

CORSO 72671

COMPLEMENTI DI LINGUAGGI
DI PROGRAMMAZIONE

COSIMO LANEVE
cosimo.laneve@unibo.it

welcome

2

COMPLEMENTI DI LINGUAGGI DI
PROGRAMMAZIONE

code transformation and analysis

CODE TRANSFORMATION AND ANALYSIS

course informations

why study CODE TRANSFORMATION AND ANALYSIS?

a quick history of CODE TRANSFORMATION AND ANALYSIS

the structure of a translator/analyzer

the arguments in this course

ANTLR

some background

4

COURSE INFORMATIONS

instructor: me. If you want to discuss

send email to cosimo.laneve@unibo.it

come in my studio during office hours

fix ad-hoc meetings

e-learning page: download material

go to the course page at

https://www.unibo.it/sitoweb/cosimo.laneve/teachings

grading policies
written examination max score: 26 (min 15)

team project max score: 6
5

⎫
⎬
⎭

both are necessary

this year there will be a TUTOR:
Marco Bertoni

• exercises
• assistance in the team project

marco.bertoni5@unibo.it

EXAMINATION

there are 6 written examination sessions (2 in Jan/Feb; 3 in May/
Jun/Jul; 1 in Sept.)

the team of the team project must be composed of 2 students
(exceptionally 3)

you may release the project within a deadline (usually in June:
we will find an agreement — miss the deadline = -1 point)

the score of the project is individual: one may pass and another
of the group may fail (in this case a new project must be
delivered)

the project must be uploaded on virtuale — don’t send the
project by email!

6

COURSE INFORMATIONS

course prerequisites
Programming Languages (code 04138)

Fondamenti Logici dell'Informatica (Laurea Magistrale, 1^ sem), not
necessary, but highly recommended

references: downloadable material

Torben Morgensen: Basics of Compiler Design. 2010. Downloadable
from http://www.diku.dk/~torbenm/Basics/

• you may also download it from the e-learning website

Terence Parr: Language Implementation Patterns. 2010 (this is for
ANTLR) [look for it by yourself…]

material on the e-learning website

7

http://www.diku.dk/~torbenm/Basics/

CODE TRANSFORMATION AND ANALYSIS

MOTIVATIONS

modern software development requires fast and sophisticated code
transformation and analysis tools

Java code is verified by the Virtual Machine before execution

Facebook, before releasing its mobile apps, always submits them to a
tool that finds bugs without running the code

Google Chrome and Mozilla Firefox analyze and optimize
JavaScript code to make browsers more responsive

performance-critical applications require compilers that derive correct
and optimized machine code from high-level source code

8

CODE TRANSFORMATION AND ANALYSIS

ADDITIONAL MOTIVATIONS

it is hard because code transformations and analyses must be
semantically correct

see the application of the theory

learn how programming languages work

learn how a development tool works and how to use it

focus on concepts that we use all the time in a translation: data
structures, model-driven code generators, source-to-source translators,
source analysers, interpreters

most of us will never build compilers for general-purpose programming
languages (which requires a strong computer science background)

9

CODE TRANSFORMATION AND ANALYSIS

OBJECTIVE OF THE COURSE

discuss modern code transformation and analysis techniques and
illustrate their implementation

we will refer to the ANTLR framework that is widely used in academia and
industry to build all sorts of languages, tools, and frameworks

Twitter search uses ANTLR for query parsing, with over 2 billion
queries a day

you will apply the theory by extending a small, yet expressive and
powerful language, by means of the ANTLR framework

10

CLP IS HARD

the average score of the last year is 25.2

the course combines theory and practice

therefore you need to know in detail the theory and the development
tool to write the sw

e.g. the grammars and the syntax trees and the visitor process; the
semantic rules and the proof trees and their implementation, the
code generation and the assembly language

11

CLP IS HARD

CLP requires a strong background (and motivation)

comments from students:

Tutto il corso è un problema. In particolar modo non si può alla magistrale di informatica essere
obbligati a fare questo esame in quanto dovrei poter scegliere cosa vorrei fare. Mi pento di non
essermene andato a Milano a studiare dove forse sarei stato valorizzato di più e avrei fatto
qualcosa di più interessante. Il docente almeno qualche materiale di supporto in più potrebbe
fornirlo dimentica sempre tutto e non ci dà sicurezza sulla struttura dell'esame poco chiara

Tutto è piuttosto difficile da capire

Le prime lezioni sono state difficili da capire se non si avevano già conoscenze di questa
materia. Le slide non sono molto chiare. Fornire più conoscenze di base e dare meno cose per
scontate. Migliorare le slide. Fare più esercizi completi.

Gli esercizi svolti in classe sono subito esercizi d'esame o simili, sarebbe meglio una difficoltà
più graduale nella presentazione degli esercizi in modo da consolidare meglio i concetti.

Troppo difficili gli argomenti del corso per studenti che alla triennale non hanno avuto corsi, i
quali li permettono di avere una base già solida su questi argomenti

12

CLP IS HARD

if you are not strongly motivated, consider to ask for

variazione piano di studi

you may replace CLP with one of these
Sistemi Context-Aware

Didattica dell’Informatica

Internet of Things

Artificial Intelligence, Blockchain e Criptovalute nello sviluppo software

Human Data Science

as a motivation you may write one of these
La scelta del corso X deriva dal desiderio di approfondire le competenze
dell'area Y
La scelta del corso X deriva dalla volonta` di aumentare i possibili sbocchi
professionali del mio percorso formativo anche con esso.

13

A SHORT HISTORY OF CODE TRANSFORMATION & ANALYSIS

first, there was nothing

then, there was machine code

afterwards, there were assembly languages (see Computer
Architecture, code 11925)

programming was expensive: 50% of costs for machines went
into programming

high-level languages were/are conceived: people needs
translators to low-level codes (compilers and interpreters)

commercial and critical codes require powerful translators
removing bugs and delivering optimized code

14

CODE TRANSFORMATIONS: COMPILATION AND INTERPRETATION

compiled languages: C, C++, C#, Scala, Java

interpreted languages: PHP, Perl, Ruby, JavaScript, Python

15

Python is compiled into bytecode which is then saved and executed
afterwards instead of the source code

Java is compiled into bytecode which is then interpreted by the
Java Virtual Machine

COMPILERS
transform code written in a high-
level programming language into
the machine code, at once, before
program runs,

compiled code runs faster

display all errors after compilation

take an entire program

INTERPRETERS
covert each high-level program
statement, one by one, into the
machine code, during program run

interpreted code runs slower

display errors of each line one by
one

take a single line of code

COMPILERS AND INTERPRETERS: JAVA

16

identify logical
pieces of the
source code

identify how these
pieces relate to
each other

identify whether
pieces relate to
each other in a
correct way

generate code that
is adequate for
the Java Virtual
Machine

JVM

JVM bytecode
is interpreted
by the machine

— c.f. JVM
plugin in the

browser

output

lexical
analysis

syntactic
analysis

semantic
analysis

bytecode
generation

COMPILERS: C (NO INTERPRETERS)

17

identify logical
pieces of the
source code

identify how these
pieces relate to
each other

identify whether
pieces relate to
each other in a
correct way

generate code that
is adequate for an
abstract machine

intermediate
code
optimisation

machine code
generation

machine
code

lexical
analysis

syntactic
analysis

semantic
analysis

intermediate
code

generation

A COMPILER AT WORK

18

while (y < z) {
 int x = a + b;
 y = y + x;
}

lexical
analysis

syntactic
analysis

semantic
analysis

intermediate
code

generation

A COMPILER AT WORK

19

while (y < z) {
 int x = a + b;
 y = y + x;
}

T_While
T_LeftParen
T_Identifier y
T_Less
T_Identifier z
T_RightParen
T_OpenBrace
T_Int
T_Identifier x
T_Assign
T_Identifier a
T_Plus
T_Identifier b
T_Semicolon
T_Identifier y
T_Assign
T_Identifier y
T_Plus
T_Identifier x
T_Semicolon
T_CloseBrace

