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RECURSIVE DESCENT PARSING

analyze the sequence of tokens trying to reconstruct the steps 
of a leftmost derivation 

these parsers are called top-down because they mimic an anticipated 
visit of the syntax tree — anticipated = from the root to the leaves

idea: the rules for a non-terminal A define a method that 
recognises A

the right-hand sides of the rules define the structure of the method 
code  

the sequence of terminals and non-terminals in the rules 
corresponds to a check that terminals match and to invocations of 
the methods corresponding to the non-terminal symbols 

the presence of different rules for A is implemented by a case or a 
if
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RECURSIVE DESCENT PARSING — EXAMPLE

take the grammar 

E →  T + E | T

T →  (E) | (E) * T | int | int * T

the tokens returned by the lexer are 

lpar   rpar   plus   times   int(k) [ k ∈Nat ] 

assume to analyze the token stream:  

int(5) times int(2) 

the parsing starts with the expansion of the initial symbol E and 
every rule of E is checked, one at a time . . .
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RECURSIVE DESCENT PARSING — EXAMPLE
try    E → T + E  

then you check the first rule for T:    T → (E)

but there is no match with the input token int(5) 

then you check the second rule for T:    T → (E)* T 

but there is no match with the input token int(5) 

then you check the third rule for T:    T → int

there is match with the input token int(5)  
but there is no match with the token plus after T and the token times of 
the input stream  

then you check the forth rule for T:    T → int * T 

there is match with int(5) and then times and int(2)   
but there is no match with the token plus because the input stream ends  

we have saturated the choices for  T  without succeeding 
backtrack to the other choices for E
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E → T + E | T
T → (E) | (E) * T | int | int * T

int(5) times int(2)



RECURSIVE DESCENT PARSING — EXAMPLE

then try  E → T  and perform the same steps done for E → T + E 

the parsing succeeds with the rule  T → int*T  and  T → int

the returned parse tree is the following one
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E

T

int(5) times T

int(2)

E → T + E | T
T → (E) | (E) * T | int | int * T

int(5) times int(2)



RECURSIVE DESCENT PARSING — IMPLEMENTATION

define a method boolean that verifies the matches of the token 
stream 

verify the match with a given terminal 

      public boolean term(TOKEN tok){ 
TOKEN x = in[next] ;
next = next + 1 ;
return x == tok; 

}

verify the match with a rule of S (say the n-th) 

       public boolean S_n(){ ... }

verify the match with a whatever rule of S: 

        public boolean S(){ ... }

note: every foregoing method increments  next
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RECURSIVE DESCENT PARSING — IMPLEMENTATION

for the rule  E → T + E  
       public boolean E_1( ){ 

return (T() && term(plus) && E()) ; 
}

for the rule E → T  

       public boolean E_2( ){ 
return T(); 

}

for (all) the rules of E (with backtracking)  
  public boolean E() {
    int saved = next ; 
    if (E_1()) return true ; 

else { next = saved ; return (E_2()) ; } 
} 
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backtrack!

this corresponds to
boolean B1 = T();
boolean B2 = B1 && term(plus);
return(B2 && E()) ; 

E → T + E | T
T → (E) | (E) * T | int | int * T



RECURSIVE DESCENT PARSING — IMPLEMENTATION

methods for the non-terminal  T

public boolean T_1(){ 
        return ( term(lpar) && E() && term(rpar) ); 

}

public boolean T_2(){ 
  return ( term(lpar) && E() && term(rpar) && term(times) && T() );

}

public boolean T_3(){ return ( term(int) ); }

public boolean T_4(){ 
        return ( term(int) && term(times) && T() ); }

public boolean T(){
         int saved = next;
         if (T_1()) return true ; 
         else { next = saved ;  
                if (T_2()) return true ;
                else { next = saved ;
                       if (T_3()) return true ; 

                 else { next = saved ; return T_4() ; }
                }
        }

}
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E → T + E | T
T → (E) | (E) * T | int | int * T



RECURSIVE DESCENT PARSING — REMARKS

to trigger the parsing  

initialize next in such a way it points to the first token 

invoke E( ) 

assume that a special character $ represents the end of the input 
stream in the array in[] 

the parsing ends with success if, at the end of the execution,   
in[next] == $ 

remark: the execution of the recursive descent parsing coincides 
with the abstract execution computed at the beginning 

other remark: this is simple to implement (also by hand) but it does 
not work, sometimes!
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RECURSIVE DESCENT PARSING — LEFT-RECURSIVE GRAMMARS

take the rule         S →  S a

and try to analyze this rule in the recursive descent parsing 

why the process does not work? 

