Paolo Marcellini - Carlo Sbordone

Esercitazioni di Matematica

1° **Volume** parte seconda

Liguori Editore

Pubblicato da Liguori Editore Via Mezzocannone 19, 80134 Napoli

© Liguori Editore, S.r.l., 1988

Pdiritti di traduzione, riproduzione e adattamento totale opparziale sono riservati per tutti i Paesi. Nessuna parte didquesto volume può essere riprodotta, registrata o trasmessa con qualsiasi mezzo: elettronico, elettrostatico, mecanico, fotografico, ottico o magnetico (compresi microfilm, reofiches e copie fotostatiche).

Prin aredizione italiana Aprile 1988

7 6 5 4

95 1994 1993 1992

1993 1992

17 Stille destra indicano il numero e l'anno della issumpa effettuata.

18 Stille destra indicano il numero e l'anno della issumpa effettuata.

INDICE

Capitolo 1 APPLICAZIONI DEL CALCOLO DIFFERENZIALE		
1A. Funzioni crescenti o decrescenti 1B. Massimi e minimi	pag.	9
1C. Concavità, convessità, flessi	"	22
1D. Funzioni convesse in un intervallo 1E. Verifica di disuguaglianze con l'uso	"	2 7
delle derivate	**	33
1F. Applicazioni della formula di Taylor	**	41
Capitolo 2 GRAFICI DI FUNZIONI		
2A. Insiemi di definizione	"	47
2B. Asintoti	**	51
2C. Schema per lo studio del grafico di		
una funzione	**	61
2D. Grafici di funzioni razionali	**	64 `
2E. Grafici di funzioni irrazionali	**	83
2F. Grafici di funzioni logaritmiche	"	92
2G. Grafici di funzioni esponenziali	"	106 -
2H. Grafici di funzioni trigonometriche	",	123

٠,

, 'a

EQUAZIONI ALGEBRICHE E TRASCENDENTI		
3A. Esistenza delle soluzioni 3B. Radici reali dell'equazione di terzo grado	pag	
3C. L'algoritmo di Newton	,,	161
3D. Valutazione numerica delle soluzioni	"	164
	"	171
Capitolo 4 INTEGRALI INDEFINITI		
4A. Integrali indefiniti immediati 4B. Integrazione per semplici trasformazi <u>o</u> ni dell'integrando	"	176
4C. Integrazione per decomposizione in som		180
4D. Integrazione per parti	11	188
4E. Integrazione della	**	199
4E. Integrazione delle funzioni razionali	11	208
4F. Integrazione per sostituzione 4G. Integrazione di alcune funzioni irra- zionali	*1	218
4H. Integrazione di alcune funzioni tra- scendenti	"	227
4I. Esercizi di riepilogo	"	234
al lichlingo	"	241
Capitolo 5 INTEGRALI DEFINITI		
5A. Integrazione definita elementare	;,	
our caredio di integrali definit:		247
oc. Appricazioni al problema della ancienti	"	255
5D. Integrali impropri		266
* · F	"	272
·		

5E. Funzioni integrali 5F. Disuguaglianze integrali	pag.	286 292
Capitolo 6 SERIE NUMERĪCHĒ		
A. Generalità sulle serie numeriche B. Serie a termini non negativi	"	298 305
C. Serie alternate	**	315
D. Serie assolutamente convergenti E. Criterio degli integrali	"	318

Capitolo 1

APPLICAZIONI DEL CALCOLO DIFFERENZIALE

M. Funzioni crescenti o decrescenti

Una funzione f(x) è monotòna in un intervallo $\ \ I$ se, per ogni $x_1,x_2 \in I,$ risulta verificata una delle relazioni seguenti:

- $f\left(\mathbf{x}\right) \ \ \textit{strettamente crescente:} \ \ \mathbf{x_{1}} < \mathbf{x_{2}} \ \Longrightarrow \ \ f\left(\mathbf{x_{1}}\right) < f\left(\mathbf{x_{2}}\right)$
- $f\left(\mathbf{x}\right) \ \ \textit{crescente} \ : \\ \qquad \qquad \mathbf{x_{1}} < \mathbf{x_{2}} \ \Longrightarrow \ f\left(\mathbf{x_{1}}\right) \leq f\left(\mathbf{x_{2}}\right)$
- $f\left(\mathbf{x}\right) \ \ \textit{strettamente decrescente:} \ \mathbf{x_{1}} < \ \mathbf{x_{2}} \ \Longrightarrow \ \ f\left(\mathbf{x_{1}}\right) > \ f\left(\mathbf{x_{2}}\right)$
- f(x) decrescente:

 $x_1 < x_2 \implies f(x_1) \ge f(x_2)$.

Si dice che f(x) è strettamente monotòna in I, se essa è strettamente crescente, oppure se è stretta - mente decrescente in I.

Il seguente criterio, basato sul segno della derivata prima, è molto utile per stabilire se una data funzione è monotòna in un intervallo: sia f(x) una funzione continua in [a,b] e derivabile in (a,b). Allo ra,

- $\text{se} \quad f'(x) \underline{>} 0 \,, \; \forall \, x \, \varepsilon \, (a,b) \quad \Longrightarrow \quad f \; \text{è crescente in } \; [\, a,b \,] \,;$
- se f'(x)>0, $\forall x \in (a,b)$ => f è strettamente crescente in [a,b];

se $f'(x) \le 0$, $\forall x \in (a,b) \Rightarrow f$ è decrescente in [a,b];

se f'(x)<0, $\forall x \in (a,b) =$ f è strettamente decrescente in [ab].

 $\bigvee_{\text{tamente crescente su R.}} 1 \text{ Verificare che la funzione } f(x) = x(x^2+1) e \text{ stre} \underline{t}$

. La derivata f'(x) = $3x^2 + 1$ è positiva per ogni $x \in R$. Quindi f(x) è strettamente crescente su tutto l'asse reale]

Verificare che la funzione $f(x)=x^4$ è strettamente crescente per $x \ge 0$, ed è strettamente decrescente per $x \le 0$.

[La derivata f'(x)=4x 3 è positiva per x > 0 ed è negativa per x < 0]

Verificare che, per $n=1,2,3,\ldots$, la funzione $f(x)=x^n$ è strettamente crescente su R se n è dispari, mentre è strettamente crescente solo per $x\geq 0$ se n è pari.

[Se n è dispari allora n-l è pari; in questo caso la derivata f'(x) = $= nx^{n-1}$ è positiva per ogni $x \neq 0$ (se n \neq 1). Se invece n è pari, allora n-l è dispari e quindi f'(x) $\gtrless 0$ se $x \gtrless 0$]

4 Sì consideri la funzione f(x)=ax²+bx+c, con a≠0.

- (a) Se a > 0 allora f(x) è crescente (strettamente) per x > b/(2a).
- (b) Se a < 0 allora f(x) è crescente (strettamente) per x < -b/(2a).
- (c) Interpretare geometricamente i risultati di
 (a), (b) considerando la parabola di equazio
 ne y=ax²+bx+c.

