
RECURSIVELY DESCENT
PARSING AND LL PARSING

COSIMO LANEVE
cosimo.laneve@unibo.it

CORSO 72671 - COMPLEMENTI DI LINGUAGGI DI PROGRAMMAZIONE

THIS LECTURE

2

lexical
analysis

syntactic
analysis

semantic
analysis

bytecode
generation

the SimpLan
interpreter

LL-parsing and ANTLR

OUTLINE

recursive descent parsing
problems

implementations

predictive parsers

parsers LL(1)
FIRST and FOLLOW sets

LL(1) tables
ambiguities

ANTLR

reference: Torben Morgensen: Basics of Compiler Design,
Chapter 3, sections 6—13

3

RECURSIVE DESCENT PARSING

analyze the sequence of tokens trying to reconstruct the steps
of a leftmost derivation

these parsers are called top-down because they mimic an anticipated
visit of the syntax tree — anticipated = from the root to the leaves

idea: the rules for a non-terminal A define a method that
recognises A

the right-hand sides of the rules define the structure of the method
code

the sequence of terminals and non-terminals in the rules
corresponds to a check that terminals match and to invocations of
the methods corresponding to the non-terminal symbols

the presence of different rules for A is implemented by a case or a
if

4

RECURSIVE DESCENT PARSING — EXAMPLE

take the grammar

E → T + E | T

T → (E) | (E) * T | int | int * T

the tokens returned by the lexer are

lpar rpar plus times int(k) [k ∈Nat]

assume to analyze the token stream:

int(5) times int(2)

the parsing starts with the expansion of the initial symbol E and
every rule of E is checked, one at a time . . .

5

RECURSIVE DESCENT PARSING — EXAMPLE
try E → T + E

then you check the first rule for T: T → (E)

but there is no match with the input token int(5)

then you check the second rule for T: T → (E)* T

but there is no match with the input token int(5)

then you check the third rule for T: T → int

there is match with the input token int(5)
but there is no match with the token plus after T and the token times of
the input stream

then you check the forth rule for T: T → int * T

there is match with int(5) and then times and int(2)
but there is no match with the token plus because the input stream ends

we have saturated the choices for T without succeeding
backtrack to the other choices for E

6

E → T + E | T
T → (E) | (E) * T | int | int * T

int(5) times int(2)

RECURSIVE DESCENT PARSING — EXAMPLE

then try E → T and perform the same steps done for E → T + E

the parsing succeeds with the rule T → int*T and T → int

the returned parse tree is the following one

7

E

T

int(5) times T

int(2)

E → T + E | T
T → (E) | (E) * T | int | int * T

int(5) times int(2)

RECURSIVE DESCENT PARSING — IMPLEMENTATION

define a method boolean that verifies the matches of the token
stream

verify the match with a given terminal

 public boolean term(TOKEN tok){
TOKEN x = in[next] ;
next = next + 1 ;
return x == tok;

}

verify the match with a rule of S (say the n-th)

 public boolean S_n(){ ... }

verify the match with a whatever rule of S:

 public boolean S(){ ... }

note: every foregoing method increments next
8

RECURSIVE DESCENT PARSING — IMPLEMENTATION

for the rule E → T + E
 public boolean E_1(){

return (T() && term(plus) && E()) ;
}

for the rule E → T

 public boolean E_2(){
return T();

}

for (all) the rules of E (with backtracking)
 public boolean E() {
 int saved = next ;
 if (E_1()) return true ;

else { next = saved ; return (E_2()) ; }
}

9

backtrack!

this corresponds to
boolean B1 = T();
boolean B2 = B1 && term(plus);
return(B2 && E()) ;

E → T + E | T
T → (E) | (E) * T | int | int * T

RECURSIVE DESCENT PARSING — IMPLEMENTATION

methods for the non-terminal T

public boolean T_1(){
 return (term(lpar) && E() && term(rpar));

}

public boolean T_2(){
 return (term(lpar) && E() && term(rpar) && term(times) && T());