the recursive descent parsing does not work for lr-grammars 

because it performs an infinite cycle  

note: in these cases you need to change the grammar by removing the 
left-recursion (see following slides)
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A grammar (N,  T, →, S) is  left-recursive  if there is  A ∈ N  
such that

A  →+  A γ , for some γ

Definition: left recursive grammar



RECURSIVE DESCENT PARSING — SUMMING UP

the parsing strategy is extremely simple

in case you need to remove the left-recursion … but this task can be 
performed automatically 

it is not common because it uses the backtracking 

it is very inefficient 

in practice, the backtracking may be reduced or eliminated by 
changing the grammar (left-factorization) 

it is good for small grammars 

you need to be careful: the order of productions is important even 
after left-recursion is eliminated 

try to reverse the order of  T → int*T  and T → int 

what goes wrong? (consider input   int*int )
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PREDICTIVE PARSERS — MOTIVATIONS 

to avoid the backtracking, it would be useful  

if the recursive-descent parser knows the next production to expand 

idea: replace the code  

         saved = next ;
               if (E_1()) return true; 
         else {  next = saved; return E_2(); }   
with  

 switch ( something )  {
case L1: return E_1();
case L2: return E_2();
default: System.out.print("syntax error") ;

} 

what is the meaning of  “something”, L1, L2 ? 
they are defined by a  lookahead (analysis of the next tokens)
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PREDICTIVE PARSING AND LEFT FACTORING

the grammar 

E → T + E | T
T → (E) | (E)*T | int | int * T

is impossible to predict because 

the non-terminal T has two productions that begin with “(“ and two 
productions that begin with “int” 

the non-terminal E has the two productions that begin with T and it 
is not evident how to predict 

this grammar must be left-factorized before using predictive 
parsers (see following slides)

15

E → T X              X → + E | ε 
T → (E) Y | int Y    Y → * T | ε 



PREDICTIVE PARSERS

they are similar to recursive-descent parsers except that they can 
predict which production to use 

by looking at the next tokens 

without backtracking  

predictive parsers accept LL(k) grammars 

L means “left-to-right” input scan 

L means “leftmost derivation” 

k means “predict using k tokens of lookahead” 

we study LL(1) analysis 
ANTLR uses LL(*), a sophisticated technique that consider as 
many token as needed (this technique is not covered in this course)
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LL(1) LANGUAGES

in recursive-descent parsers, for each non-terminal and input 
token there may be several possible productions 

LL(1) means:  for each non-terminal and input token there 
may be at most one production that can be used 

LL(1) parsers can be defined by a 2 dimension table

one dimension for the non-terminal to expand 

one dimension for the next token 

the table entry contains the production to use
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PARSER LL(1) 

in practice, instead of using the code 

 switch ( something )  {
case L1: return E_1();
case L2: return E_2();
default: System.out.print("syntax error") ;

} 

use a table LL(1) and a parsing stack 

the LL(1) table will replace the switch instruction 

the parsing stack will replace the call stack
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PARSER LL(1) — PARSING TABLE/EXAMPLE

the LL(1) parsing table of                                               is 

for the [E,int] entry: when the non-terminal on the stack is E 
and the next token in input is int, use the production  E → T X 

for the [Y,+] entry: when the non-terminal on the stack is Y and 
the next token in input is + then remove Y (we’ll see why) 

the empty entries indicate an error: example [E,*]19

int * + ( ) $

T T → int Y T → (E)Y 

E E → T X E → T X

X X → + E X → ε X → ε

Y Y →  * T Y → ε Y → ε Y → ε

E → T X              X → + E | ε 
T → (E) Y | int Y    Y → * T | ε 



PARSER LL(1) — THE PARSING TABLE

the technique is similar to recursive descent, but instead of 
nondeterminism (and the backtrack) 

for every non-terminal S, look at the next token, say a, and the entry 
[S,a] in the table 

we use a stack in order to record the terminals and non-terminals 
in the rhs of the production in [S,a] 

the input is rejected when an erroneous state is found (empty 
entry in the parsing table) 

