gamma) \backslash\{\varepsilon\}}$ $\bigcup_{z \rightarrow \delta} X_{\gamma}$ in G and $\operatorname{NULLABLE}(\gamma) \operatorname{FOLLOW}_{i}(Z)$

* it is easy to show that, for every i: $\operatorname{FOLLOW}_{\mathrm{i}}(\mathrm{A}) \subseteq \operatorname{FOLLOW}_{\mathrm{i}+1}(\mathrm{~A}) \subseteq \mathbf{T} \cup\{\$\}$ * therefore there is k such that, for every $A, \operatorname{FOLLOW}_{k}(A)=\operatorname{FOLLOW}_{k+1}(A)$

$$
\text { then } \operatorname{FOLLOW}(A)=\operatorname{FOLLOW}_{k}(A)
$$

remarks: (1) when the initial symbol does not appear on the rhs of productions, "\$" is the unique symbol in its FOLLOW
(2) FOLLOW never contains " ε "

FOLLOW SETS - EXAMPLES

grammar

$$
\begin{array}{ll}
\mathrm{E} \rightarrow \mathrm{~T} \mathrm{X} & \mathrm{X} \rightarrow+\mathrm{E} \\
\mathrm{~T} \rightarrow(\mathrm{E}) \mathrm{Y} \mid \text { int } \mathrm{Y} & \mathrm{Y} \rightarrow * \mathrm{~T} \\
\varepsilon
\end{array}
$$

sets FOLLOW_{i}

FOLLOW $_{0}(E)=\{\$\} \quad$ FOLLOW $_{0}(T)=\varnothing \quad$ FOLLOW $_{0}(X)=\varnothing \quad$ FOLLOW $_{0}(Y)=\varnothing$ $\left.\operatorname{FOLLOW}_{1}(\mathrm{E})=\{\$),\right\} \operatorname{FOLLOW}_{1}(\mathrm{~T})=\{+, \$\} \operatorname{FOLLOW}_{1}(\mathrm{X})=\{\$\} \operatorname{FOLLOW}_{1}(\mathrm{Y})=\varnothing$
$\left.\left.\left.\operatorname{FOLLOW}_{2}(\mathrm{E})=\{\$),\right\} \operatorname{FOLLOW}_{2}(\mathrm{~T})=\{+, \$),\right\} \operatorname{FOLLOW}_{2}(\mathrm{X})=\{\$),\right\} \operatorname{FOLLOW}_{2}(\mathrm{Y})=\{+, \$\}$ $\left.\left.\left.\left.\operatorname{FOLLOW}_{3}(\mathrm{E})=\{\$),\right\} \operatorname{FOLLOW}_{3}(\mathrm{~T})=\{+, \$),\right\} \operatorname{FOLLOW}_{3}(\mathrm{X})=\{\$),\right\} \operatorname{FOLLOW}_{3}(\mathrm{Y})=\{+, \$),\right\}$

$$
\begin{aligned}
& \operatorname{FOLLOW}(E)=\{\$,)\} \\
& \operatorname{FOLLOW}(X)=\{\$,)\}
\end{aligned}
$$

FOLLOW SETS - EXAMPLES

grammar

$$
S \rightarrow \quad(S) S \quad \mid \varepsilon
$$

FOLLOW $_{i}$ sets

$$
\begin{aligned}
& \operatorname{FOLLOW}_{0}(S)=\{\$\} \\
& \left.\operatorname{FOLLOW}_{1}(S)=\{\$,)\right\}
\end{aligned}
$$

```
FOLLOW(S ) = FOLLOW (S ) = { $, ) }
```


FOLLOW SETS - EXAMPLES

grammar

Z	\rightarrow	b	X	Y	Z
$\mathrm{X} \rightarrow$	Y	a			
$\mathrm{Y} \rightarrow$	ε	c			

FOLLOW $_{i}$ sets

```
FOLLOW0(Z)={$ } FOLLOW (X )= \varnothing FOLLOW0(Y)= \varnothing
FOLLOW1(Z ) = { $ }
FOLLOW (X ) = FOLLOW (X ( ) U FIRST( Y )\{\varepsilon} U FIRST(Z ) = {c } U {a,b,c}
FOLLOW ( ( ) = FOLLOWo(Y) U FIRST(Z ) U FOLLOW (X ) = {a, b, c}
```

$$
\begin{gathered}
\operatorname{FOLLOW}(\mathrm{Z})=\{\$\} \quad \operatorname{FOLLOW}(\mathrm{X})=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
\operatorname{FOLLOW}(\mathrm{Y})=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}
\end{gathered}
$$