}

public boolean T_3(){ return (term(int)); }

public boolean T_4(){
 return (term(int) && term(times) && T()); }

public boolean T(){
 int saved = next;
 if (T_1()) return true ;
 else { next = saved ;
 if (T_2()) return true ;
 else { next = saved ;
 if (T_3()) return true ;

 else { next = saved ; return T_4() ; }
 }
 }

}
10

E → T + E | T
T → (E) | (E) * T | int | int * T

RECURSIVE DESCENT PARSING — REMARKS

to trigger the parsing

initialize next in such a way it points to the first token

invoke E()

assume that a special character $ represents the end of the input
stream in the array in[]

the parsing ends with success if, at the end of the execution,
in[next] == $

remark: the execution of the recursive descent parsing coincides
with the abstract execution computed at the beginning

other remark: this is simple to implement (also by hand) but it does
not work, sometimes!

11

RECURSIVE DESCENT PARSING — LEFT-RECURSIVE GRAMMARS

take the rule S → S a

and try to analyze this rule in the recursive descent parsing

why the process does not work?

the recursive descent parsing does not work for lr-grammars

because it performs an infinite cycle

note: in these cases you need to change the grammar by removing the
left-recursion (see following slides)

12

A grammar (N, T, →, S) is left-recursive if there is A ∈ N
such that

A →+ A γ , for some γ

Definition: left recursive grammar

RECURSIVE DESCENT PARSING — SUMMING UP

the parsing strategy is extremely simple

in case you need to remove the left-recursion … but this task can be
performed automatically

it is not common because it uses the backtracking

it is very inefficient

in practice, the backtracking may be reduced or eliminated by
changing the grammar (left-factorization)

it is good for small grammars

you need to be careful: the order of productions is important even
after left-recursion is eliminated

try to reverse the order of T → int*T and T → int

what goes wrong? (consider input int*int)

13

PREDICTIVE PARSERS — MOTIVATIONS	

to avoid the backtracking, it would be useful

if the recursive-descent parser knows the next production to expand

idea: replace the code

 saved = next ;
 if (E_1()) return true;
 else { next = saved; return E_2(); }
with

 switch (something) {
case L1: return E_1();
case L2: return E_2();
default: System.out.print("syntax error") ;

}

what is the meaning of “something”, L1, L2 ?
they are defined by a lookahead (analysis of the next tokens)

14

PREDICTIVE PARSING AND LEFT FACTORING

the grammar

E → T + E | T
T → (E) | (E)*T | int | int * T

is impossible to predict because

the non-terminal T has two productions that begin with “(“ and two
productions that begin with “int”

the non-terminal E has the two productions that begin with T and it
is not evident how to predict

this grammar must be left-factorized before using predictive
parsers (see following slides)

15

E → T X X → + E | ε
T → (E) Y | int Y Y → * T | ε

PREDICTIVE PARSERS

they are similar to recursive-descent parsers except that they can
predict which production to use

by looking at the next tokens

without backtracking

predictive parsers accept LL(k) grammars

L means “left-to-right” input scan

L means “leftmost derivation”

k means “predict using k tokens of lookahead”

we study LL(1) analysis
ANTLR uses LL(*), a sophisticated technique that consider as
many token as needed (this technique is not covered in this course)

16

LL(1) LANGUAGES

in recursive-descent parsers, for each non-terminal and input
token there may be several possible productions

LL(1) means: for each non-terminal and input token there
may be at most one production that can be used

LL(1) parsers can be defined by a 2 dimension table

one dimension for the non-terminal to expand

one dimension for the next token

the table entry contains the production to use

17

PARSER LL(1)

in practice, instead of using the code

 switch (something) {
case L1: return E_1();
case L2: return E_2();
default: System.out.print("syntax error") ;