[Se a \gtrless 0, la derivata f'(x)=2ax+b è positiva per x \gtrless -b/(2a)]

Determinare glì intervalli in cui le seguenti

/funzioni risultano crescenti o decrescenti:

(a)
$$f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$$

(b)
$$f(x) = \frac{\sqrt{x-1}}{x}$$

[(a) Crescente per $x \ge 1$, decrescente in (0,1]; (b) crescente nell'intervallo [1,2] , decrescente per x > 2]

Determinare gli intervalli in cui le seguenti fum zioni risultano crescenti o decrescenti

(a)
$$f(x)=x^3(x-2)$$

(b)
$$f(x) = (x^2 + 2x + 3)^7$$

[(a) La derivata $f'(x)=2x^2$ (2x-3) si annulla per x=0 e x=3/2, ed è positiva per x>3/2. La funzione f(x), essendo strettamente decrescente in $(-\infty,0]$ e [0,3/2], è quindi strettamente decrescente nell'intervallo $(-\infty,3/2]$, ed è strettamente crescente in [$3/2,+\infty$); (b) risulta f'(x)=14 (x^2+2x+3)6 (x+1). La derivata è positiva per x>-1 (in fatti il trinomio x^2+2x+3 non si annulla). La funzione f(x) è quindi (strettamente) crescente per $x \ge -1$, ed è decrescente altrimenti]

1. Determinare gli intervalli di monotonia delle fim

(a)
$$f(x) = \frac{x}{1-x^2}$$

(b)
$$f(x) = \frac{2+x}{4+x^2}$$

[(a) Risulta f'(x)=(1+x²)/(1-x²)². La derivata, quando esiste, è positiva. Perciò f(x) è crescente negli intervalli (-∞,-1), (-1,1), (1,+∞); (b) la funzione f(x) è crescente per $2-\sqrt{8} \le x \le 2+\sqrt{8}$, ed è decrescente altrimentì]

Determinare gli intervalli di monotonia delle fuf n

(a)
$$f(x) = e^{x^2}$$

(b)
$$f(x) = e^{-x^2}$$

(c)
$$f(x) = e^x/x$$

(d)
$$f(x) = x e^{-x}$$

[(a) f(x) è decrescente in $(-\infty,0]$, crescente in $[0,+\infty)$; (b) f(x) è crescente in $(-\infty,0]$ decrescente in $[0,+\infty)$;

(b) f(x) è crescente in $(-\infty,0]$, decrescente in $[0,+\infty)$; (c) f(x) è decrescente in $(-\infty,0)$ e (0,1], crescente in $[1,+\infty)$; (d) f(x) è crescente in $(-\infty,1]$, decrescente in $[1,+\infty)$

Determinare gli intervalli di monotonia delle funzioni

$$f(x) = \log x - x$$

$$f(x) = (\log x)/x$$

[(a) La funzione f(x) è crescente in (0,1], decrescente in [1,+ ∞); (b) la funzione f(x) è crescente in (0,e], decrescente in [e,+ ∞)]

1.10 Determinare gli intervalli di monotonia delle fu $\underline{\mathbf{n}}$ zioni

$$f(x) = \sin^2 x$$

(b)
$$f(x)=2 \operatorname{sen} x + \operatorname{sen} 2x$$

[(a) La derivata vale f'(x) = 2sen x cos x = sen 2x. La funzione risulta crescente negli intervalli [$k\pi$, $\pi/2 + k\pi$], $\forall k \in Z$, ed è decrescente altrimenti; (b) la funzione è decrescente negli intervalli [$\pi/3 + 2k\pi$, (5/3) $\pi + 2k\pi$], $\forall k \in Z$, ed è crescente altrimenti]

1 Sia f(x) una funzione pari, cioè tale che f(x) = f(-x) per ogni $x \in R$. E' possibile che f(x) sia crescente in un intorno del punto x_0 =0? E' possibile che f(x) sia strettamente crescente in un intorno di x_0 =0?

[Supponiamo che esista $\delta>0$ per cui f(x) risulti crescente nell'intorno (- δ , δ) del punto $x_o^{=0}$. Fissiamo $x_1\in(0,\ \delta)$; essendo $-x_1<0< x_1, r\underline{t}$ sulta quindi

$$f(-x_1) \le f(0) \le f(x_1).$$

Inoltre, dato che f(x) è una funzione pari, risulta anche f(x₁)=f(-x₁). Otteniamo quindi f(-x₁)=f(0)=f(x₁), \forall x₁ \in (0, δ). Perciò, se f(x) è crescente in (- δ , δ), allora è necessariamente costante in tale intervallo. Inoltre, per lo stesso motivo, non esiste una funzione pari e strettamente crescente in un intorno di x₀=0]

1B. Massimi e minimi

Sia f(x) una funzione definita in un insieme I. Un punto $x_o \in I$ è di massimo relativo per f(x) nell'in sieme I se esiste $\delta > 0$ per cui

$$f(x_{\circ}) \, \geq \, f(x) \, , \quad \forall \, x \, \epsilon \, I \; : \; \left| \, x \, {}^{-} x_{\circ} \, \right| < \, \delta \, . \label{eq:force_force}$$

Analogamente, x $_{\circ}$ è un punto di minimo relativo per f(x) nell'insieme I se esiste δ > 0 tale che

$$f(x_o) \le f(x), \forall x \in I : |x-x_o| < \delta.$$

Se le disuguaglianze sopra scritte valgono non soltanto in un intorno di x_{\circ} , ma per ogni $x \in I$, allora si dice che x_{\circ} è un punto di massimo, o di minimo, assoluto. Più precisamente, $x_{\circ} \in I$ è un punto di massimo assoluto per f(x) nell'insieme I se

$$f(x_o) \ge f(x), \forall x \in I.$$

Un punto $x_{\sigma} \varepsilon \, I$ si dice di minimo assoluto per $\mathtt{f}(x)$ in I se

$$f(x_o) \le f(x), \forall x \in I.$$

Da notare che ogni massimo o minimo assoluto per una funzione f(x) in un insieme I è anche un massimo o minimo relativo. Infine, se x_o è un punto di massimo (o di minimo) assoluto, allora il corrispondente valo re $f(x_o)$ si dice massimo (o minimo) di f(x) nell'in sieme I.

Il seguente criterio è utile per la ricerca dei punti di massimo o di minimo relativo per una funzio ne f(x) in un intervallo aperto: Se $x_o \in (a,b)$ è un punto di massimo o di minimo (relativo) per f(x) nell'intervallo (a,b), e se f(x) è derivabile in x_o , allora $f'(x_o)=0$.

Perciò, per trovare i punti di massimo o di minimo relativo di una funzione derivabile f(x), si determinano in primo luogo i punti x_o che risolvono la equazione $f'(x_o)=0$.

Successivamente, l'analisi della monotonia di f(x), come proposto nel paragrafo precedente, è uti-

le per stabilire se un dato punto \textbf{x}_{\circ} è di massimo $% \left(\mathbf{x}_{\circ}\right) =\mathbf{x}_{\circ}$ o di minimo relativo per $f\left(\mathbf{x}\right) .$

Ad esempio, se $f(x)=x^{10}$, risulta $f'(x)=10x^9$; quind di f'(x)=0 per x=0, f'(x)>0 per x>0, f'(x)<0 per x<0. La funzione f(x) risulta crescente per $x\geq0$, decrescente per $x\leq0$. Perciò il punto $x_o=0$ è di minimo (relativo e assoluto) per la funzione $f(x)=x^{10}$ nell'insieme R.