DEFINITION OF LL (1) PARSING TABLES

the parsing table $L L^{1}{ }_{G}$ for a grammar G :
for every $\mathrm{A} \rightarrow \alpha$ in G do:

1. for every terminal $t \in \operatorname{FIRST}(\alpha)$ do

$$
\text { * } \mathrm{LL}^{1} G[\mathrm{~A}, \mathrm{t}]=\mathrm{A} \rightarrow \alpha
$$

2. if $\varepsilon \in \operatorname{FIRST}(\alpha)$, for each $t \in \operatorname{FOLLOW}(A)$ do

$$
\text { * } \mathrm{LL}^{1} G[\mathrm{~A}, \mathrm{t}]=\mathrm{A} \rightarrow \alpha
$$

[this rule applies also to \$, i.e. when $\$ \in \operatorname{FOLLOW}(A):$ if $\varepsilon \in \operatorname{FIRST}(\alpha)$ and $\$ \in \operatorname{FOLLOW}(\mathrm{~A})$ do $\operatorname{LL}^{1} \mathrm{G}[\mathrm{A}, \$]=\mathrm{A} \rightarrow \alpha$]

DEFINITION OF LL (1) PARSING TABLES: EXAMPLE

 take the grammar| $\mathrm{E} \rightarrow \mathrm{T} \mathrm{X}$ | |
| :--- | :--- |
| $\mathrm{T} \rightarrow(\mathrm{E}) \mathrm{Y} \mid$ int Y | $\mathrm{X} \rightarrow+\mathrm{E}$ |
| $\mathrm{Y} \rightarrow *$ | ε |

where in the line of Y we put $\mathrm{Y} \rightarrow * \mathrm{~T}$?

* in the columns of $\operatorname{FIRST}(* T)=\{*\}$
where in the line of Y we put $\mathrm{Y} \rightarrow \varepsilon$? * in the columns of $\operatorname{FOLLOW}(\mathrm{Y})=\{\$,+, \quad)\}$

	int	$*$	+	$($	$)$	$\$$
T	$T \rightarrow$ int Y			$\mathrm{T} \rightarrow(\mathrm{E}) \mathrm{Y}$		
E	$\mathrm{E} \rightarrow \mathrm{T} \mathrm{X}$			$\mathrm{E} \rightarrow \mathrm{T} \mathrm{X}$		
X			$\mathrm{X} \rightarrow+\mathrm{E}$		$\mathrm{X} \rightarrow \varepsilon$	$\mathrm{X} \rightarrow \varepsilon$
Y		$\mathrm{Y} \rightarrow * \mathrm{~T}$	$\mathrm{Y} \rightarrow \varepsilon$		$\mathrm{Y} \rightarrow \varepsilon$	$\mathrm{Y} \rightarrow \varepsilon$

REMARKS ABOUT LL (1) TABLES

if any entry is multiply defined then G is not $\operatorname{LL}(1)$
in particular when

* G is left recursive
* G is not left-factored
* G is ambiguous
* and in other cases as well
most programming language grammars are not LL(1)
* there are tools that build LL (1) tables
* the parser generator ANTLR uses the LL approach

REMOVING LEFT RECURSION

[see def. slide 12] a grammar si called left-recursive if it has a non-terminal A such that $A \Longrightarrow^{+} A \gamma$, for some γ
case of DIRECT LEFT-RECURSION, i.e. there is A such that

remark: the grammar is equivalent to the regular expression

$$
\left(\delta_{1}|\ldots| \delta_{n}\right)\left(\gamma_{1}|\ldots| \gamma_{m}\right) *
$$

REMOVING DIRECT LEFT RECURSION

A	$\rightarrow A \gamma_{1}$
\vdots	
A	$\rightarrow A \gamma_{m}$

$$
\left.\begin{array}{c}
A \rightarrow \delta_{1} \\
\vdots \\
A \rightarrow \delta_{n}
\end{array}\right\} \delta_{1} \ldots \delta_{n} \text { do not start with A }
$$

is rewritten into - we use a new non terminal A^{\prime}

$$
\begin{array}{ccc}
A \rightarrow \delta_{1} A^{\prime} & A^{\prime} \rightarrow \gamma_{1} A^{\prime} & A^{\prime} \rightarrow \varepsilon \\
\vdots & \vdots & \\
A \rightarrow \delta_{n} A^{\prime} & A^{\prime} \rightarrow \gamma_{m} A^{\prime} &
\end{array}
$$

remarks

* since the δ_{i} do not start with A there is no direct left-recursion anymore
* since the A^{\prime} is a new non-terminal, the γ_{i} cannot start with it * there may be indirect left-recursions if, for some i, NULLABLE $\left(\gamma_{i 2}\right)$