lexical
analysis

syntactic
analysis

semantic
analysis

intermediate
code

generation

A COMPILER AT WORK

20

while (y < z) {
 int x = a + b;
 y = y + x;
}

T_While
T_LeftParen
T_Identifier y
T_Less
T_Identifier z
T_RightParen
T_OpenBrace
T_Int
T_Identifier x
T_Assign
T_Identifier a
T_Plus
T_Identifier b
T_Semicolon
T_Identifier y
T_PlusAssign
T_Identifier x
T_Semicolon
T_CloseBrace

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}
While

<

Sequence

=

x +

a b

=

y +

y x

y z

lexical
analysis

syntactic
analysis

semantic
analysis

intermediate
code

generation

A COMPILER AT WORK

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}
While

<

Sequence

=

x +

a b

=

y +

y x

y z

while (y < z) {
 int x = a + b;
 y = y + x;
}

lexical
analysis

syntactic
analysis

semantic
analysis

intermediate
code

generation
21

Lexical Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}
While

Sequence

=

x +

a b

=

y +

y x

int

int int

int

int
int

int

int int

int

void

void

Semantic Analysis

<

y z

int int

bool
void void

A COMPILER AT WORK & THE JVM INTERPRETER

while (y < z) {
 int x = a + b;
 y = y + x;
}

this bytecode is given in input to the JVM which

interprets every instruction

executes it on the machine

Loop: _t1 = y < z
 iffalse _t1 goto Exit

x = a + b
 y = x+y
 goto Loop
Exit:

lexical
analysis

syntactic
analysis

semantic
analysis

intermediate
code

generation
22

intermediate
code
optimisation

A COMPILER AT WORK (IN C LANGUAGES)

while (y < z) {
 int x = a + b;
 y = y + x;
}

optimizations produce better code
machine code
generation

23

intermediate
code
generation

Loop: _t1 = y < z
 iffalse _t1 goto Exit

x = a + b
 y = x+y

goto Loop
Exit:

x = a + b
Loop: _t1 = y < z
 iffalse _t1 goto Exit
 y = x+y
 goto Loop
Exit:

A COMPILER AT WORK (IN C LANGUAGES)

while (y < z) {
 int x = a + b;
 y = y + x;
}

build the code for your machine

x = a + b
Loop: _t1 = y < z
 iffalse _t1 goto Exit
 y = x+y
 goto Loop
Exit:

24

 add $1, $2, $3
Loop: slt $6, $4, $5
 beq $6, Exit
 add $4, $1, $4
 b Loop
Exit:

intermediate
code
optimisation

machine code
generation

intermediate
code
generation

THIS COURSE

25

JVM

we will build a compiler for a simple
programming language — SimpLan —
and we will build an interpreter for
executing SimpLan

as team project you must
develop a compiler for an extension of
SimpLan

use the ANTLR development tool

the SimpLan
interpreter

Sim
pLa

n
lexical

analysis

syntactic
analysis

semantic
analysis

intermediate
code

generation

RECAPS ABOUT GRAMMARS

see Torben Morgensen: Basics of Compiler Design,
chapter 3, section 1, 2 and 3

26

RECAPS ABOUT GRAMMARS

example: BExp → (BExp)
 BExp → Digit
 Digit → 0 | 1 | . . . | 9

27

A context-free grammar is a tuple (N, T, →, S) where

N is a finite set of non-terminal symbols

T is a finite set of terminal symbols
→ is a finite set of productions of type

A → α1 …αn with A ∈ N and α1 …αn ∈ N∪T

S ∈ N is called initial symbol

Definition: context-free grammar

compact syntax that represents
10 productions

we will always keep the tuple IMPLICIT!