Un altro criterio per stabilire se un punto x_o , per cui f' (x_o) =0, sia di massimo o di minimo relativo per una funzione derivabile due volte, è il seguente:

 $\begin{array}{lll} f^{\,\prime}(x_{\circ}) = 0 \,, & & \\ & \\ \vdots^{\,\prime}(x_{\circ}) > 0 & => & x_{\circ} & \text{punto di minimo relativo;} \\ f^{\,\prime}(x_{\circ}) = 0 \,, & f^{\prime\prime}(x_{\circ}) < 0 & => & x_{\circ} & \text{punto di massimo relativo.} \end{array}$

Se poi $f''(x_o)=0$, risulta valido il seguente schema (per i punti di flesso si veda il paragrafo seguen te):

$$\begin{array}{c} f^{*}(x_{_{0}})\text{=}0\text{:} \begin{cases} f^{*}(x_{_{0}}) > 0 & x_{_{0}} \text{ minimo relativo} \\ f^{*}(x_{_{0}}) < 0 & x_{_{0}} \text{ massimo relativo} \end{cases} \\ f^{*}(x_{_{0}}) = 0 \text{:} \begin{cases} f^{(3)}(x_{_{0}})\text{>}0 & x_{_{0}} \text{ punto di flesso} \\ f^{(3)}(x_{_{0}})\text{<}0 & x_{_{0}} \text{ punto di flesso} \end{cases} \\ f^{(3)}(x_{_{0}})\text{=}0 \text{:} \begin{cases} f^{(4)}(x_{_{0}})\text{>}0 & x_{_{0}} \text{ minimo relativo} \\ f^{(4)}(x_{_{0}})\text{=}0 & x_{_{0}} \text{ massimo relativo} \end{cases} \\ f^{(4)}(x_{_{0}})\text{=}0 \text{:} \begin{cases} \dots \\ \dots \end{cases} \\ \vdots \\ \dots \end{cases}$$

Ad esempio, per la funzione $f(x) = x^{10}$ consider<u>a</u> ta in precedenza, risulta

$$f'(0) = f''(0) = \dots = f^{(9)}(0) = 0, \quad f^{(10)}(0) = 10! > 0.$$

In base allo schema proposto, si può di nuovo concl \underline{u} dere che il punto x_\circ =0 è di minimo per f(x) su R.

1.12 Determinare i punti di massimo e di minimo ${\rm rel}\underline{a}$ tivo della funzione $f(x)=4x^3-5x^2+2x-3$ nell'in sieme dei numeri reali.

[La derivata f'(x)=2(6x²-5x+1) si annulla in corrispondenza dei valori x_1=1/3, x_2=1/2. Per stabilire se x_1, x_2 sono punti di massimo o di minimo per f(x), si può procedere in due modi. Il primo metodo consiste nello stabilire gli intervalli di monotonia di f(x), in base al segno della derivata prima. Risulta 6x²-5x+1 > 0 all' esterno dell'intervallo [1/3, 1/2]; perciò f(x) è crescente negli interval li (- $^{\infty}$, 1/3] e [1/2, + $^{\infty}$) ed è decrescente altrimenti (si veda lo schema in figura 1.1).

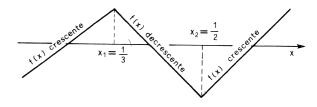


figura 1.1

Con l'aiuto dello schema in figura 1.1 possiamo affermare — che x $_1$ = 1/3 è un punto di massimo relativo, x $_2$ = 1/2 è un punto di min<u>i</u> mo relativo.

Il secondo metodo è basato sul segno della derivata seconda in corrispondenza di x=x1, x=x2. Risulta f"(x)=2(12x-5); essendo f"(1/3)=-2 < 0, il punto x 1 è di massimo relativo; essendo f"(1/2)= = 2 > 0, il punto x2 è di minimo relativo]

13 Determinare i punti di massimo e di minimo rela

tivo della funzione $f(x) = x(x^2-3x+3)$.

La derivata $f'(x) = 3(x-1)^2$ si annulla per x=1. Dato che f'(x)>0 per ogni x # 1, ka funzione f(x) è strettamente crescente su tutto R;quindi, il punto x=1 non è nè di massimo, nè di minimo. Si noti che, essen do f''(x)=6(x-1), $f^{(3)}(x)=6$, risulta f''(1)=0, $f^{(3)}(1)=6>0$. Perciò, in base allo schema proposto in precedenza, il punto x=1 è di flesso per f(x)

174 Determinare i punti di massimo e di minimo relativo delle seguenti funzioni

 $f(x) = x^3 - 3x^2 + 1$ $f(x) = x^3 (3x^2 - 15x + 20)$ $[(a) x_1 = 0 \text{ è di massimo relativo}, x_2 = 2 \text{ è di minimo relativo};$ (b) risulta $f'(x)=15x^2$ (x^2-4x+4)=15 $x^2(x-2)^2 \ge 0$ per ogni x; f(x) è crescente su R e non ammette punti di massimo o di minimo (mentre \mathbf{x}_1 = = 0, x₂ = 2 sono punti di flesso)]

1.15 Determinare i punti di massimo e di minimo relativo ed assoluto delle seguenti funzioni nel loro insieme di definizione.

(a) $f(x) = x^{3/2} - 3x^{1/2}$

(b) $f(x) = x + x^{2/3}$

[(a) La funzione f(x) è definita per x \geq 0 ed è derivabile per x > 0.L \underline{i} mitatamente alle x > 0, la derivata f'(x) si annulla per $x_o=1$, è nega tiva in (0,1), è positiva in (1,+ ∞). Perciò f(x) è decrescente in [0,1] ed è crescente in $[1,+\infty)$. Il punto $x_0=1$ è di minimo relativo ed assoluto. Infine, il punto x=0, dove f(x) non è derivabile, è di mass \underline{i} mo relativo; (b) la funzione f(x) è definita e continua su R ed è $\text{der}\underline{\underline{\textbf{i}}}$ vabile per x # 0. Ha un massimo relativo per x=-27/8 ed un minimo rela tivo per x = 0. Non ha nè massimo, nè minimo assoluto,perchè lim f(x)= = ±∞7

 $1\chi16$ Determinare i punti di massimo e di minimo relativo della funzione $f(x)=x^{-2}e^x$. Determinare ino 1 tre il massimo ed il minimo assoluto, se esistono, di f(x) nel suo insieme di definizione.

[La funzione è definita per x \neq 0. La derivata prima si annulla nel pun to $x_0=2$, che risulta di minimo relativo per f(x). Non ci sono punti

di massimo relativo. Inoltre x =2 non è un punto di minimo asseluto perchè $f(x_o)=e^{-2}/4>0$, mentre $f(x)\to 0$ per $x\to -\infty$; quindi esistono numeri reali x per cui $f(x) < f(x_0)$. La funzione non ammette nè massimo, nè minimo assoluto nel suo insieme di definizione (e risulta inf f(x)=0, sup $f(x)=+\infty$)

127 Determinare i punti di massimo e di minimo rela tivo ed assoluto delle seguenti funzioni

 $f(x) = x \log^2 x$

 $() f(x) = \log (\sqrt{x} - x)$

[(a) La funzione è definita per x > 0. La derivata prima si annulla per $x_1 = e^{-2}$, che è un punto di massimo relativo, e $x_2 = 1$, che è di minimo. Inoltre, essendo x > 0, risulta $f(x)=x \log^2 x \ge 0=f(1)$; quindi il punto x_2 = 1 è di minimo assoluto. Invece il massimo di f(x) , per x > 0, non esiste, dato che $f(x) \rightarrow +\infty$ per x $\rightarrow +\infty$; (b) è defin<u>i</u> ta in (0,1), assume massimo assoluto (=log (1/4)) per x=1/4, è illimitata inferiormente

1x18 Determinare i punti di massimo e di minimo rela tivo ed assoluto della funzione f(x)=log sen x, nel suo insieme di definizione.

