
LEXICAL ANALYSIS

COSIMO LANEVE
cosimo.laneve@unibo.it

CORSO 72671 - COMPLEMENTI DI LINGUAGGI DI PROGRAMMAZIONE

THIS LECTURE

2

lexical
analysis

syntactic
analysis

semantic
analysis

bytecode
generation

the SimpLan
interpreter

OUTLINE

lexical tokens

designing lexers by hand

finite state automata (NFA and DFA)

the lexer generator algorithm

the ANTLR lexer

reference:

Torben Morgensen: Basics of Compiler Design, chap. 2 (for the
ANTLR lexer, see Terence Parr: Language Implementation
Patterns)

3

RECOGNISING THE LEXICAL STRUCTURES

idea: breaking up very large grammars into logical chunks
just like we do with software

one way to do this: split a grammar into a lexer grammar and a
parser grammar

this is not a bad idea because there is a surprising amount of
overlap between different languages

for example, identifiers and numbers are usually the same across
languages

factoring out lexical rules into a “module” means we can use it
for different parser grammars

4

LEXICAL ANALYSIS

the lexical analysis divides program texts in tokens or words

5

if (x == y) z = 1; else z = 2;

if (x == y) z = 1 ; else z = 2 ; tokens

in this case the tokens coincide with lexemes
• lexemes also include sequences of character that are not

relevant as tokens

DESIGN OF A LEXER

the input is just a sequence of characters

example: if (x == y)
 z = 1;

 else
 z = 2;

in this case, the input string is

\t if (x == y)\n\t\tz = 1;\n\telse\n\t\tz = 2;

goal: find the lexemes and map them to tokens:

partition the input string into substrings (called lexemes), and

classify lexemes according to their role (role = token)

6

the input string is

\t if (x == y)\n\t\tz = 1;\n\telse\n\t\tz = 2;

the partitioning into lexemes is

\t if (x == y) \n\t\t z = 1 ; \n\t else \n\t\t z = 2 ;

(19 lexemes! count the underlines) that are mapped to a sequence
of tokens

IF, LPAR, ID("x"), EQUALS, ID("y"), RPAR . . .

remarks:
lexemes consisting of \n and \t are erased and do not produce tokens
some tokens have attributes: the lexeme and/or the line number

DESIGN OF A LEXER/CONT.

7

why do we need these infos?

DESIGN OF A LEXER/CONT.

it is inconvenient to built a lexer by yourself
it is tedious repetitive, error-prone, and non-maintenable

it is much better to use a lexer generator!
with a generator at hand, we can focus directly to the definition of
the lexemes and of the tokens

that is, provide the lexical description of the language

. . . and automatically generating the code that performs the
partitioning into lexemes/tokens

automatically generated code may have repetitions

8

DESIGN OF A LEXER (BY HAND)

let’s build a (simple) lexer BY HAND in Java

the objective is to see how it is done and understanding where
are the code repetitions we want to hide

our simple lexer must recognize 4 tokens

9

token lexeme
ID a sequence of one or more letters

or digits starting with a letter

EQUALS “==”

PLUS “+”

TIMES “*”

THE LEXER IN PSEUDOCODE JAVA

c = nextChar();
if (c == '=') { c=NextChar(); if (c == '=') {

 return EQUALS; } }
else if (c == '+') { return PLUS; }
else if (c == '*') { return TIMES; }
else if (c is a letter) {

c = NextChar();
while (c is a letter or digit) { c = NextChar(); }
undoNextChar(c);
return ID;

}

10

why do we use undoNextChar()?
it performs a look-ahead to determine
whether the lexeme ID may be longer or not

for simplicity, we are not
considering errors

THE MAXIMAL MATCH RULE

the previous code shows an instance of the maximal match rule:

this rule is used by every lexer

the rule: the input stream of characters is partitioned into
lexemes that are as longer as possible

example: in Java, “iffy” is not partitioned into “if” (the
keyword IF) and “fy” (which is an ID), but in “iffy” (ID)

11

THE LEXER IN PSEUDOCODE JAVA

c = nextChar();

if (c == '=') { c=NextChar(); if (c == '=') {

 return EQUALS; } }

else if (c == '+') { return PLUS; }

else if (c == '*') { return TIMES; }

else if (c is a letter) {

c = NextChar();

while (c is a letter or digit) { c = NextChar();
}

undoNextChar(c);

return ID;

}

12

the parts in red are important to
specify the lexer

LEXER ABSTRACT MODEL

is there a computational model that allows us to define lexer’s
behaviour?