the input is accepted when the entry contains end-of-input  
token
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PSEUDO-ALGORITHM OF LL(1) PARSING

add $ at the end of the array TOKENS ;
next = 0 ;
stack =‹S $› ;
repeat
   switch (stack){
     case ‹X rest›: if (LL1_TABLE[X,TOKENS[next]] = α1	…αn)

                stack = ‹α1	…αn rest›;
                     else  System.out.println("error") ; 

         break ;  
          ‹t rest›: if (t == TOKENS[next]) {
                             stack = ‹rest› ;

                next = next+1 ;
                     } else  System.out.println("error") ;

        break ;
}

until (stack == ‹ ›)
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LL(1) PARSING: EXAMPLE 

Stack             Input             Action   
E $                 int * int $        T X
T X $               int * int $        int Y
int Y X $           int * int $        terminal
Y X $               * int $            * T
* T X $             * int $            terminal
T X $               int $              int Y
int Y X $           int $              terminal
Y X $               $                  ε
X $                 $                  ε
$                   $                  terminal/ACCEPT
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int * + ( ) $

T T → int Y T → (E)Y 

E E → T X E → T X

X X → + E X → ε X → ε

Y Y →  * T Y → ε Y → ε Y → ε



let G = (N,  T, →, S), its  LL(1) table is defined as follows: 

1. it has non-terminal symbols in the rows and terminal symbols in the 
columns 

2. for every rule    X → γ    in   G  and for every   t   such that γ →* t δ,   add 
the rule  X → γ   in the entry (X, t) 

3. for every rule     X → γ    in G  such that  γ →* ε  add the rule X → γ in the 
entry  (X, t),   for every   t   such that  

S →* δ X t δ’ 

the LL(1) grammars are those with LL(1) parsing 
tables that do not have multiple entries

THE DEFINITION OF THE LL(1) PARSING TABLE
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they seem difficult to compute!



THE DEFINITION OF THE LL(1) PARSING TABLE — NULLABLE
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Let   G = (N,  T, →, S)    be a context-free grammar.   NULLABLE is a 
function on G defined as follows 

NULLABLE(G) = { A  |   A →* ε}

Definition: the function  NULLABLE

E → T X            X → + E | ε 
T → (E) Y | Y      Y → * T | ε 

remark: by definition   NULLABLE(G) ⊆ N   
example:  

then  NULLABLE(G) =  { X, Y, T, E }.  Are you sure about  E ?

remark: this definition is not algorithmic



THE DEFINITION OF THE LL(1) PARSING TABLE — NULLABLE
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Let   G = (N,  T, →, S)    be a context-free grammar.  NULLABLEi 
are functions on G defined as follows 

1. NULLABLE0(G) = { A  |  A → ε in G}
2. NULLABLEi+1(G) = NULLABLEi(G) 
                        ∪ { A  |  A → A1 … An in G  ∧  A1,…, An ∈ NULLABLEi(G) } 

it is easy to show that NULLABLEi(G) ⊆ NULLABLEi+1(G) ⊆N 

therefore there is  k  such that NULLABLEk(G) = NULLABLEk+1(G) 

then NULLABLE (G) = NULLABLEk (G)

Algorithmic definition: the function NULLABLE



FUNCTION NULLABLE: EXAMPLES

grammar     E → T X            X → + E  |   ε 
 T → (E)Y | int Y       Y → * T | ε 

predicate NULLABLE 

NULLABLE0( G ) = { X, Y }

NULLABLE1( G ) = { X, Y }

NULLABLE( G ) = NULLABLE0( G )
 = { X, Y }
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FUNCTION NULLABLE: EXAMPLES

grammar     Z →  b  |  X Y Z        

X →  Y  |  a
Y →  ε  |  c

predicate NULLABLE 

NULLABLE0( G ) = { Y }
NULLABLE1( G ) = { X, Y }
NULLABLE2( G ) = { X, Y }                      
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grammar        S →  a  |  X       
 X →  Y
Y →  X

predicate NULLABLE
NULLABLE0( G ) =  ∅
NULLABLE1( G ) =  ∅

NULLABLE( G ) = NULLABLE1( G )
 = { X, Y }

NULLABLE( G ) = NULLABLE0( G )
    = ∅



DEFINITION OF  LL(1) PARSING TABLES: FIRST
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Let   G = (N,  T, →, S)  be a context-free grammar. FIRSTi are functions 
on  N∪T  that are  defined as follows 