> [I punti $x=\pi$ /2+2kT, con k \in Z, sono di massimo relativo ed assoluto per f(x). Il massimo vale O. Non ci sono punti di minimo e l'estremo inferiore vale $-\infty$]

 \langle 19 Determinare i punti di massimo e di minimo rel ${ ilde a}$ tivo ed assoluto delle funzioni definite su R

(b) f(x) = 2|x| - |x-1|(a) f(x) = |x+3|

[(a) la funzione f(x) è definita e continua per ogni $x \in R$, ed è derivabile per ogni x # - 3. Dove la derivata esiste, essa vale +1, oppu re -1, e pertanto non si annulla mai. Quindi f(x) non ha punti di massimo o di minimo diversi da $x_0=-3$. Dato che $f(x)=|x+3| \ge 0=f(-3)$, il punto x =-3 è di minimo assoluto.

(b) Ricordando la definizione di valore assoluto, si trova che

$$f(x) = \left\{ \begin{array}{lll} x + 1 & , & \text{se} & x \geq 1 \\ 3x - 1 & , & \text{se} & 0 < x < 1 \\ -x - 1 & , & \text{se} & x \leq 0 \end{array} \right.$$

In figura 1.2 è riportato il grafico di f(x). Il punto x_o =0 è di minimo assoluto, ed il valore minimo vale f(0)=-1]

f(x)=2 | x | - | x-1 |

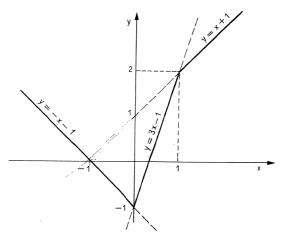


figura 1.2

1. Determinare su R i punti di massimo e di minimo relativo della funzione

$$f(x) = \frac{x^3}{3} - \operatorname{sen} x + x \cos x .$$

[La derivata vale f'(x) = x(x-sen x). Dato che | sen x | < | x | per ogni x \neq 0, la derivata si annulla solo nel punto x =0. Risulta inoltre

$$f'(x_o)=f''(x_o)=f^{(3)}(x_o)=f^{(4)}(x_o)=0$$
, $f^{(5)}(x_o)=4$.

Perciò f(x) non ha nè massimi nè minimi su R]

1.21 Si consideri la funzione f(x) dell'esercizio precedente. Scrivere la formula di Taylor di f(x) (con il metodo del paragrafo 11C della parte prima) e dedurne che la prima derivata non nulla nel punto $x_o=0$ è la derivata quinta.

[Utilizziamo gli sviluppi in formula di Taylor di sen x, cos x:

$$\begin{split} & \text{sen } x = x - \frac{x^3}{6} + \frac{x^5}{5!} + o(x^5); \quad x \text{ cox } x = x(1 - \frac{x^2}{2} + \frac{x^4}{4!} + o(x^4)). \\ & f(x) = \frac{x^3}{3} - \text{sen } x + x \text{ cos } x = x^3(\frac{1}{3} + \frac{1}{6} - \frac{1}{2}) - \frac{x^5}{5!} + \frac{x^4}{4!} + o(x^5) \\ & = 0 \cdot x^3 + \frac{1}{5!} (-1 + 5) x^5 + o(x^5) = \frac{4}{5!} x^5 + o(x^5). \end{aligned}$$

Abbiamo perciò trovato lo sviluppo in formula di Taylor di $f(x)=f(0)+f'(0)x+\ldots+(f^{\binom{5}{0}}(0)/5!)x^5+o(x^5)$. Confrontando i coefficienti, ne deduciamo che $f(0)=f'(0)=\ldots=f^{\binom{4}{0}}(0)=0$, $f^{\binom{5}{0}}(0)=4$]

1.22 Traendo spunto dalla funzione dell' esercizio 1.20, si consideri una funzione f(x) derivabile su R e tale che

$$f'(x) = 0 \iff x = x_0, \lim_{x \to \pm \infty} f(x) = \pm \infty.$$

Dimostrare che il punto x_o non può essere nè di massimo, nè di minimo, per f(x).

[Supponiamo per assurdo che x_o sia un punto di minimo relativo per f(x) (il caso x_o , punto di massimo, si tratta in modo analogo). La funzione f(x) non può essere costante in un intorno di x_o , perchè al trimenti la derivata f'(x) non si annullerebbe solo in x_o . Esiste quindi un punto $x_1 < x_o$ tale $f(x_1) > f(x_o)$ (si veda la figura 1.3).

figura 1.3

Essendo $f(x_1) > f(x_o)$ e $\lim_{x \to -\infty} f(x) = -\infty$, per il teorema dell'esisten za dei valori intermedi, esiste $x_2 < x_1$ per cui $f(x_2) = f(x_o)$. Per il teorema di Rolle, esiste un punto $\xi \in (x_2, x_1)$ tale che $f'(\xi) = 0$. Ciò contrasta con l'ipotesi che la derivata si annulla solo per $x = x_o$

- 1.23 Siano a>0, p>1. Determinare il minimo della funzione definita per x>0 da $f(x)=x^p-ax$. [Essendo $f'(x)=px^{p-1}-a$, si ha $f'(x)

 0 se e solo se <math>x^{p-1}

 0 a/p$, cioè $x

 0 (a/p)^{1/(p-1)}$. Pertanto il punto $x_o = (a/p)^{1/(p-1)}$ è di minimo assolu to ed il valore minimo è $f(x_o) = (1-p)(a/p)^{p/(p-1)}$]
- 1.24 Sia a>0. Consideriamo il triangolo T:

 $T=\{\,(x,y)\colon \ x\ge 0\,,\quad y\ge 0\,,\quad x+y\le a\,\}\,,$ che è rappresentato in figura 1.4. Dimostrare

che, fra tutti i rettangoli con lati paralleli agli assi contenuti in T, quello di area mass \underline{i} ma è il quadrato di lato a/2.

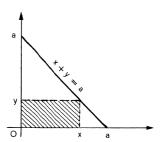


figura 1.4

[Evidentemente il vertice opposto all'origine 0 del rettangolo di area massima giace sulla retta di equazione x+y=a. Indicata con x la lunghezza del lato orizzontale di uno generico di tali rettangoli, il lato verticale avrà lunghezza y=a-x. L'area A(x) del rettangolo è pex ciò A(x)=xy=x(a-x).

Occorre trovare il massimo assoluto della funzione A(x), per $x \in [0,a]$. Si verifica facilmente che la derivata $A^{i}(x)$ si annulia nel punto $x_{o}=a/2$. Essendo $A^{i}(x)=-2<0$ per ogni x, il punto $x_{o}=a/2$ è di massimo relativo. Il massimo assoluto può essere assunto in x_{o} , op pure agli estremi dell'intervallo $\left[0,a\right]$. Dato che A(0)=A(a)=0, $A(a/2)=a^{2}/4$, il punto $x_{o}=a/2$ è di massimo assoluto, mentre i punti $x_{o}=a/2$ a sono di minimo assoluto per la funzione A(x) nell'intervallo $\left[0,a\right]$ (si confronti con l'esercizio 10.32 della parte prima)

1.25 Sia p > 0. Dimostrare che fra tutti i rettangoli di perimetro p, quelli di area massima sono i quadrati di lato p/4.