YES! the nondeterministic finite state automata

13

EQUALS
PLUS

TIMES

ID

=
=

+

*

letter

letter or digit

the code follows this pattern:
read the next character and
compare it with a predetermined
one

if there is a match then return a
token, otherwise repeat until it is
possible to return a token

A NFA is a tuple (Q, ∑, 𝛿, q0, F) where
Q is a finite set of states
∑ is a finite set of symbols (the input alphabet)
𝛿, called the transition relation, is a relation Q x (∑ ∪{ɛ}) x Q [instead
of writing 𝛿(q, a) = q' we write q → q']
q0 ∈ Q is the initial state

F ⊆ Q are the final states

Definition: Nondeterministic Finite-state Automata

a

RECAPS OF PROGRAMMING LANGUAGES: NFA

NFA have a graphical notation:

states are denoted

the initial state is denoted

the final states are denoted

labelled transitions between two states
14

q

q0

q'
a

q q'

RECAPS OF PROGRAMMING LANGUAGES: NFA

 example

15

a

q1

q2

q3ɛ

ɛ

a

ɛ

as a tuple: ({q1, q2, q3}, {a}, 𝛿, q1, {q3}) where

𝛿 = { q1 → q2 , q1 → q3, q2 → q2, q2 → q3, q3 → q3 }a ɛ ɛ ɛ a

 example: when M is

RECAPS OF PROGRAMMING LANGUAGES: NFA

16

L(M) = {ɛ, a, aa, aaa, . . . }

a

q1

q2

q3ɛ

ɛ

a

ɛ

The language defined by an NFA M = (Q, ∑, 𝛿, q0, F), written L(M), is the

set

{ γ | γ∈ ∑* and [γ = a1 … an implies (qi-1 → qi ∈ 𝛿)i∈1..n and qn ∈ F] }

where 𝛿 is the relation defined as follows

𝛿 (q1, a) = qn if q1 → q2 → . . . → qi → qi+1 → . . . → qn

are transitions in 𝛿

Definition: language defined by an NFA

ai
_

ɛ ɛ ɛ a ɛ ɛ
_

_

RECAPS OF PROGRAMMING LANGUAGES: NFA

string accepted/refused by a NFA

start in the unique initial state

then start reading the input string a character at a time

when the reading terminates
if the state where you arrive is final then the string is accepted

if the state where you arrive is NOT final then the string is refused

if no transition is possible meanwhile, then the string is
refused

17

DESIGN OF A LEXER

two parts:

PART 1: description (define what the lexer does)

describe every token in a precise way — with a formal model
such as the finite state automata

define the association lexeme-token for every possible lexeme
in the input language (and the corresponding action to do)

PART 2: implementation (define how the lexer behaves)

building the automaton corresponding to the lexer — the
elements that are used are common to every lexer (it is a library)

define the scanner of the input program, for example
NextChar() and undoNextChar(c)

18

PART 1: DESCRIPTION OF A LEXER

define an NFA for every lexeme of the language

associate the NFA to the recognized token

example:

19

ID

PLUS

TIMES

EQUALS

+

*

==

letter

letter | digit

PART 2: IMPLEMENTATION OF THE LEXER

the identification of the token ID has an unlabelled transition —
actually an ɛ-transition — the one from q1 to qF

the automaton is nondeterministic: in the state q1 it is not clear
what happens when a letter or a digit arrives — do you transit to q1
or you transit to qF without waiting for the next character

it is more convenient to use the deterministic automaton (DFA:
Deterministic Finite-state Automata)

20

letter

letter | digit

q0 q1 qF

non-letter
&& non-digit and use look-aheads

for variable-length lexemes

letter

letter | digit

q0 q1 qF

ɛ

PART 2: IMPLEMENTATION — THE ACTIONS

when a token is recognized, the NFA must execute actions:

return TOKEN — the caller of the lexer (the parser) gets back the
recognized token and the lexer restarts from the initial state

management actions of lookaheads, for example
undoNextChar(c) for tokens that correspond to lexemes of
variable length (in our case, token ID)

see maximal match rule

21

this action resets the lexer to the initial state
• the lexer is invoked by the parser
• every time exactly one token is returned

PART 2: IMPLEMENTATION — THE ACTIONS

in correspondence of the final states, we need to specify the
actions of the lexer

example:

22

ID

PLUS

TIMES

EQUALS

+

*

==

letter

letter | digit

non-letter
&& non-digit put back last char

return ID

return PLUS

return TIMES

return EQUALS

remark: the NFA of the description becomes an extended NFA

PART 2: COMBINE THE EXTENDED NFA

problem: the lexer must have a unique entry point

algorithm: identify the initial states of the NFA that correspond to
the tokens

23

+

*

==

letter
letter | digit

non-letter
&& non-digit put back last char

return ID

return PLUS

return TIMES

return EQUALS

problem: combining the NFAs may give nondeterminism in general

the combination is
not exactly like this!
in this case the
resulting automaton
is DETERMINISTIC

PART 2: COMBINING THE EXTENDED NFA

let’s build a simple lexer that recognises 5 tokens

24

token lexeme
ID a sequence of one or more letters

or digits starting with a letter

EQUALS "=="

PLUS "+"

TIMES "*"

ASSIGN "="

remark: ASSIGN is a prefix of EQUALS

PART 2: COMBINING THE EXTENDED NFA

the previous algorithm gives

25

+

*

=
=

letter

letter | digit

non-letter
&& non-digit put back last char

return ID

return PLUS

return TIMES

return EQUALS=

return ASSIGN

problem: the automaton is NFA — how to improve it?

PART 2: COMBINING THE EXTENDED NFA

a better solution…

26

+

*

==

letter

letter | digit

non-letter
&& non-digit put back last char

return ID

return PLUS

return TIMES

return EQUALS
=

return ASSIGN

ɛ

ɛ

ɛ

ɛ

ɛ

LEXER’S ALGORITHM

27

1. define an NFA for every lexeme

2. combine the NFA identifying the initial states

3. if the resulting NFA in 2 is nondeterministic then
transform the automaton in deterministic (DFA)

4. use the following rules:
a. when a final state is reached:

i. store the position in input (therefore it is possible to
read other characters)

ii. keep reading other characters transiting from state to
state

b. if other transitions are not possible with the next
character:

i. rollback to the last final state (henceforth perform undo
of the corresponding readings) and return the token
corresponding to the last final state

Algorithm: lexer

+ using a textual notation for DFA

implement them!

DETERMINISTIC FINITE-STATE AUTOMATA

28

A DFA is a NFA (Q, ∑, 𝛿, q0, F) such that

𝛿 is a function Q x ∑ → Q

Definition: Deterministic Finite-state Automata

interesing properties of DFA

Given a NFA M, it is possible to define a DFA M' such that L(M) = L(M').

Theorem: Subset Construction [Morgensen, sec 2.6]

Given a DFA M, it is possible to define a DFA M' with a minimal set of states
such that L(M) = L(M').

Theorem: Hopcroft Algorithm [Morgensen, sec 2.8]

5

Lexical Analysis - Part 3

© Harry H. Porter, 2005

Example

Start state:

#-Closure (0)

= {0, 1, 2, 4, 7}

2
a

4
b

1
5

3 #

##

#

60 # #

#

#

7 a
8 b 9 b

%= {a,b}

10

6

Lexical Analysis - Part 3

© Harry H. Porter, 2005

Example

Start state:

#-Closure (0)

= {0, 1, 2, 4, 7} = A

2
a

4
b

1
5

3 #

##

#

60 # #

#

#

7 a
8 b 9 b

%= {a,b}

10

EXERCISES

29

a

S1

S2

S3b

ab

b

a
1. minimize the DFA (cf. Hopcroft’s algorithm)

2. transform the following NFA into a DFA (the subset construction
method) and, in case minimize it

ε-chiusura

LEXER’S ALGORITHM — PRACTICAL REMARKS

ambiguity

problem: the lexer reaches several different final states

example: "if" corresponds both to ID and to IF (reserved keyword)

problem: while reading characters, the lexer automata go through
several different final states

example: "=" corresponds both to ASSIGN and "==" to EQUAL

30

PRINCIPLES OF LONGEST AND FIRST MATCH

31

A lexer always outputs the token that consumes the longest part of the
input.

Principle of longest match

Tokens are alaways prioritised, therefore the lexer can decide which token to
recognize if two tokens are possible for the same input

Principle of first match

this is important when reading identifiers and numbers (otherwise
prefixes would be recognized as tokens, as well)

this is important when reading keywords (otherwise they could be
recognized as identifiers)

LEXER’S ALGORITHM — PRACTICAL REMARKS

errors in the input

problem: remove illegal lexemes and print an error message
solution: ✔︎ remove a character at a time and add a lexeme
that corresponds to every character
✔︎ this lexeme has the lowest priority — the corresponding
action will be executed when no other lexeme is recognized

remove white spaces \n , \t e \r
solution: the final states of lexemes with these characters are special
— they do not return a token but recursively invoke the lexer (=
going back to the initial state)

remark about the lookaheads
lookaheads may have whatever length; in case you need to perform
undoNextChar(c) several times32

LEXER’S ALGORITHM

the one at pag 25 is the algorithm used by every lexer

the description is the step 1 — this is the part which is required to
the language designer!

the implementation is the steps 2, 3 and 4 — this is the part that is
performed automatically by a lexer generator

how to specify the automata at step 1?