FORMAL NOTIONS

T* is the Kleene closure: every sequence of symbols in T

 example: if T = {a, b}, T* = {ε,a,b,aa,ab,ba,bb,aaa,...}28

Let G = (N, T, →, S) be a context-free grammar and γ and δ be

sequences of symbols in N∪T. A one-step derivation of G is

γAδ → γα1 …αn δ
where A → α1 …αn ∈ →

notation: →* (0 or more steps) →+ (1 or more steps)

γ →* δ is called derivation

Definition: derivations

The language (generated) by G = (N, T, →, S) is the set

L(G) = { γ | γ ∈ T* e S →+ γ }

Definition: language generated by a context-free grammar

DERIVATIONS — EXAMPLES

take the grammar BExp → (BExp)
 BExp → Digit

 Digit → 0 | 1 | . . . | 9

BExp → (BExp) → ((BExp)) → ((Digit)) → ((1))

is a derivation
the sequence of terminals ((1)) belongs to the language
generated by the grammar

the sequences ((9)) e ((((1)))) and 3 belong to the
language, as well — what are the derivations?

the sequences ((BExp)) and ((((10)))) and ((3) do not
belong to the language — why?

29

DERIVATIONS — LEFTMOST AND RIGHTMOST

a leftmost derivation is a derivation where the non-terminal symbol
that is replaced every time is the leftmost one

example Exp → Exp - Exp

 Exp → Digit
 Digit → 0 | 1 | . . . | 9

Exp → Exp - Exp → Exp - Exp - Exp

→ Digit - Exp - Exp → 3 - Exp - Exp → 3 - Digit - Exp
→ 3 - 2 - Exp → 3 - 2 - Digit → 3 - 2 - 1

is a leftmost derivation

note: Exp → Exp - Exp → Digit - Exp → 3 - Exp

 → 3 - Exp - Exp → 3 - Digit - Exp
 → 3 - 2 - Exp → 3 - 2 - Digit → 3 - 2 - 130

this is also a
leftmost derivation!

rightmost/the rightmost one

I am replacing this Exp

ANTLR

ANTLR = ANother Tool for Language Recognition

is a powerful parser generator for reading, processing, executing, or
translating structured text or binary files

it's widely used to build languages, tools, and frameworks

from a grammar, ANTLR generates a parser that can build and walk parse
trees

31

ANTLR

you need

Eclipse/IntelliJ

ANTLR plugin

in the e-learning website, there is a folder (see Argomento 2)
where

you can find installation informations about ANTLR

a simple example of what you can do with ANTLR

to play, you can use the online tool:
http://lab.antlr.org/

32

ANTLR — AN INITIAL EXAMPLE

Arrayofint.g4

the syntax

grammar ArrayofInt ;

init : '{' value (',' value)* '}' ;

value : init | INT ;

INT : [0-9]+ ;

33

grammar file has suffix g4

this is the first line; the name
is the same of the file without suffix

these are the parser productions
• nonterminal begins with lowercase

letter
• the first production identifies the initial

symbol

this is a lexer production
• nonterminal are in capital letter
• rhs are always regular expressions

ANTLR — AN INITIAL EXAMPLE

programs:

{ 12, 245, 3327}

{ 1, { 1, 2, 3 }, 3 }

34

ANTLR — THE ANALYSIS

ANTLR returns the syntax tree
you may compute the sum of integers

the number of integers

the maximal nesting

…

example:

the sum is 10

the number of integers is 5

the maximal nesting is 2

35

{ 1, { 1, 2, 3 }, 3 }

NEXT LECTURE

36

lexical
analysis

syntactic
analysis

semantic
analysis

bytecode
generation

the SimpLan
interpreter