}

use a table LL(1) and a parsing stack

the LL(1) table will replace the switch instruction

the parsing stack will replace the call stack

18

PARSER LL(1) — PARSING TABLE/EXAMPLE

the LL(1) parsing table of is

for the [E,int] entry: when the non-terminal on the stack is E
and the next token in input is int, use the production E → T X

for the [Y,+] entry: when the non-terminal on the stack is Y and
the next token in input is + then remove Y (we’ll see why)

the empty entries indicate an error: example [E,*]19

int * + () $

T T → int Y T → (E)Y

E E → T X E → T X

X X → + E X → ε X → ε

Y Y → * T Y → ε Y → ε Y → ε

E → T X X → + E | ε
T → (E) Y | int Y Y → * T | ε

PARSER LL(1) — THE PARSING TABLE

the technique is similar to recursive descent, but instead of
nondeterminism (and the backtrack)

for every non-terminal S, look at the next token, say a, and the entry
[S,a] in the table

we use a stack in order to record the terminals and non-terminals
in the rhs of the production in [S,a]

the input is rejected when an erroneous state is found (empty
entry in the parsing table)

the input is accepted when the entry contains end-of-input
token

20

PSEUDO-ALGORITHM OF LL(1) PARSING

add $ at the end of the array TOKENS ;
next = 0 ;
stack =‹S $› ;
repeat
 switch (stack){
 case ‹X rest›: if (LL1_TABLE[X,TOKENS[next]] = α1 …αn)

 stack = ‹α1 …αn rest›;
 else System.out.println("error") ;

 break ;
 ‹t rest›: if (t == TOKENS[next]) {
 stack = ‹rest› ;

 next = next+1 ;
 } else System.out.println("error") ;

 break ;
}

until (stack == ‹ ›)

21

LL(1) PARSING: EXAMPLE

Stack Input Action
E $ int * int $ T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
* T X $ * int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
Y X $ $ ε
X $ $ ε
$ $ terminal/ACCEPT

22

int * + () $

T T → int Y T → (E)Y

E E → T X E → T X

X X → + E X → ε X → ε

Y Y → * T Y → ε Y → ε Y → ε

let G = (N, T, →, S), its LL(1) table is defined as follows:

1. it has non-terminal symbols in the rows and terminal symbols in the
columns

2. for every rule X → γ in G and for every t such that γ →* t δ, add
the rule X → γ in the entry (X, t)

3. for every rule X → γ in G such that γ →* ε add the rule X → γ in the
entry (X, t), for every t such that

S →* δ X t δ’

the LL(1) grammars are those with LL(1) parsing
tables that do not have multiple entries

THE DEFINITION OF THE LL(1) PARSING TABLE

23

they seem difficult to compute!

THE DEFINITION OF THE LL(1) PARSING TABLE — NULLABLE

24

Let G = (N, T, →, S) be a context-free grammar. NULLABLE is a
function on G defined as follows

NULLABLE(G) = { A | A →* ε}

Definition: the function NULLABLE

E → T X X → + E | ε
T → (E) Y | Y Y → * T | ε

remark: by definition NULLABLE(G) ⊆ N
example:

then NULLABLE(G) = { X, Y, T, E }. Are you sure about E ?

remark: this definition is not algorithmic

THE DEFINITION OF THE LL(1) PARSING TABLE — NULLABLE

25

Let G = (N, T, →, S) be a context-free grammar. NULLABLEi
are functions on G defined as follows

1. NULLABLE0(G) = { A | A → ε in G}
2. NULLABLEi+1(G) = NULLABLEi(G)
 ∪ { A | A → A1 … An in G ∧ A1,…, An ∈ NULLABLEi(G) }

it is easy to show that NULLABLEi(G) ⊆ NULLABLEi+1(G) ⊆N

therefore there is k such that NULLABLEk(G) = NULLABLEk+1(G)

then NULLABLE (G) = NULLABLEk (G)

Algorithmic definition: the function NULLABLE

FUNCTION NULLABLE: EXAMPLES

grammar E → T X X → + E | ε
 T → (E)Y | int Y Y → * T | ε

predicate NULLABLE

NULLABLE0(G) = { X, Y }

NULLABLE1(G) = { X, Y }

NULLABLE(G) = NULLABLE0(G)
 = { X, Y }

26

FUNCTION NULLABLE: EXAMPLES

grammar Z → b | X Y Z

X → Y | a
Y → ε | c

predicate NULLABLE

NULLABLE0(G) = { Y }
NULLABLE1(G) = { X, Y }
NULLABLE2(G) = { X, Y }

27

grammar S → a | X
 X → Y
Y → X

predicate NULLABLE
NULLABLE0(G) = ∅
NULLABLE1(G) = ∅

NULLABLE(G) = NULLABLE1(G)
 = { X, Y }

NULLABLE(G) = NULLABLE0(G)
 = ∅

DEFINITION OF LL(1) PARSING TABLES: FIRST

28

Let G = (N, T, →, S) be a context-free grammar. FIRSTi are functions
on N∪T that are defined as follows