1. FIRSTi(t) = { t },    with t ∈	T      // for every i

2. FIRST0(A) = 

3. FIRSTi+1(A) =  FIRSTi(A) U ∪A → α1 … αn in G              FIRST(αk)\ { ε }

it is easy to show that, for every i:  FIRSTi(A) ⊆ FIRSTi+1(A) ⊆T∪{ ε } 

therefore there is  k  such that, for every A, FIRSTk(A) = FIRSTk+1(A) 

then FIRST (A) = FIRSTk (A)

Algorithmic definition: the function  FIRST

{ ε }      if  A ∈	NULLABLE(G)

∅      if  A 	∉	NULLABLE(G)  ∧  A ∈	N

⎧ 
⎢ 
⎨ 
⎢ 
⎩

∀ i ∈1..k-1 : αi ∈	NULLABLE(G)



SETS FIRST: EXAMPLES

grammar 

E →   T X              X →  + E  |  ε
T →   (E) Y | int Y    Y →  * T  |  ε

sets FIRSTi       // we only compute FIRST for nonterminals 

FIRST0(X) = { ε }            FIRST0(Y) = { ε }            FIRST0(E) = ∅            FIRST0(T) = ∅ 

FIRST1(X) = { +, ε}          FIRST1(Y) = {*, ε}          FIRST1(E) = ∅          FIRST1(T) = {( , int}

FIRST2(X) = { +, ε}       FIRST2(Y) = {*, ε}       FIRST2(E) = {( , int}       FIRST2(T) = {( , int}

  FIRST(X) = { +, ε}     FIRST(Y) = {*, ε}     

FIRST(E) = {( , int}     FIRST(T) = {( , int}
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SETS FIRST: EXAMPLES

grammar 

S →   (S) S     |     ε 

sets FIRSTi

FIRST0( S ) = { ε }
FIRST1( S ) = { ( , ε }

FIRST( S ) = FIRST1( S ) = { ( , ε }
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SETS FIRST: EXAMPLES

grammar 

Z →  b  |  X Y Z       
X →  Y  |  a

Y →  ε  |  c 

sets FIRSTi: 

FIRST0( Z ) = ∅      FIRST0( X ) = { ε }        FIRST0( Y ) = { ε }   

FIRST1( Z ) = { b }     FIRST1( X ) = { a,ε }      FIRST1( Y ) = { c,ε } 

FIRST2( Z ) = { a,b,c }     FIRST2( X ) = { a,c,ε }      FIRST2( Y ) = { c,ε }

FIRST( X ) =  { a, c,  ε }                FIRST( Y ) =  { c,  ε }
FIRST( Z ) = { a, b, c} 
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SETS FIRST: EXAMPLES

grammar 

S  →    X  |  XS      
X  →     X  |  ε

sets FIRSTi: 
FIRST0( S ) = { ε }         FIRST0( X ) = { ε }

FIRST0( S ) = { ε }         FIRST0( X ) = { ε }  

FIRST( S ) = { ε }         FIRST( X ) = { ε }      

the algorithm for computing FIRST uses a  
fixpoint method
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ESTENSIONE DI FIRST A SEQUENZE IN N∪T

it is easy to compute  FIRST ( γ )  where γ ∈ (N∪T)* 

FIRST (ε)  = { ε } 

FIRST ( t γ )  = { t },    with   t ∈	T       

FIRST ( A γ )  = FIRST ( A ),   with   A 	∉	NULLABLE(G)  

FIRST ( A γ )  = FIRST ( A )\ { ε }  U FIRST ( γ ),     with   A	∈	NULLABLE(G) 

  

the algorithm for computing FOLLOW uses this extension  

fixpoint method
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DEFINITION OF  LL(1) PARSING TABLES: FOLLOW

remarks: (1) when the initial symbol does not appear on the rhs of produ-
ctions, “$”  is the unique symbol in its FOLLOW
(2) FOLLOW  never contains  “ε” 34

Let   G = (N,  T, →, S)  be a context-free grammar. FOLLOWi are 
functions on N and defined as follows 