REMOVING DIRECT LEFT RECURSION/EXAMPLE

$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{F}$	is rewritten into
$\mathrm{E} \rightarrow \mathrm{E}-\mathrm{F}$	$\mathrm{E} \rightarrow \mathrm{F} \mathrm{E}^{\prime}$
$\mathrm{E} \rightarrow \mathrm{F}$	$\mathrm{E}^{\prime} \rightarrow+\mathrm{F} \mathrm{E}^{\prime}$
$\mathrm{F} \rightarrow \mathrm{F} * \mathrm{~T}$	$\mathrm{E}^{\prime} \rightarrow-\mathrm{F} \mathrm{E}^{\prime}$
$\mathrm{F} \rightarrow \mathrm{F} / \mathrm{T}$	$\mathrm{E}^{\prime} \rightarrow \varepsilon$
$\mathrm{F} \rightarrow \mathrm{T}$	$\mathrm{F} \rightarrow \mathrm{T} \mathrm{F}^{\prime}$
$\mathrm{T} \rightarrow$ num	$\mathrm{F}^{\prime} \rightarrow * \mathrm{~T} \mathrm{~F}^{\prime}$
$\mathrm{T} \rightarrow$ (E)	$\mathrm{F}^{\prime} \rightarrow / \mathrm{T} \mathrm{F}^{\prime}$
	$\mathrm{F}^{\prime} \rightarrow \varepsilon$
	$\mathrm{T} \rightarrow$ num
	$\mathrm{T} \rightarrow(\mathrm{E})$

exercise: build the $\mathrm{LL}(1)$ table

REMOVING INDIRECT LEFT RECURSION

there are several possibilities

1. case of MUTUAL LEFT-RECURSION:
\(\left.\begin{array}{rl}A_{1} \& \rightarrow A_{2} \gamma_{1}

A_{2} \& \rightarrow A_{3} \gamma_{2}

\vdots \&

A_{k-1} \& \rightarrow A_{k} \gamma_{k-1}

A_{k} \& \rightarrow A_{1} \gamma_{k}\end{array}\right\}\)| break the mutual recursion, e.g. re |
| :---: |
| $A_{1} \rightarrow A_{2} \gamma_{1}$ |
| with |
| $A_{1} \rightarrow A_{1} \gamma_{k} \ldots \gamma_{1}$ |
| and solve the direct left recursion |

2. there is a production

$$
A \rightarrow \gamma A \delta \text { where NULLABLE }(\gamma)
$$

3. any combination of 1 and 2
it is always possible to rewrite indirect left recursion into direct one * the process is a bit complex

LEFT FACTORING

the grammar

$$
\begin{array}{ll|l|l}
E \rightarrow & T+E & T \\
T \rightarrow & (E) & (E) * T & \text { int } \mid \text { int * } T
\end{array}
$$

is impossible to predict because

* the non-terminal T has two productions that begin with " (" and two productions that begin with "int"
* the non-terminal E has the two productions that begin with T and it is not evident how to predict
the above grammar must be left-factored before using predictive parsers

LEFT-FACTORING - AN EXAMPLE

the grammar

E	$\rightarrow \mathrm{T}+\mathrm{E} \mid \mathrm{T}$	
T	\rightarrow	$(\mathrm{E}) \mid$

is left-factored as follows

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T} \mathrm{E}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{E} \mid \varepsilon \\
& \mathrm{T} \rightarrow(\mathrm{E}) \mathrm{T}^{\prime} \mid \text { int } \mathrm{T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow * \mathrm{~T} \mid \varepsilon
\end{aligned}
$$

PROBLEM: left-factoring the standard if-then-el se statement Stat \rightarrow if Exp then Stat else Stat | if Exp then Stat

AMBIGUITY

a grammar is ambiguous if it has more than one parse tree for some string

* equivalently, there is more than one rightmost or leftmost derivation for some string
example: $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}|(\mathrm{E}) \mid$ int is ambiguous
because int+int+int int*int+int have two parse trees

* has higher precedence than +

AMBIGUITY

ambiguity is bad

* leaves meaning of some programs ill-defined
ambiguity is common in programming languages
* arithmetic expressions
* if-then-else
in LL parsing it is possible to deal with ambiguity by
* rewriting grammars