1. FIRSTi(t) = { t }, with t ∈ T // for every i

2. FIRST0(A) =

3. FIRSTi+1(A) = FIRSTi(A) U ∪A → α1 … αn in G FIRST(αk)\ { ε }

it is easy to show that, for every i: FIRSTi(A) ⊆ FIRSTi+1(A) ⊆T∪{ ε }

therefore there is k such that, for every A, FIRSTk(A) = FIRSTk+1(A)

then FIRST (A) = FIRSTk (A)

Algorithmic definition: the function FIRST

{ ε } if A ∈ NULLABLE(G)

∅ if A ∉ NULLABLE(G) ∧ A ∈ N

⎧
⎢
⎨
⎢
⎩

∀ i ∈1..k-1 : αi ∈ NULLABLE(G)

SETS FIRST: EXAMPLES

grammar

E → T X X → + E | ε
T → (E) Y | int Y Y → * T | ε

sets FIRSTi // we only compute FIRST for nonterminals

FIRST0(X) = { ε } FIRST0(Y) = { ε } FIRST0(E) = ∅ FIRST0(T) = ∅

FIRST1(X) = { +, ε} FIRST1(Y) = {*, ε} FIRST1(E) = ∅ FIRST1(T) = {(, int}

FIRST2(X) = { +, ε} FIRST2(Y) = {*, ε} FIRST2(E) = {(, int} FIRST2(T) = {(, int}

 FIRST(X) = { +, ε} FIRST(Y) = {*, ε}

FIRST(E) = {(, int} FIRST(T) = {(, int}

29

SETS FIRST: EXAMPLES

grammar

S → (S) S | ε

sets FIRSTi

FIRST0(S) = { ε }
FIRST1(S) = { (, ε }

FIRST(S) = FIRST1(S) = { (, ε }

30

SETS FIRST: EXAMPLES

grammar

Z → b | X Y Z
X → Y | a

Y → ε | c

sets FIRSTi:

FIRST0(Z) = ∅ FIRST0(X) = { ε } FIRST0(Y) = { ε }

FIRST1(Z) = { b } FIRST1(X) = { a,ε } FIRST1(Y) = { c,ε }

FIRST2(Z) = { a,b,c } FIRST2(X) = { a,c,ε } FIRST2(Y) = { c,ε }

FIRST(X) = { a, c, ε } FIRST(Y) = { c, ε }
FIRST(Z) = { a, b, c}

31

SETS FIRST: EXAMPLES

grammar

S → X | XS
X → X | ε

sets FIRSTi:
FIRST0(S) = { ε } FIRST0(X) = { ε }

FIRST0(S) = { ε } FIRST0(X) = { ε }

FIRST(S) = { ε } FIRST(X) = { ε }

the algorithm for computing FIRST uses a
fixpoint method

32

ESTENSIONE DI FIRST A SEQUENZE IN N∪T

it is easy to compute FIRST (γ) where γ ∈ (N∪T)*

FIRST (ε) = { ε }

FIRST (t γ) = { t }, with t ∈ T

FIRST (A γ) = FIRST (A),	 with A ∉ NULLABLE(G)	

FIRST (A γ) = FIRST (A)\ { ε } U FIRST (γ), with A ∈ NULLABLE(G)	

	

the algorithm for computing FOLLOW uses this extension

fixpoint method

33

DEFINITION OF LL(1) PARSING TABLES: FOLLOW

remarks: (1) when the initial symbol does not appear on the rhs of produ-
ctions, “$” is the unique symbol in its FOLLOW
(2) FOLLOW never contains “ε” 34