33

the automata allow us to define the lexemes that correspond to a
token in a visual manner

but they are not adequate as specification language

an equivalent description to the automata (DFA and NFA) are the
regular grammars/regular expressions

regular grammars/expressions are a compact way for defining a language
that is accepted by a FA

the regular grammars/expressions are used as input to the lexer
generators

define every lexeme, including white space sequences and comments,
which must be recognized but not associated to a token, in such a way to
be able to ignore them

HOW TO SPECIFY THE AUTOMATA: THE REGULAR EXPRESSIONS

34

REGULAR GRAMMARS

35

A grammar (N, T, →, S) is regular if its productions → have the form

A → a
A → aB
A → ɛ

Definition: regular grammar

in the literature, regular grammars are also called right-linear
grammars

example: Java identifier definition as regular grammar

ID → ('a'..'z'| 'A'..'Z') CONT

CONT → ('a'..'z'| 'A'..'Z'| '0'..'9' | '_') CONT

CONT → ɛ
CONT = (LETTER | DIGIT | '_')*

REGULAR GRAMMARS AND DFA

36

for every finite automata M, there is one regular grammar G where L(M) =

L(G)

THEOREM: from DFA to regular grammars

the nonterminals of the grammar are the states of the automata (written in
capital letters, for simplicity)
the productions are

if q → q' in the automata and q' is not final then Q → a Q' in the
grammar
if q → q' in the automata and q' is final then Q → a Q' | a in the
grammar
if q is initial and final then Q → ɛ in the grammar

Algorithm: from DFA to regular grammar

a

a

EXAMPLE: A JAVA IDENTIFIER AS A REGULAR EXPRESSION

lexical definition (in English):

a letter, followed by zero o more letters, digits or symbols '_'

lexical definition (as regular expression):

LETTER (LETTER | DIGIT | '_')*

37

ε means “empty string"
| means "or"
string1 string2 means "sequence"
* means "repeat 0 or more times"
() means “grouping"

remark: there is a precedence among the regular expressions operators:
* has precedence on concatenation that has precedence on |

LANGUAGE DEFINED BY A REGULAR EXPRESSION

the language defined by a regular expression is the set of
strings that match with the expression

examples

38

regular expressions corresponding language

'00' | '1' | ε
'0'*

ε*
('0'|'1')*

('0'|'1')('0'|'1')*

('1'|ε)('01')*('0'|ε)

{00, 1, ε}
{ε, 0, 00, 000, …}
{ε}
{ε, 0, 1, 00, 01, 10, …}
{0, 1, 00, 01, 10, …}

sequenze anche vuote di 0 e 1 alternati

OPERANDS OF A REGULAR EXPRESSION

the operands

correspond to the labels of the transitions of the FA

are single characters between apices or sequences of characters
between apices, examples: 'a' and 'while'

are the special character ε (the empty string)

example:
letter: 'a'| 'b' | 'c' | ... | 'z' | 'A' | ... | 'Z'
digit: '0' | '1' | ... | '9'

in many lexers (included ANTLR) you can also write

letter: ('a'..'z') | ('A'..'Z')
digit: ('0'..'9')

39

OTHER USEFUL OPERATORS OF REGULAR EXPRESSIONS

operator + (one or more repetitions)

natural_numbers: digit+ ;

note: digit+ is equal to digit (digit)*

operator ? (zero or one repetition)

integer: ('+' | '-')? natural_numbers

note: ('+' | '-')? is equal to ε |'+' | '-'

(ANTLR) operator ~('a'..'z') are the characters that are different from
'a'..'z'

(ANTLR) operator . stands for every character (therefore .* is every
sequence of characters)

40

LEXER GENERATORS

input: the regular expressions describing the lexemes

generate code (C, C++, Java, …) that implements the full lexer algorithm:

translate the regular expressions into FA

merge the FA into a unique automaton

translate the merged automaton to a Deterministic FA (more efficient to be
simulated)

produce the code that implements the ‘‘special’’ simulation of the DFA
(lookahead for maximal match rule, priorities in case of multiple match,
operations to be executed upon matching, and return to initial state)