[Siano x,y le lunghezze dei lati di un rettangolo di perimetro p. Allora 2x+2y=p, cioè x+y=p/2. L'area A(x) di un tale rettangolo vale A(x) = xy = x (p/2-x). Analogamente all'esercizio precedente,il massi mo assoluto della funzione A(x) nell'intervallo [0,p/2] si ottiene [-pex x=p/4]

1.26 Sia A > 0. Dimostrare che, fra tutti i rettangoli di area A, quelli di perimetro minimo sono i quadrati di lato \sqrt{A} .

[Siano x,y le lunghezze dei lati di un generico rettangolo di area A.Allora è xy=A, cioè y=A/x.

Il perimetro p(x) di un tale rettangolo è perciò

$$p(x) = 2(x+A/x), x > 0.$$

La funzione è derivabile per x>0 e si ha p'(x)=2(1-A/x²). La derivata si annulla per $x=x_o=\sqrt{A}$, è positiva se x>x_o, è negativa se 0<x<x_o.Il punto x_o è di minimo relativo per p(x). Dato che p(x) $\to +\infty$ per x $\to 0^+$ e per x $\to +\infty$, la funzione p(x) ha minimo assoluto per $x=\sqrt{A}$

10. Concavità, convessità, flessi

Le definizioni di funzioni convesse o concave in un intervallo sono riportate nel paragrafo seguente. Qui ci limitiamo a ricordare il criterio basato sulla derivata seconda: Se f(x) è una funzione derivabile due volte in un intervallo [a,b], si ha:

$$\begin{array}{lll} f''(x) \geq 0 \,, & \forall \, x \, \epsilon \, (a \,, b) & \Longrightarrow & f \, \stackrel{\text{\dot{e} convessa in } [a \,, b]}{}; \\ f''(x) \leq \, 0 \,, \, \forall \, x \, \epsilon \, (a \,, b) & \Longrightarrow & f \, \stackrel{\text{\dot{e} concava in } [a \,, b]}{}. \end{array}$$

Se esiste δ > 0 per cui vale una delle due poss \underline{i} bilità:

$$\begin{cases} f''(x) < 0, \ \forall x \in (x_{\circ} - \delta, x_{\circ}) \\ f''(x) > 0, \ \forall x \in (x_{\circ}, x_{\circ} + \delta) \end{cases} \text{oppure} \begin{cases} f''(x) > 0, \ \forall x \in (x_{\circ} - \delta, x_{\circ}) \\ f''(x) < 0, \ \forall x \in (x_{\circ}, x_{\circ} + \delta) \end{cases}$$

allora x_o è un punto di flesso per la funzione f(x).

1.27 Determinare gli insiemi di concavità, di convessità e gli eventuali punti di flesso della funzione

$$f(x) = (x+4)^3$$

[La derivata seconda vale f"(x)=6(x+4), è positiva per x>-4, è negativa per x<-4. Perciò f(x) è convessa nell'intervallo [-4,+ ∞) ed è concava nell'intervallo (- ∞ ,-4]. Il punto x_o=-4 è di flesso per f(x)]

1.28 Determinare gli insiemi di concavità, di conve<u>s</u> sità e gli eventuali punti di flesso delle funzioni

(a)
$$f(x)=x$$
 (b) $f(x)=1-4x+3x^2-x^3$

[.(a) La derivata seconda vale f''(x)=90x 8 ed è maggiore od uguale a ze ro per ogni x \in R. Quindi f(x) è convessa su tutto l'asse reale. In particolare il punto $x_o=0$ non è di flesso (ma, come già visto nel pa ragrafo precedente, è un punto di minimo); (b) la derivata seconda va le f''(x)=6(1-x), è positiva per x < 1, è negativa per x > 1. La funzione f(x) risulta convessa nell'intervallo $(-\infty,1]$, risulta concava nell'intervallo $[1,+\infty)$. Il punto $x_o=1$ è di flesso per f(x)]

- 1.29 In base al segno della derivata seconda, verif $\underline{\underline{i}}$ care che:
 - (a) x^2 è una funzione convessa su tutto 1' asse reale.
 - (b) \sqrt{x} è una funzione concava per $x \ge 0$.
 - (c) 1/x è convessa per x > 0, è concava per x < 0.
 - (d) e^{x} è una funzione convessa su tutto $\ 1$ 'asse reale.
 - (e) $\log x$ è una funzione concava per x > 0.
 - (f) sen x è concava in $[k\pi, (k+1)\pi]$, $\forall k \in \mathbb{Z}$.
 - (g) cos x è concava in $[-\pi/2+2k\pi,\pi/2+2k\pi]$, $\forall k \in \mathbb{Z}$. (h) tg x è convessa in $[k\pi,\pi/2+k\pi]$, $\forall k \in \mathbb{Z}$.
 - (i) arctg x è convessa per x \leq 0, concava pe x \geq 0.

1.30 Verificare che la seguente funzione è $\,$ convessa su R:

$$f(x) = \sqrt{1+x^2}$$

[Le derivate prima e seconda valgono:

$$\begin{split} f^{\dagger}(x) &= \frac{d}{dx} \left[\left(1 + x^{2} \right)^{\frac{1}{2}} \right] = \frac{1}{2} \left(1 + x^{2} \right)^{-\frac{1}{2}} \cdot 2x = \left(1 + x^{2} \right)^{-\frac{1}{2}} \cdot x \\ f^{\dagger \dagger}(x) &= - \left(1 + x^{2} \right)^{-\frac{3}{2}} \cdot x^{2} + \left(1 + x^{2} \right)^{-\frac{1}{2}} = \\ &= \frac{1}{\left(1 + x^{2} \right)^{3/2}} \left[- x^{2} + \left(1 + x^{2} \right) \right] = \frac{1}{\left(1 + x^{2} \right)^{3/2}} . \end{split}$$

La derivata seconda è positiva per ogni $x \in R$, quindi f(x) è convessa su tutto l'asse reale

1.31 Studiare la concavità, la convessità ed i flessi della funzione $f(x) = (\log x)^{-1}$.

[La funzione è definita negli intervalli (0,1) e (1,+ ∞). Le derivate prima e seconda valgono

$$f'(x)=-(\log x)^{-2} \cdot \frac{1}{x}$$
; $f''(x) = \frac{2+\log x}{x^2 \log^3 x}$.

La derivata seconda è positiva se il numeratore ed il denominatore hanno lo stesso segno, cioè se $\,$

$$\begin{cases} 2 + \log x > 0 \\ \log x > 0 \end{cases}$$
 oppure
$$\begin{cases} 2 + \log x < 0 \\ \log x < 0 \end{cases}$$

Il primo sistema ha per soluzioni: $\log x > 0$, cioè x > 1, mentre il secondo sistema equivale a $\log x < -2$, cioè $0 < x < e^{-2}$. Perciò la funzione f(x) è convessa negli intervalli $(0,e^{-2})$, $(1,+\infty)$ ed è concava in $(e^{-2},1)$. Il punto $x_o^-e^{-2}$ è di flesso per f(x) (mentre il punto 1 non è di flesso, dato che in tale punto la funzione f(x) non è definita)]

 $1_{\mathbf{X}}32$ Studiare la concavità, la convessità ed i flessi delle funzioni

(a)
$$f(x) = x^4/e^x$$
 (b) $f(x)=x^4e^x$

- [(a) La derivata seconda si annulla nei punti $x_1=0$, $x_2=2$, $x_3=6$. Solo x_2 , x_3 sono punti di flesso, mentre x_1 è un punto di minimo. Inoltre f(x) è convessa negli intervalli $(-\infty,2]$, $\left[6,+\infty\right)$ ed è concava altrimenti; (b) f(x) è convessa negli intervalli $(-\infty,-6]$, $\left[-2,+\infty\right)$ ed è concava altrimenti. II risultato si può ottenere dalla parte (a), scambiando x con -x]
- 1.33 Una funzione definita su R si dice pari se f(x) = f(-x) per ogni $x \in R$. Una funzione si dice dispari se f(-x) = -f(x) per ogni $x \in R$. Supponiamo che f(x) sia una funzione pari derivabile due volte in un intorno del punto $x_0 = 0$. E' possibile che f''(x) > 0 per x > 0 e che f''(x) < 0 per x < 0 (in modo che x_0 risulti un punto di flesso)?