1. FOLLOW0(S) = { $ }    and    FOLLOW0(A) =  ∅

2. FOLLOWi+1(X) = FOLLOWi(X) ∪Z → δ X γ in G FIRST(γ)\{ε}  

                          ∪Z → δ X γ in G and NULLABLE(γ) FOLLOWi(Z)

it is easy to show that, for every i:  FOLLOWi(A) ⊆ FOLLOWi+1(A) ⊆T∪{ $ } 

therefore there is  k  such that, for every A, FOLLOWk(A) = FOLLOWk+1(A) 

then FOLLOW (A) = FOLLOWk (A)

Algorithmic definition: the function FOLLOW



FOLLOW SETS — EXAMPLES

grammar 

E → T X              X → + E | ε
T → (E) Y | int Y    Y → * T | ε

sets FOLLOWi

FOLLOW0( E ) = { $ }   FOLLOW0( T ) = ∅   FOLLOW0( X ) = ∅   FOLLOW0( Y ) = ∅ 

FOLLOW1( E ) = { $, )}   FOLLOW1( T ) = {+, $ }   FOLLOW1( X ) = { $ }   FOLLOW1( Y ) = ∅ 

FOLLOW2( E ) = { $, )}   FOLLOW2( T ) = {+, $, )}   FOLLOW2( X ) = {$, )}   FOLLOW2( Y ) = {+, $} 

FOLLOW3( E ) = { $, )}   FOLLOW3( T ) = {+, $, )}   FOLLOW3( X ) = {$, )}   FOLLOW3( Y ) = {+, $, )} 

FOLLOW( E ) = { $, )}              FOLLOW( T ) = {+, $, )}    
FOLLOW( X ) = {$, )}               FOLLOW( Y ) = {+, $, )} 
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FOLLOW SETS — EXAMPLES

grammar 

S →   ( S ) S  |     ε 

FOLLOWi sets 

FOLLOW0( S ) = { $ }  

FOLLOW1( S ) = { $,  ) }

FOLLOW( S ) = FOLLOW1( S ) = { $,  ) }
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FOLLOW SETS — EXAMPLES

grammar 

Z →    b  |  X Y Z       
X →    Y  |  a
Y →    ε  |  c 

FOLLOWi sets 

FOLLOW0( Z ) = { $ }    FOLLOW0( X ) = ∅    FOLLOW0( Y ) = ∅

FOLLOW1( Z ) = { $ }
FOLLOW1( X ) = FOLLOW0( X ) ∪ FIRST( Y )\{ε} ∪ FIRST(Z )  = { c } ∪  {a,  b,  c}  
FOLLOW1( Y ) = FOLLOW0( Y ) ∪ FIRST( Z ) ∪ FOLLOW0(X ) = {a,  b,  c}

FOLLOW( Z ) = { $ }    FOLLOW( X ) = {a,  b,  c}    
FOLLOW( Y ) = {a,  b,  c} 
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DEFINITION OF  LL(1) PARSING TABLES

the parsing table LL1G for a grammar G: 

for every  A → 𝛼  in G do: 

1. for every terminal   t ∈ FIRST(𝛼)  do 

LL1G [A, t] = A → 𝛼 

2. if   ε ∈ FIRST(𝛼), for each t ∈ FOLLOW(A) do 

LL1G [A, t] = A → 𝛼

[ this rule applies also to $, i.e. when $ ∈ FOLLOW(A):  

    if  ε ∈ FIRST(𝛼)  and  $ ∈ FOLLOW(A)  do  LL1G [A, $] = A → 𝛼 
]
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DEFINITION OF LL(1) PARSING TABLES: EXAMPLE

take the grammar         

where in the line of  Y we put  Y → *T ? 
in the columns of FIRST(*T) = { * } 

where in the line of  Y we put  Y → ε   ? 
in the columns of  FOLLOW(Y) = { $, +, ) }

39

int * + ( ) $

T T → int Y T → (E)Y 

E E → T X E → T X

X X → +E X → ε X → ε

Y Y → *T Y → ε Y → ε Y → ε

E → T X              X → + E | ε 
T → (E) Y | int Y    Y → * T | ε 



REMARKS ABOUT LL(1) TABLES

if any entry is multiply defined then G is not  LL(1) 

in particular when 

G is left recursive 

G is not left-factored 
G is ambiguous 

and in other cases as well 

most programming language grammars are not  LL(1) 

there are tools that build  LL(1) tables  

the parser generator ANTLR uses the LL approach
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REMOVING LEFT RECURSION

