
SYNTACTIC ANALYSIS

COSIMO LANEVE
cosimo.laneve@unibo.it

CORSO 72671 - COMPLEMENTI DI LINGUAGGI DI PROGRAMMAZIONE

THIS LECTURE

2

lexical
analysis

syntactic
analysis

semantic
analysis

bytecode
generation

the SimpLan
interpreter

OUTLINE

recaps about grammars

parse trees and ambiguity

design of a parser (preliminaries)

reference: Torben Morgensen: Basics of Compiler Design,
chapter 3 (sections 1—5)

3

DERIVATIONS AND PARSE TREES

take the grammar BExp → (BExp)
 BExp → Digit
 Digit → 0 | 1 | . . . | 9
the derivation BExp ⟹�
�BExp���⟹�
�
�BExp�����⟹�
�
�Digit�����⟹�
�
�1������

may be represented graphically by trees where

the root is the initial symbol

the leaf is a terminal or ε
every internal node is a non-terminal

the edges node-descendant represent a production

these trees are called parse trees
4

BExp

BExp

BExp

Digit

 �

 �

1
= syntax trees

PARSE TREES AND AMBIGUITY

the two leftmost derivations

correspond to the two parse trees

5

Exp

Exp

Exp

Digit

-

2

Exp

-Digit

3

Exp

Digit

1

Exp

Exp

Exp

Digit

-

3

Exp

- Digit

1

Exp

Digit

2

Exp → Exp - Exp
Exp → Digit
Digit → 0 | 1 | . . . | 9

Exp ⟹ Exp - Exp
⟹ Exp - Exp - Exp
⟹ Digit - Exp - Exp
⟹ 3 - Exp - Exp
⟹ 3 - Digit - Exp
⟹ 3 - 2 - Exp
⟹ 3 - 2 - Digit
⟹ 3 - 2 -1

Exp ⟹ Exp - Exp
⟹ Digit - Exp
⟹ 3 - Exp
⟹ 3 - Exp - Exp
⟹ 3 - Digit - Exp
⟹ 3 - 2 - Exp
⟹ 3 - 2 - Digit
⟹ 3 - 2 - 1

LEFTMOST DERIVATIONS, PARSE TREES AND AMBIGUITY

note: ambiguity means different semantics of the same sentence

6

Exp

Exp

Exp

Digit

-

2

Exp

-Digit

3

Exp

Digit

1

this means 2 Exp

Exp

Exp

Digit

-

3

Exp

- Digit

1

Exp

Digit

2

this means 0

ambiguity is problematic and must be solved! (see below)

let) be a grammar, if a string in L()) has several leftmost derivations
(or several rightmost derivations) or is represented by different
parse trees, then) is ambiguous

Definition: ambiguous grammar

PARSING

once sequences of characters have been recognized in tokens,
then one needs to analyze the syntactic structure of the
sentences/programs to check whether they belong or not to
the language

 parsing = takes in input token sequences and returns
 abstract syntax tree (AST)

example: if (x == y) z = 1; else z = 2;

corresponds to the token sequence (lexer’s output)

7

IF LPAR IDE(x) EQUALS IDE(y) RPAR IDE(z) ASSIGN
CONST(1) SEMI ELSE IDE(z) ASSIGN CONST(2) SEMI

EXAMPLE OF PARSE TREE

the parse tree of

if (x == y) z = 1; else z = 2;

is

8

 if-then-else

 assignment relation assignment

 guard else-stmt then-stmt

IF LPAR IDE(x) EQUALS IDE(y) RPAR IDE(z) ASSIGN CONST(1) ELSE IDE(z) ASSIGN CONST(2)

compare it with the previous abstract syntax tree!

there is no node corresponding to SEMI!

PARSE TREES VS. ABSTRACT SYNTAX TREES

parse trees

have all the tokens, included those that the parser uses for detecting
– nesting of sub-expressions (such as parentheses)

– punctuation marks (semicolons, colons, etc.)

technically, the parse trees show up all the concrete syntax

the parse trees are almost never built explicitly — they are too-much
verbose; they are used during the computations of the parsers

abstract syntax tree (AST)

remove partial results of the parsing, erasing useless tokens, flattening
the tree by removing internal nodes, etc.

technically, the AST show up an “abstract” version of the syntax 9

PARSING

the parser returns the abstract syntax tree

10

else-stmtthen-stmt

if-then-else

assignment

guard

assignment

IDE(x) EQUALS IDE(y) IDE(z) CONST(1) IDE(z) CONST(2)

in the abstract syntax tree several tokens are removed!