DEALING WITH AMBIGUITY

rewrite the grammar for expressions in an unambiguous way:

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T} * \text { int }|\mathrm{T} *(\mathrm{E})| \text { int | (E) }
\end{aligned}
$$

* enforces precedence of * over +
* enforces left-associativity of + and *

int is derivable

the new grammar is neither LL (1) nor adeguate for rec.descent parsing (left-recursion)
is not derivable

DEALING WITH AMBIGUITY: THE DANGLING ELSE

the grammar
$S \rightarrow I D \quad '=' E|~ ' i f ' ~ E ~ ' t h e n ' ~ S ~| ~ ' i f ' ~ E ~ ' t h e n ' ~ S ~ ' e l s e ' ~ S ~$ is also ambiguous because the statement

```
if }\mp@subsup{E}{1}{}\mathrm{ then if }\mp@subsup{E}{2}{}\mathrm{ then }\mp@subsup{S}{3}{}\mathrm{ else }\mp@subsup{S}{4}{
```

has two (abstract) parse trees

in programming languages we want the tree in the right

THE DANGLING ELSE: A FIX

else matches the closest unmatched then

we can factorize the if-then part and rewrite the grammar as follows:

$S \rightarrow$	ID $=E$
	\mid if E then S ELSE
ELSE \rightarrow	else $S \mid \varepsilon$

(this new grammar describes the same set of strings and allows the same derivations)
this is a standard hack to ban this derivation: give priority to the "else" token

THE DANGLING ELSE: A THEORETICAL FIX

see Gabbrielli-Martini

```
statement : statementNoIf
statementNoIf : // the statements without if
ifThenStatement : 'if' '(' exp ')' 'then' statement ;
ifThenElseStatement : 'if' '(' exp ')' 'then' statementNoShortIf 'else'
    statement ;
statementNoShortIf : statementNoIf
|'if' '(' exp ')' 'then'
    statementNoShortIf 'else' statementNoShortIf ;
```

the grammar is NOT LL(1): it must be left-factorized! even if it is accepted in ANTLR!

AMBIGUITY

there is no general techniques for handling ambiguity by transforming grammar

* it is always preferable not to change a grammar
instead of rewriting the grammar
* use the more natural (ambiguous) grammar
* along with disambiguating declarations

ANTLR

* start rule
* ambiguity
* left recursion
* non-LL(*) decision errors

ANTLR - START RULE

it is not so anymore
in ANTLR v4
any grammar needs a so-called start rule

* start rule is a rule that is not referenced by another rule
* if your grammar does not have such rule, ANTLR generator will issue a warning:

```
no start rule (no rule can obviously be followed by EOF)
```

to avoid it, add a dummy start rule to your grammar:

```
start_rule: someOtherRule ;
```


ANTLR - AMBIGUITY

example:

```
exp : exp '+' exp | exp '*' exp | num | '(' exp ')';
NUM: ('0'..'9')+;
```

this grammar should recognize inputs for a simple calculator

* ANTLR v4 behaves badly
* to understand the problem, recall that ANTLR goes from left to right whenever parsing an input
- it first decides which alternative it will use following the order of the rules
- then it sticks with the decision remark: left-factorization is solved automatically by ANTLR

ANTLR - AMBIGUITY

example:

exp : exp '+' exp | exp '*' exp | NUM | '(' exp ')'; NUM: ('0'..'9')+;

* try to simulate it on the input

$$
1+3 * 4
$$

* does it match an exp '+' exp alternative, or an exp '*' exp alternative?
* the error suggests to reorder the rules as follows:

```
exp : exp '*' exp | exp '+' exp | NUMBER | '(' exp ')';
``` NUMBER: ('0'..'9')+;

\section*{ANTLR — PROBLEMS WITH ASSOCIATIVITY}
problem: extend the grammar with "/" and force it to be right-associative
```

exp : exp '/' exp | exp '*' exp | exp '+' exp | '(' exp ')' | NUM ;

```
NUM: ('0'..'9')+;
solution: use a new nonterminal!
```

exp : term | exp '+' term ;
term : factor | factor '/' term | term '*' factor ;
factor : '(' exp ')' | NUM ;

```
better solution: use the "right-associativity" annotation!
```

exp : <assoc=right> exp '/' exp // the annotation must be written to
| exp '+' exp // the left
exp '*' exp
'(' exp ')'
NUM ;

```

\section*{NEXT LECTURE}
the SimpLan interpreter
```