[see def. slide 12] a grammar si called left-recursive if it has a  

non-terminal A  such that A ⟹+  A γ , for some  γ 

case of  DIRECT LEFT-RECURSION, i.e. there is A such that 

A  →  A γ1
    ⋮ 

A  →  A γm 
A  →  δ1
    ⋮ 

A  →  δn

41

⎫ 
⎬ 
⎭

δ1 . . . δn  do not start with   A 

remark: the grammar is equivalent to the regular expression 

( δ1| . . .  | δn )( γ1 | . . . | γm )*



REMOVING DIRECT LEFT RECURSION

A  →  A γ1
    ⋮ 

A  →  A γm

42

is rewritten into — we use a new  non terminal A' 

A  →  δ1 A'
    ⋮ 

A  →  δn A'

⎫ 
⎬ 
⎭

δ1 . . . δn do not start with  A 
A  →  δ1
    ⋮ 

A  →  δn

A'  →  γ1 A'
    ⋮ 

A'  →  γm A'

A'  →  ε

remarks 
since the δi do not start with A there is no direct left-recursion 
anymore

since the A' is a new non-terminal, the γi cannot start with it 

there may be indirect left-recursions if, for some i, NULLABLE(γi) 



REMOVING DIRECT LEFT RECURSION/EXAMPLE
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is rewritten intoE → E + F
E → E - F
E → F  
F → F * T
F → F / T
F → T 
T → num
T → (E) 

E  →  F E' 
E'  → + F E'
E'  → - F E' 
E'  → ε
F  → T F' 
F'  → * T F' 
F'  → / T F' 
F'  → ε
T  → num
T   →(E)

exercise: build the LL(1) table



REMOVING INDIRECT LEFT RECURSION

there are several possibilities 

1. case of  MUTUAL LEFT-RECURSION: 

A1     →    A2 γ1
A2     →    A3 γ2
       ⋮ 

Ak-1  →    Ak γk-1 
Ak     →    A1 γk

2. there is a production 

A  →  γ A δ    where  NULLABLE(γ) 

3. any combination of 1 and 2 

it is always possible to rewrite indirect left recursion into direct one 
the process is a bit complex
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⎫ 
⎬ 
⎭

break the mutual recursion, e.g. replace 
A1  →  A2 γ1

with 
A1  →  A1 γk. . . γ1

and solve the direct left recursion



LEFT FACTORING

the grammar 

E →   T + E | T
T →   (E) | (E)*T  |  int  |  int * T

is impossible to predict because 

the non-terminal T has two productions that begin with “(” and two 
productions that begin with “int” 

the non-terminal E has the two productions that begin with T and it is 
not evident how to predict 

the above grammar must be left-factored before using predictive 
parsers
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LEFT-FACTORING — AN EXAMPLE

the grammar 

E  →   T + E | T
T  →   (E) | (E)*T | int  |  int * T

is left-factored as follows 

E  →  T E'
E'  → + E  |  ε 
T  → (E) T' | int T'
T'  → *T  |  ε 

PROBLEM: left-factoring the standard if-then-else statement  

Stat  →   if Exp then Stat else Stat   |    if Exp then Stat
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AMBIGUITY

a grammar is ambiguous if it has more than one parse tree for 
some string 

equivalently, there is more than one rightmost or leftmost 
derivation for some string 

example: E → E + E | E * E | (E) | int     is ambiguous  

because  int+int+int  int*int+int have two parse 
trees

47

  E

  E

   E   E

 E  +

  int  +

   int   int

+ is left-associative

  E

   E

   E   E

  E *

  int  +

   int   int

  E

  E

   E   E

 E  +

  int  *

   int   int

  E

   E

   E   E

  E +

   int  +

   int   int

* has higher precedence than +



AMBIGUITY

ambiguity is bad 

leaves meaning of some programs ill-defined 

ambiguity is common in programming languages 

arithmetic expressions 

if-then-else

in LL parsing it is possible to deal with ambiguity by 

rewriting grammars
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DEALING WITH AMBIGUITY

rewrite the grammar for expressions in an unambiguous way: 

E →  E + T  |   T
T →  T * int  |   T * ( E )  |  int  |  ( E )

enforces precedence of * over + 

enforces left-associativity of + and * 
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  E