DESIGN OF A PARSER

it can be done “by hand”, of course

ok for small languages

very hard for real programming languages

or, as for the lexer, it is possible to use an automatic parser
generator

you need to specify the syntactic structure of the language (the
productions)

and the generator output the parser

as for the lexer, we start with a parser done “by hand” (thus you
can understand why it is better to use a parser generator)

11

FIRST EXAMPLE: THE BEXP GRAMMAR

bexp → (bexp)
bexp → NUM
NUM → (0 | 1 | . . . | 9)+

question (before describing the parser): why a (simple) DFA
cannot recognise this language?

12

PARSER CODE PRELIMINARIES

let TOKEN be an enumerated data-type that define the
possible tokens

LPAR, RPAR, NUM

let in[] be a (global) array whose elements are of type
TOKEN and that represent the sequence of tokens returned by
the lexer

let next be a (global) integer that represents the index of the
token sequence

13

THE PARSER CODE DONE “BY HAND”

14

public void ParseBexp() {
next = next+1 ;
TOKEN nextToken = in[next];
if (nextToken == NUM) return() ;
else if (nextToken == LPAR){
 ParseBexp();
 next = next+1 ;

 if (in[next] == RPAR) return() ;
else System.out.print("syntax error") ;

 } else System.out.print("syntax error") ;
}

bexp → (bexp)
bexp → NUM
NUM → (0 | 1 | . . . | 9)+

nextToken is useless !

WHERE IS BUILT THE PARSE TREE?

in the previous method: NOWHERE!

however it is possible to extend the method ParseBexp in order
to build the parse tree following the invocations

example: with input (((1))) the lexer returns

LPAR LPAR LPAR NUM RPAR RPAR RPAR

and the (extended) parser builds

15

ParseBexp()

ParseBexp()

ParseBexp()

ParseBexp()

NUM

LPAR

LPAR

LPAR

RPAR

RPAR

RPAR

SECOND EXAMPLE: THE LANGUAGE EXP

exp → exp - exp
exp → NUM
NUM → (0 | 1 | . . . | 9)+

let TOKEN be an enumerated data-type that defines the possible
tokens (as before)

we have tokens MINUS, NUM

16

public void ParseExp(){
next = next+1; TOKEN nextToken = in[next];
if (nextToken==NUM) {

if (in[next+1]==MINUS) {
next = next+1; ParseExp();

} else return();
 } else System.out.print("syntax error");

}

SUBTRACTION EXPRESSIONS CONTINUED

remarks:

a more complex language

hence, harder to see how the parser works (and if it works correctly at all)

the parse tree is actually not really what we want

consider input 3-2-1

what’s undesirable about this parse tree’s structure?

17

-3 ParseExp()

-

1

2 ParseExp()

ParseExp()

WE NEED A CLEAN SYNTACTIC DESCRIPTION

just like with the scanner, writing the parser by hand is painful and
error-prone

consider adding +, *, / to the last example!

let’s separate the what and the how

what: the syntactic structure — described with a context-free
grammar

how: the parser — which reads the grammar as input and produces
the parse tree

18

THE WHAT: CONTEXT-FREE GRAMMARS

idea: we can describe the syntactic structure by using context-free
grammars!

programming language constructs have recursive structure

this is the reason why our hand-written parser had this structure, too

example: an expression is either:
a number, or

a variable, or

an expression + expression, or

an expression - expression, or

an (expression), or

…
19

simple arithmetic expressions:
exp → NUM | ID | (exp)

| exp - exp | exp + exp

THE HOW: USE DERIVATIONS FOR PARSING?

a program (a string of tokens) has no syntax error if it can be
derived from the grammar

so far you only know how to derive some (any) string

you do not know how to check whether a given string is derivable or
not

how to do parsing?

20

PARSING

once the sequence of characters have been recognized as
sequence of tokens, one needs to analyze the syntactic
structure of sentences/programs to check whether they belong
to the language or not

 parsing = takes in input sequences of tokens and
 returns abstract syntax trees (AST)

example

21sentence

this line is a long sentence

verbadjective name article adjective name

subject object

syntax tree

COMPARISON WITH LEXICAL ANALYSIS

22

Phase Input Output

Lexer sequence of
characters

sequence of
tokens

Parser sequence of
tokens

AST, built
from parse

tree

NEXT LECTURE

23

lexical
analysis

syntactic
analysis

semantic
analysis

bytecode
generation

the SimpLan
interpreter

LL-parsing and ANTLR