[No, non è possibile. La derivata di una funzione pari è una funzione dispari; infatti, per la regola di derivazione delle funzioni composte, essendo f(x) pari, risulta

$$f'(x) = \frac{d}{dx} f(x) = \frac{d}{dx} f(-x) = -f'(-x)$$
, $\forall x \in R$

Per lo stesso motivo, derivando entrambi i membri della relazione f'(-x)=-f'(x), si trova che la derivata seconda è pari. Perciò la derivata seconda non può avere segni opposti a sinistra ed a destra di $x_o=0$]

1.34 Sia f(x) una funzione dispari, derivabile due volte su R, e tale che f''(x) > 0 per x > 0. Dimostrare che 0 è un punto di flesso per f(x).

[Come nell'esercizio precedente si verifica che la derivata seconda f"(x) è una funzione dispari. Perciò, se f"(x) > 0 per x > 0, allora f"(-x)=-f"(x) < 0 per ogni x > 0, cioè per -x<0. Quindi la derivata seconda ha segni opposti a destra ed a sinistra di x_o =0, che perciò è un punto di flesso]

1.35 Sia f(x) una funzione derivabile due volte nell'intervallo chiuso e limitato [a,b], con a \neq b. Supponiamo che f(a)=f(b) e che f'(a)=f'(b). Dimostrare che la derivata prima si annulla alme-

no due volte in [a,b] e che la derivata $\mbox{ seconda}$ si annulla almeno una volta.

[La derivata seconda si annulla in (a,b), in base al teorema di Rolle applicato alla funzione f'(x). Per dimostrare che la derivata prima si annulla in due punti distinti di [a,b], supponiamo che $f'(a)=f'(b)\neq 0$ (altrimenti non c'è niente da provare).

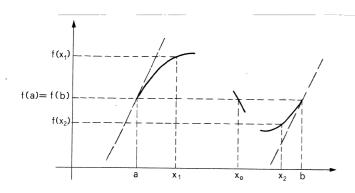


figura 1.5

Se f'(a)=f'(b)>0, come in figura 1.5, esistono x_1 , $x_2\in(a,b)$ tali che $f(x_1)>f(a)$, $f(x_2)< f(b)$; infatti, se per assurdo fosse $f(x)\le f(a)$ per ogni $x\in(a,b)$, risulterebbe anche

$$f'(a) = \lim_{x \to a} \frac{f(x)-f(a)}{x-a} \leq 0.$$

In modo analogo si prova $f(x_2) < f(b)$. Per il teorema dell' esistenza dei valori intermedi, esiste $x_o \in (x_1,x_2)$ tale che $f(x_o) = f(a) = f(b)$. Applicando il teorema di Rolle alla funzione f(x) negli intervalli $\left[a,x_o\right]$, $\left[x_o,b\right]$, si ottiene la tesi $\left[a,x_o\right]$

1.36 Sia f(x) una funzione derivabile tre volte in [a,b]. Dimostrare che, se f(a)=f(b) e f'(a) = =f'(b)=0, esiste in (a,b) almeno un punto in cui si annulla la derivata terza.

[Applichiamo ripetutamente il teorema di Rolle. Esiste $x_1 \in (a,b)$ tale che f' $(x_1)=0$. Esistono poi $x_2 \in (a,x_1)$, $x_3 \in (x_1$,b) per cui f" $(x_2)=-f$ " $(x_3)=0$. Esiste quindi $x_4 \in (x_2,x_3)$ per cui $f^{(3)}(x_4)=0$]

1D. Funzioni convesse in un intervallo

Nei testi di matematica si trovano le seguenti definizioni e criteri di convessità di una funzione f(x) in un intervallo [a,b]:

(1) Una funzione f(x) definita in [a,b] è convessa in tale intervallo se, per ogni $x_1, x_2 \in [a,b]$, risulta

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2), \forall \lambda \in [0,1].$$

(2) Una funzione f(x) derivabile in [a,b] è convessa in tale intervallo se

$$f(x) \ge f(x_o) + f'(x_o)(x-x_o), \quad \forall x, x_o \in [a,b].$$

(3) Una funzione f(x), derivabile due volte in [a,b], convessa in tale intervallo se

$$f''(x) \ge 0$$
, $\forall x \in (a,b)$.

Geometricamente la (1) esprime il fatto che il grafico della funzione y=f(x), nell'intervallo di estremi x_1,x_2 , è al di sotto della retta congiungente i punti di coordinate $(x_1,f(x_1)),\ (x_2,f(x_2))$. La (2) geometricamente esprime il fatto che ogni retta tangente al grafico della funzione y=f(x) è al di sotto di tale grafico. Infine la (3) esprime un criterio a nalitico per verificare se una data funzione è convessa o no.

Se la disuguaglianza in (1) vale con il segno di minore stretto per ogni $x_1 \neq x_2$ e per ogni $\lambda \epsilon(0,1)$,

allora si dice che f(x) è strettamente convessa in [a,b].

1.37 Verificare che la disuguaglianza di convessità in (1) può essere espressa nei modi equivalenti:

(a)
$$f(x) \le f(x_2) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_2)$$

(b)
$$f(x) \le f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1)$$

per ogni x
 $[x_1, x_2]$ e per ogni $x_1, x_2 \in [a,b], x_1 \neq x_2$.

[(a) Ponendo x = $\lambda x_1 + (1-\lambda)x_2$ risulta x-x₂ = λ (x₁-x₂), cioè, se x₁ \neq x₂, λ =(x-x₂)/(x₁-x₂). Dalla disuguaglianza in (1) si ottiene la disuguaglianza equivalente

$$\begin{split} &f(x) \leq f(x_2) + \ \lambda \big[\, f(x_1) - f(x_2) \, \big] = & f(x_2) + \frac{x - x_2}{x_1 - x_2} \, \big[\, f(x_1) - f(x_2) \, \big]. \end{split}$$
 La (b) si prova in modo analogo, scambiando λ con 1- λ , oppure, più

La (b) si prova in modo analogo, scambiando λ con 1- λ , oppure, più velocemente, osservando che il secondo membro della disuguaglianza in (a) è uguale al secondo membro della disuguaglianza in (b)]

1.38 Sia f(x) una funzione definita in [a,b] e conves sa nel senso della definizione (1). Verificare che, per ogni $x_1,x_2 \in [a,b]$ e per ogni t esterno \underline{a} l'intervallo [0,1], risulta

$$f(tx_1+(1-t)x_2) \ge tf(x_1)+(1-t)f(x_2)$$
,

purchè $\operatorname{tx}_1+(1-t)\operatorname{x}_2\in[a,b]$. Geometricamente ciò esprime il fatto che il grafico della funzione y= =f(x), al di fuori dell'intervallo $[\operatorname{x}_1,\operatorname{x}_2]$, è al di sopra della retta congiungente i punti di coordinate $(\operatorname{x}_1,\operatorname{f}(\operatorname{x}_1))$, $(\operatorname{x}_2,\operatorname{f}(\operatorname{x}_2))$.