   E

   E   E

  E *

  int  +

   int   int

  E

  E  T  +

  int  T

   int   *   T

   int
is derivable is not derivable

the new grammar is 
neither LL(1) nor 
adeguate for rec.descent 
parsing (left-recursion)



DEALING WITH AMBIGUITY: THE DANGLING ELSE

the grammar     
S → ID '=' E | 'if' E 'then' S | 'if' E 'then' S 'else' S     

is also ambiguous because the statement 

if E1 then if E2 then S3 else S4 

has two (abstract) parse trees
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E1

E2 S3 S4

if_node

if_node

if_node

E1

E2 S3

S4if_node

in programming languages we want the tree in the right



THE DANGLING ELSE: A FIX

else matches the closest unmatched then  
we can factorize the if-then part and rewrite the grammar as follows: 

S   →   ID = E  
  | if E then S ELSE   

ELSE →  else S | ε

(this new grammar describes the same set of strings and allows the same 
derivations)
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this is a standard hack  
to ban this derivation: give  
priority to the "else" token 

E1

E2 S3 S4

if_node

if_node

if_node

E1

E2 S3

S4if_node



THE DANGLING ELSE: A THEORETICAL FIX

see Gabbrielli-Martini 

statement           : statementNoIf 
                    | ifThenStatement 
                    | ifThenElseStatement 
                    ; 

statementNoIf       : // the statements without if 
     ; 

ifThenStatement     : 'if' '(' exp ')' 'then' statement ; 

ifThenElseStatement : 'if' '(' exp ')' 'then' statementNoShortIf 'else'  
                      statement ; 

statementNoShortIf  : statementNoIf 
                    |'if' '(' exp ')' 'then'  
                          statementNoShortIf 'else' statementNoShortIf ; 
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the grammar is NOT LL(1): it must be left-factorized! 
even if it is accepted in ANTLR! 



AMBIGUITY

there is no general techniques for handling ambiguity by 
transforming grammar 

it is always preferable not to change a grammar 

instead of rewriting the grammar 

use the more natural (ambiguous) grammar 

along with disambiguating declarations
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ANTLR

start rule  

ambiguity 

left recursion  

non-LL(*) decision errors 
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ANTLR — START RULE

any grammar needs a so-called start rule 

start rule is a rule that is not referenced by another rule 

if your grammar does not have such rule, ANTLR generator 
will issue a warning:  

no start rule (no rule can obviously be followed by EOF)

to avoid it, add a dummy start rule to your grammar:  

start_rule: someOtherRule ;
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it is not so anymore 
in ANTLR v4



ANTLR — AMBIGUITY

example:   
exp : exp '+' exp | exp '*' exp | NUM | '(' exp ')';

NUM: ('0'..'9')+;

this grammar should recognize inputs for a simple calculator 

ANTLR v4 behaves badly

to understand the problem, recall that ANTLR goes from left to right 
whenever parsing an input 

it first decides which alternative it will use following the order of the 
rules 

then it sticks with the decision 

remark: left-factorization is solved  automatically by  ANTLR
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ANTLR — AMBIGUITY

example:   
exp : exp '+' exp | exp '*' exp | NUM | '(' exp ')';

NUM: ('0'..'9')+;

try to simulate it on the input  

1 + 3 * 4

does it match an  exp '+' exp   alternative, or an    exp '*' 
exp alternative?  

the error suggests to reorder the rules as follows:  

exp : exp '*' exp | exp '+' exp | NUMBER | '(' exp ')';

NUMBER: ('0'..'9')+;
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ANTLR — PROBLEMS WITH ASSOCIATIVITY

problem: extend the grammar with "/" and force it to be right-associative

exp : exp '/' exp | exp '*' exp | exp '+' exp | '(' exp ')' | NUM   ;

NUM: ('0'..'9')+;

solution: use a new nonterminal! 

exp : term | exp '+' term ;

term : factor | factor '/' term | term '*' factor  ;

factor : '(' exp ')' | NUM  ;

better solution: use the "right-associativity" annotation! 

exp : <assoc=right> exp '/' exp      // the annotation must be written to

| exp '+' exp                   // the left

| exp '*' exp 

| '(' exp ')'

| NUM             ;
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NEXT LECTURE
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lexical 
analysis

syntactic 
analysis

semantic 
analysis

bytecode 
generation

the SimpLan  
interpreter