Let G = (N, T, →, S) be a context-free grammar. FOLLOWi are
functions on N and defined as follows

1. FOLLOW0(S) = { $ } and FOLLOW0(A) = ∅

2. FOLLOWi+1(X) = FOLLOWi(X) ∪Z → δ X γ in G FIRST(γ)\{ε}

 ∪Z → δ X γ in G and NULLABLE(γ) FOLLOWi(Z)

it is easy to show that, for every i: FOLLOWi(A) ⊆ FOLLOWi+1(A) ⊆T∪{ $ }

therefore there is k such that, for every A, FOLLOWk(A) = FOLLOWk+1(A)

then FOLLOW (A) = FOLLOWk (A)

Algorithmic definition: the function FOLLOW

FOLLOW SETS — EXAMPLES

grammar

E → T X X → + E | ε
T → (E) Y | int Y Y → * T | ε

sets FOLLOWi

FOLLOW0(E) = { $ } FOLLOW0(T) = ∅ FOLLOW0(X) = ∅ FOLLOW0(Y) = ∅

FOLLOW1(E) = { $,)} FOLLOW1(T) = {+, $ } FOLLOW1(X) = { $ } FOLLOW1(Y) = ∅

FOLLOW2(E) = { $,)} FOLLOW2(T) = {+, $,)} FOLLOW2(X) = {$,)} FOLLOW2(Y) = {+, $}

FOLLOW3(E) = { $,)} FOLLOW3(T) = {+, $,)} FOLLOW3(X) = {$,)} FOLLOW3(Y) = {+, $,)}

FOLLOW(E) = { $,)} FOLLOW(T) = {+, $,)}
FOLLOW(X) = {$,)} FOLLOW(Y) = {+, $,)}

35

FOLLOW SETS — EXAMPLES

grammar

S → (S) S | ε

FOLLOWi sets

FOLLOW0(S) = { $ }

FOLLOW1(S) = { $,) }

FOLLOW(S) = FOLLOW1(S) = { $,) }

36

FOLLOW SETS — EXAMPLES

grammar

Z → b | X Y Z
X → Y | a
Y → ε | c

FOLLOWi sets

FOLLOW0(Z) = { $ } FOLLOW0(X) = ∅ FOLLOW0(Y) = ∅

FOLLOW1(Z) = { $ }
FOLLOW1(X) = FOLLOW0(X) ∪ FIRST(Y)\{ε} ∪ FIRST(Z) = { c } ∪ {a, b, c}
FOLLOW1(Y) = FOLLOW0(Y) ∪ FIRST(Z) ∪ FOLLOW0(X) = {a, b, c}

FOLLOW(Z) = { $ } FOLLOW(X) = {a, b, c}
FOLLOW(Y) = {a, b, c}

37

DEFINITION OF LL(1) PARSING TABLES

the parsing table LL1G for a grammar G:

for every A → 𝛼 in G do:

1. for every terminal t ∈ FIRST(𝛼) do

LL1G [A, t] = A → 𝛼

2. if ε ∈ FIRST(𝛼), for each t ∈ FOLLOW(A) do

LL1G [A, t] = A → 𝛼

[this rule applies also to $, i.e. when $ ∈ FOLLOW(A):

 if ε ∈ FIRST(𝛼) and $ ∈ FOLLOW(A) do LL1G [A, $] = A → 𝛼
]

38

DEFINITION OF LL(1) PARSING TABLES: EXAMPLE

take the grammar

where in the line of Y we put Y → *T ?
in the columns of FIRST(*T) = { * }

where in the line of Y we put Y → ε ?
in the columns of FOLLOW(Y) = { $, +,) }

39

int * + () $

T T → int Y T → (E)Y

E E → T X E → T X

X X → +E X → ε X → ε

Y Y → *T Y → ε Y → ε Y → ε

E → T X X → + E | ε
T → (E) Y | int Y Y → * T | ε

REMARKS ABOUT LL(1) TABLES

if any entry is multiply defined then G is not LL(1)