[Consideriamo t > 1 (il caso t < 0 è analogo). Occorre provare che

$$f(x_1) \le \frac{1}{t} [f(tx_1 + (1-t)x_2) + (t-1)f(x_2)]$$
.

Ponendo λ =1/t, abbiamo 0 < λ < 1 e 1- λ =(t-1)/t. Allora la relazione sopra scritta segue dalla (1) perchè, se definiamo x_1' = tx_1 + (1-t) x_2 , risulta anche x_1 = $\lambda x_1'$ +(1- λ) x_2]

1.39 Verificare che la disuguaglianza di convessita' dell'esercizio precedente può essere espressa nei modi equivalenti ($\forall x, x_1, x_2 \in [a,b], x_1 \neq x_2$):

(a)
$$f(x) \ge f(x_2) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_2), \forall x \notin [x_1, x_2]$$

$$\text{(b) } f(x) \, \geq \, f(x_1) + \, \frac{f(x_2) \cdot f(x_1)}{x_2 \cdot x_1} \, \left(x \cdot x_1 \right), \quad \forall \, x \! \not \in \! [x_1, \! x_2]$$

[Si proceda come nell'esercizio 1.37]

1.40 Verificare che, per una funzione f(x)derivabile
 in [a,b], le definizioni di convessità (1)e (2)
 sono fra loro equivalenti.

[Proviamo preliminarmente che (1) implica (2). Abbiamo già detto che da (1) discendono le disuguaglianze (a), (b) dell'esercizio precedente. Passando al limite per $x_2 \rightarrow x_1$ nella 1.39(b) otteniamo $f(x) \geq f(x_1) + f'(x_1)(x - x_1)$, cioè la (2).

Proviamo ora che (2) implica (1). Fissati x_1 , $x_2 \in [a,b]$ ($x_1 \neq x_2$) e $\lambda \in [0,1]$, consideriamo $x_0 = \lambda x_1 + (1-\lambda) x_2$. Per la (2) risulta

$$f(x_1) \ge f(x_0) + f'(x_0)(x_1 - x_0)$$
; $f(x_2) \ge f(x_0) + f'(x_0)(x_2 - x_0)$.

Moltiplichiamo la prima relazione per $~\lambda~e$ la seconda per 1- $\lambda~-$ e sommiamo le due relazioni:

$$\lambda f(x_1) + (1-\lambda)f(x_2) \ge$$

$$\begin{split} & \geq \lambda \; f(x_o) + \; \lambda \; f'(x_o)(x_1 - x_o) + (1 - \lambda) f(x_o) + (1 - \; \lambda) f'(x_o)(x_2 - x_o) \; = \\ & = & f(x_o) + f'(x_o) \left[\; \lambda (x_1 - x_o) + (1 - \lambda) (x_2 - x_o) \; \; \right]. \end{split}$$

Rimane da provare che la quantità in parentesi quadra è nulla.A tale scopo ricordiamo che, essendo $x_o=\lambda\,x_1+(1-\lambda)x_2$, risulta

1.41 Verificare che, per una funzione f(x)derivabile
 due volte in [a,b], le condizioni di convessità
 (1), (2), (3) sono fra loro equivalenti.

[Come provato nell'esercizio precedente, le definizioni (1), (2) sono fra loro equivalenti. Proviamo che (1) implica (3) e che (3) implica (2).

Cominciamo con (1) \Rightarrow (3): Se $x \in (a,b)$ e $x \pm h \in (a,b)$, poniamo in (1) $x_1 = x+h$, $x_2 = x-h$, $\lambda = 1/2$. Otteniamo

$$\lambda x_1 + (1-\lambda)x_2 = \frac{1}{2}(x+h) + \frac{1}{2}(x-h) = x$$

e la disuguaglianza di convessità diventa

 $f(x) \leq [f(x+h)+f(x-h)]/2$ cioè $f(x+h)+f(x-h)-2f(x) \geq 0$.

Applicando il teorema di L'Hôpital (si noti che deriviamo rispetto $% \left(1\right) =\left(1\right) +\left(1\right)$

$$0 \leq \lim_{\mathbf{h} \to 0} \frac{\mathbf{f}(\mathbf{x} + \mathbf{h}) + \mathbf{f}(\mathbf{x} - \mathbf{h}) - 2\mathbf{f}(\mathbf{x})}{\mathbf{h}^2} = \lim_{\mathbf{h} \to 0} \frac{\mathbf{f}'(\mathbf{x} + \mathbf{h}) - \mathbf{f}'(\mathbf{x} - \mathbf{h})}{2\mathbf{h}} =$$

$$=\frac{1}{2}\left\{\lim_{h\to 0}\frac{\mathbf{f}^\dagger(\mathbf{x}+h)-\mathbf{f}^\dagger(\mathbf{x})}{h}+\lim_{h\to 0}\frac{\mathbf{f}^\dagger(\mathbf{x}-h)-\mathbf{f}^\dagger(\mathbf{x})}{-h}\right\}=\frac{1}{2}\left\{2\mathbf{f}^{\dagger\prime}(\mathbf{x})\right\}=\mathbf{f}^{\prime\prime}(\mathbf{x})$$

Proviamo ora che (3) => (2): Applichiamo il teorema di Lagrange nell'intervallo [x $_{o}$,x], supponendo per semplicità x > x $_{o}$.Esiste un punto x $_{1}$ \in (x $_{o}$,x) per cui

$$f(x) - f(x_o) = f'(x_1)(x-x_o)$$
.

Per ipotesi f"(x) \geq 0 per ogni x \in (a,b). Quindi la derivata prima f'(x) è crescente in [a,b] . Perciò, essendo x₁ > x_o, f'(x₁) \geq f'(x_o) e quindi

$$f(x) = f(x_o) + f'(x_1)(x - x_o) \ge f(x_o) + f'(x_o)(x - x_o) \quad]$$

1.42 Sia f(x) una funzione convessa in [a,b]. Sia $x_o \in [a,b]$. Il rapporto incrementale g(x), definito da

$$g(x) = \frac{f(x) - f(x_o)}{x - x_o}$$

risulta crescente su [a,b] - $\{x_o\}$. Vèrificarlo

nei due casi seguenti:

- (a) f(x) è derivabile in [a,b] e vale la (2);
- (b) f(x) è definita in [a,b] e vale la (1).
- [(a) Se f(x) è derivabile in [a,b] , allora anche g(x) è derivabile per x \neq x $_{o}$ e risulta

$$g'(x) = \frac{f'(x)(x-x_o)-f(x)+f(x_o)}{(x-x_o)^2}$$

Tale derivata è positiva o nulla perchè, scambiando il ruolo di x, x_o nella disuguaglianza di convessità (2), risulta $f(x_o) \geq f(x)+f'(x)(x_o-x)$. Perciò $g'(x) \geq 0$ e g(x) è crescente negli intervalli $\left[a,x_o\right),(x_o,x_o)$]. Inoltre, dato che i limiti destro e sinistro di g(x) sono uguali fra loro (ed entrambi uguali a $f^*(x_o)$), la funzione g(x) è crescente globalmente nell'insieme $\left[a,b\right]-\left\{x_o\right\}$.