41

LEXER IMPLEMENTATION

a DFA can be implemented by a 2-dimension table — let it be T

a dimension describes the “automata states”

the other dimension describes the “input symbols”

for every transition of the automata Si → Sk , it is sufficient to define T[i,a] =

k

the execution of the DFA is very efficient
if the automata is in the state Si and the input character is 'a', then read
T[i,a] = k and jump to state Sk

42

a

EXAMPLE OF TABLE IMPLEMENTING A DFA

43

a b

S1 S2 S3

S2 S2 S3

S3 S2 S3

a

S1

S2

S3b

ab

b

a

ANTLR LEXER

the ANTLR lexer (as every lexer)

reads the characters until one rule is selected

then print the corresponding token

and then restart from the next character

few relevant things (see next slides)

the rule used is the first longest match

the lexer does not backtrack — it never changes the previous
decisions

44

if there are several rules that match with the the input, the one which is
selected is that corresponding to the longest string

example: SHORTTOKEN: 'abc';
 LONGTOKEN: 'abcabc';

both SHORTTOKEN and LONGTOKEN match with the initial part of the string abcabc

since LONGTOKEN has 6 characters and SHORTTOKEN has only 3, the lexer returns
LONGTOKEN

if there are more than one rule that match, the returned one is the first in the list
example: SHORTTOKEN: 'a';

 FIRSTTOKEN: 'abc';
 SAMELENGTHTOKEN: 'ab'. ;

with input abc, ANTLR selects FIRSTTOKEN

in ANTLR, the non terminals that start
with an uppercase letter are the lexical
(token) rules

ANTLR LEXER: THE FIRST LONGEST MATCHING RULE

45

ANTLR LEXER: IRREVERSIBLE DECISIONS

once the decision is taken, the lexer does not rollback

example: in theory the grammar

SHORT: 'aaa';
LONG: 'aaaa';

might split the input aaaaaa in the sequence SHORT SHORT

but
the lexer will choose the longest match and therefore recognise LONG
since the tailing aa does not match with any token, the lexer will output the
errors:

start:1:4: token recognition error at: 'aa\n'
46

ANTLR LEXER: USUAL ERRORS

the lexer chooses the next token by consuming the characters in input
without matching completely the input, by erasing the shortest rules

if the selected token does not match with the input, then an error is
reported

example: the input abcabQ with the grammar

SHORTTOKEN: 'abc';
LONGTOKEN: 'abcabc';

SHORTTOKEN matches with 3 characters, LONGTOKEN matches with more than 4
characters
henceforth ANTLR chooses LONGTOKEN
unfortunately LONGTOKEN does not match with the input and therefore the lexer
backtracks and recognizes SHORTTOKEN giving an error for abQ

47

ANTLR LEXER: USE OF PUSHDOWN AUTOMATA

ANTLR lexer uses the same technique for the lexer and the parser

therefore you may write lexical clauses using LL(*) grammars

the lexer becomes less efficient

example: the lexical part of the grammar

init : TOKEN (',' TOKEN)* ;

TOKEN : 'a'TOKEN'b' | 'a''b' ;
WS : (' ' | '\n' | '\r' | '\t')+ -> skip ;

is correct!

48

DON'T DO IT!

these are called SCANNERLESS PARSERS

ANTLR — AN EXAMPLE

grammar Example;
// THIS IS THE INPUT FOR THE PARSER

. . .

// THIS IS THE INPUT FOR THE LEXER
fragment CHAR : 'a'..'z' |'A'..'Z' ;
ID : CHAR (CHAR | DIGIT)* ;
fragment DIGIT : '0'..'9';
NUMBER : DIGIT+;
// ESCAPE SEQUENCES
WS : (' '|'\t'|'\n'|'\r')-> skip;
LINECOMENTS : '//' (~('\n'|'\r'))* -> skip;
BLOCKCOMENTS : '/*'(~('/'|'*')|'/'~'*'|'*'~'/'|BLOCKCOMENTS)* '*/' -> skip;
 ERR : . -> channel(HIDDEN) ;

49

rules defined with fragment do not generate
nodes in the syntax tree (no token is
generated!)

• CHAR and DIGIT must be invoked by other
lexer rules

• se non si mette fragment, 'a' è
riconosciuto come CHAR

no node in the syntax tree is generated! The
characters are skipped

the lexer rhs are regular expressions!

ANTLR ha diversi canali di output, quello
standard è 0 e i simboli/token si possono
recuperare dai diversi canali

NEXT LECTURE

50

lexical
analysis

syntactic
analysis

semantic
analysis

bytecode
generation

the SimpLan
interpreter