in particular when

G is left recursive

G is not left-factored
G is ambiguous

and in other cases as well

most programming language grammars are not LL(1)

there are tools that build LL(1) tables

the parser generator ANTLR uses the LL approach

40

REMOVING LEFT RECURSION

[see def. slide 12] a grammar si called left-recursive if it has a

non-terminal A such that A ⟹+ A γ , for some γ

case of DIRECT LEFT-RECURSION, i.e. there is A such that

A → A γ1
 ⋮

A → A γm
A → δ1
 ⋮

A → δn

41

⎫
⎬
⎭

δ1 . . . δn do not start with A

remark: the grammar is equivalent to the regular expression

(δ1| . . . | δn)(γ1 | . . . | γm)*

REMOVING DIRECT LEFT RECURSION

A → A γ1
 ⋮

A → A γm

42

is rewritten into — we use a new non terminal A'

A → δ1 A'
 ⋮

A → δn A'

⎫
⎬
⎭

δ1 . . . δn do not start with A
A → δ1
 ⋮

A → δn

A' → γ1 A'
 ⋮

A' → γm A'

A' → ε

remarks
since the δi do not start with A there is no direct left-recursion
anymore

since the A' is a new non-terminal, the γi cannot start with it

there may be indirect left-recursions if, for some i, NULLABLE(γi)

REMOVING DIRECT LEFT RECURSION/EXAMPLE

43

is rewritten intoE → E + F
E → E - F
E → F  
F → F * T
F → F / T
F → T
T → num
T → (E)

E → F E'
E' → + F E'
E' → - F E'
E' → ε
F → T F'
F' → * T F'
F' → / T F'
F' → ε
T → num
T →(E)

exercise: build the LL(1) table

REMOVING INDIRECT LEFT RECURSION

there are several possibilities

1. case of MUTUAL LEFT-RECURSION:

A1 → A2 γ1
A2 → A3 γ2
 ⋮

Ak-1 → Ak γk-1
Ak → A1 γk

2. there is a production

A → γ A δ where NULLABLE(γ)

3. any combination of 1 and 2

it is always possible to rewrite indirect left recursion into direct one
the process is a bit complex

44

⎫
⎬
⎭

break the mutual recursion, e.g. replace
A1 → A2 γ1

with
A1 → A1 γk. . . γ1

and solve the direct left recursion

LEFT FACTORING

the grammar

E → T + E | T
T → (E) | (E)*T | int | int * T

is impossible to predict because

the non-terminal T has two productions that begin with “(” and two
productions that begin with “int”

the non-terminal E has the two productions that begin with T and it is
not evident how to predict

the above grammar must be left-factored before using predictive
parsers

45

LEFT-FACTORING — AN EXAMPLE

the grammar

E → T + E | T
T → (E) | (E)*T | int | int * T

is left-factored as follows

E → T E'
E' → + E | ε
T → (E) T' | int T'
T' → *T | ε

PROBLEM: left-factoring the standard if-then-else statement

Stat → if Exp then Stat else Stat | if Exp then Stat

46

AMBIGUITY

a grammar is ambiguous if it has more than one parse tree for
some string

equivalently, there is more than one rightmost or leftmost
derivation for some string

example: E → E + E | E * E | (E) | int is ambiguous

because int+int+int int*int+int have two parse
trees

47

 E

 E

 E E

 E +

 int +

 int int

+ is left-associative

 E

 E

 E E

 E *

 int +

 int int

 E

 E

 E E

 E +

 int *

 int int

 E

 E

 E E

 E +

 int +

 int int

* has higher precedence than +

AMBIGUITY

ambiguity is bad

leaves meaning of some programs ill-defined

ambiguity is common in programming languages

arithmetic expressions

if-then-else

in LL parsing it is possible to deal with ambiguity by

rewriting grammars

48

DEALING WITH AMBIGUITY

rewrite the grammar for expressions in an unambiguous way:

E → E + T | T
T → T * int | T * (E) | int | (E)

enforces precedence of * over +

enforces left-associativity of + and *

49

 E

 E

 E E

 E *

 int +

 int int

 E

 E T +

 int T

 int * T

 int
is derivable is not derivable

the new grammar is
neither LL(1) nor
adeguate for rec.descent
parsing (left-recursion)

DEALING WITH AMBIGUITY: THE DANGLING ELSE

the grammar
S → ID '=' E | 'if' E 'then' S | 'if' E 'then' S 'else' S

is also ambiguous because the statement

if E1 then if E2 then S3 else S4

has two (abstract) parse trees

50

E1

E2 S3 S4

if_node

if_node

if_node

E1

E2 S3

S4if_node

in programming languages we want the tree in the right

THE DANGLING ELSE: A FIX

else matches the closest unmatched then
we can factorize the if-then part and rewrite the grammar as follows:

S → ID = E
 | if E then S ELSE

ELSE → else S | ε

(this new grammar describes the same set of strings and allows the same
derivations)

51

this is a standard hack
to ban this derivation: give
priority to the "else" token

E1

E2 S3 S4

if_node

if_node

if_node

E1

E2 S3

S4if_node

THE DANGLING ELSE: A THEORETICAL FIX

see Gabbrielli-Martini

statement : statementNoIf
 | ifThenStatement
 | ifThenElseStatement
 ;

statementNoIf : // the statements without if
 ;

ifThenStatement : 'if' '(' exp ')' 'then' statement ;

ifThenElseStatement : 'if' '(' exp ')' 'then' statementNoShortIf 'else'
 statement ;

statementNoShortIf : statementNoIf
 |'if' '(' exp ')' 'then'
 statementNoShortIf 'else' statementNoShortIf ;

52

the grammar is NOT LL(1): it must be left-factorized!
even if it is accepted in ANTLR!

AMBIGUITY

there is no general techniques for handling ambiguity by
transforming grammar

it is always preferable not to change a grammar

instead of rewriting the grammar

use the more natural (ambiguous) grammar

along with disambiguating declarations

53

ANTLR

start rule

ambiguity

left recursion

non-LL(*) decision errors

54

ANTLR — START RULE

any grammar needs a so-called start rule

start rule is a rule that is not referenced by another rule

if your grammar does not have such rule, ANTLR generator
will issue a warning:

no start rule (no rule can obviously be followed by EOF)

to avoid it, add a dummy start rule to your grammar:

start_rule: someOtherRule ;

55

it is not so anymore
in ANTLR v4

ANTLR — AMBIGUITY

example:
exp : exp '+' exp | exp '*' exp | NUM | '(' exp ')';

NUM: ('0'..'9')+;

this grammar should recognize inputs for a simple calculator

ANTLR v4 behaves badly

to understand the problem, recall that ANTLR goes from left to right
whenever parsing an input

it first decides which alternative it will use following the order of the
rules

then it sticks with the decision

remark: left-factorization is solved automatically by ANTLR

56

ANTLR — AMBIGUITY

example:
exp : exp '+' exp | exp '*' exp | NUM | '(' exp ')';

NUM: ('0'..'9')+;

try to simulate it on the input

1 + 3 * 4

does it match an exp '+' exp alternative, or an exp '*'
exp alternative?

the error suggests to reorder the rules as follows:

exp : exp '*' exp | exp '+' exp | NUMBER | '(' exp ')';

NUMBER: ('0'..'9')+;

57

ANTLR — PROBLEMS WITH ASSOCIATIVITY

problem: extend the grammar with "/" and force it to be right-associative

exp : exp '/' exp | exp '*' exp | exp '+' exp | '(' exp ')' | NUM ;

NUM: ('0'..'9')+;

solution: use a new nonterminal!

exp : term | exp '+' term ;

term : factor | factor '/' term | term '*' factor ;

factor : '(' exp ')' | NUM ;

better solution: use the "right-associativity" annotation!

exp : <assoc=right> exp '/' exp // the annotation must be written to

| exp '+' exp // the left

| exp '*' exp

| '(' exp ')'

| NUM ;
58

NEXT LECTURE

59

lexical
analysis

syntactic
analysis

semantic
analysis

bytecode
generation

the SimpLan
interpreter