(b) Occorre provare che, se $x_1 < x_2$, allora $g(x_1) \le g(x_2)$, cioè

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} \le \frac{f(x_2) - f(x_0)}{x_2 - x_0}.$$

Limitiamoci al caso $\mathbf{x_o} < \mathbf{x_1} < \mathbf{x_2}$. La relazione precedente è equiva -lente a

$$f(x_1) \text{-} f(x_o) \leq \frac{x_1 - x_o}{x_2 - x_o} \ [f(x_2) \text{-} f(x_o) \] \text{=} \lambda [f(x_2) \text{-} f(x_o) \] \text{,}$$

dove si è posto $\lambda=(x_1-x_0)/(x_2-x_0).$ Dato che $x_0< x_1< x_2$, risulta 0 < $\lambda<1.$ Inoltre

$$f(x_1) \le f(x_0) + \lambda [f(x_2) - f(x_0)] = \lambda f(x_2) + (1 - \lambda) f(x_0)$$
.

La tesi segue dalla (1), osservando che x $_1$ = λ x $_2$ +(1- λ)x $_o$]

1.43 Sia f(x) una funzione convessa in un intervallo aperto (a,b). Dimostrare che f(x) è continua in (a,b).

 $\left[\begin{array}{l} \text{Sia x_o} \in (a,b). \text{ In base alla parte (b) dell'esercizio precedente, il rapporto incrementale $g(x)$ è crescente in (a,b). Come tutte le funzioni crescenti, $g(x)$ è limitata in ogni intervallo chiuso $\left[x_1,x_2\right]$ }\subset \subset (a,b); \text{ infatti}$

Scegliamo a $< x_1 < x_0 < x_2 < b$ e calcoliamo

$$\lim_{x\to x_o} f(x) - f(x_o) = \lim_{x\to x_o} \frac{f(x) - f(x_o)}{x^{-x}_o} \, (x - x_o) = \lim_{x\to x_o} g(x) (x - x_o) = 0 \ .$$

Quindi f(x) è continua in x_o. Si noti che l'espressione g(x)(x-x_o) tende a zero per x $^{\Rightarrow}$ x_o, essendo prodotto di una funzione limitata per una che tende a zero. (Una diversa dimostrazione è proposta nell' esercizio 9.28 della parte prima)]

1.44 Sia f(x) una funzione convessa in un intervallo I. Dimostrare che f(x) è continua all ' interno dell'intervallo.

[Evidentemente f(x) è convessa in ogni intervallo aperto (a,b) contenuto in I e quindi, per l'esercizio precedente, è anche continua in (a,b)]

1.45 Mostrare con un esempio che esistono funzioni convesse in intervalli chiusi che non sono continue.

[Ad esempio la funzione definita nell'intervallo [0,1] da f(0)=1 e f(x) = 0 se x \in (0,1] è discontinua per x=0 ed è convessa in [0,1]. Si noti che, in base all'esercizio precedente, una funzione convessa definita in un intervallo chiuso può essere discontinua solo agli estremi dell'intervallo].

1.46 Sia f(x) una funzione convessa in un intervallo
 aperto I. Siano a,b ∈ I, con a < b. Dimostrare che
 f(x) è lipschitziana (si veda la definizione nel
 paragrafo 12C della parte prima) nell'interval lo (a,b).</pre>

[Come nell'esercizio 1.43, i rapporti incrementali

$$\frac{f(x)-f(a)}{x-a}$$
 , $\frac{f(x)-f(b)}{x-b}$

sono limitati in (a,b), cioè esiste un numero L tale che

$$\left| \begin{array}{c} f(x_1) \text{-} f(a) \\ \hline x_1 \text{-} a \end{array} \right| \leq L \ , \qquad \left| \begin{array}{c} f(x_1) \text{-} f(b) \\ \hline x_1 \text{-} b \end{array} \right| \leq L, \quad \forall \ x_1 \in (a,b) \ .$$

Utilizziamo ora il fatto che il rapporto incrementale centrato in $\ \mathbf{x}_{\,\mathbf{1}}$ è crescente, cioè in particolare:

$$\frac{f(a)-f(x_1)}{a-x_1} \le \frac{f(x_2)-f(x_1)}{x_2-x_1} \le \frac{f(b)-f(x_1)}{b-x_1}$$

per a < x_2 < b, con $x_2 \neq x_1$. Dalle relazioni scritte si ottiene

$$\left| \begin{array}{c} \frac{f(x_2) - f(x_1)}{x_2 - x_1} \end{array} \right| \leq L, \quad \forall x_1, x_2 \in (a,b), x_1 \neq x_2.$$

Perciò f(x) è lipschitziana in (a,b)

1E. Verifica di disuguaglianze con l'uso delle derivate

Per provare una disuguaglianza del tipo $f(x) \ge g(x)$, per $x \in [a,b]$, utilizzeremo i criteri esposti negli esercizi che seguono.

1.47 Siano f(x), g(x) due funzioni continue in [a,b] e derivabili in (a,b). Supponendo che f(a) \geq g(a) e che f'(x) \geq g'(x) per ogni x \in (a,b),dimostrare che f(x) \geq g(x) per ogni x \in [a,b].

[Applichiamo il teorema di Lagrange alla funzione f-g nell'intervallo [a,x]: esiste $\xi \in (a,x)$ tale che

$$\left[\begin{array}{cc} f(x)-g(x) \end{array}\right]-\left[\begin{array}{cc} f(a)-g(a) \end{array}\right] = \left[\begin{array}{cc} f'(\xi)-g'(\xi) \end{array}\right](x-a) \quad .$$

Dato che f'(ξ)-g'(ξ) \geq 0, x-a > 0, f(a)-g(a) \geq 0, risulta che f(x) --g(x) \geq 0, come si voleva dimostrare]

1.48 Siano f(x), g(x) due funzioni continue in [a,b] e derivabili in (a,b). Si supponga che f'(x) \geq g'(x) per ogni x ϵ (a,b) e che f(x $_{\circ}$) = g(x $_{\circ}$)per

qualche punto $x_o \in (a,b)$. Dimostrare che:

- (a) $f(x) \ge g(x)$ per ogni $x \in [x_o, b]$;
- (b) $f(x) \leq g(x)$ per ogni $x \in [a, x_0]$.

[Analogamente a come indicato nell'esercizio precedente, si può applicare il teorema di Lagrange alla funzione differenza f-g nell'intervallo di estremi \mathbf{x}_{o} ed \mathbf{x}]

1.49 Siano f(x), g(x) due funzioni derivabili in (a, b) e sia x_o -un punto di (a,b). Dimostrare che vale l'implicazione:

$$f(x_o) = g(x_o)$$

$$f'(x) \ge g'(x), \forall x \in (x_o, b)$$

$$f'(x) \le g'(x), \forall x \in (a, x_o)$$

$$\Rightarrow f(x) \ge g(x),$$

$$\forall x \in (a, b).$$

[Si può utilizzare il teorema di Lagrange, come fatto in precedenza . Oppure si può studiare la funzione differenza h(x)=f(x)-g(x). Essendo h'(x)=f'(x)-g'(x), risulta

$$\label{eq:higher_higher_higher_higher} h^{\, \raisebox{.4ex}{$\scriptscriptstyle \bullet$}}(x) \, \geq \, 0 \quad \text{per} \quad x \in (a_{\, \raisebox{.4ex}{$\scriptscriptstyle \bullet$}} x_{\, \raisebox{.4ex}{$\scriptscriptstyle \bullet$}}) \, .$$

Perciò h(x) è crescente per $x \ge x_o$ ed è decrescente per $x \le x_o$.Quin di x_o è un punto di minimo assoluto per la funzione h(x) nell'inter vallo (a,b), ed il valore minimo è $h(x_o)=f(x_o)-g(x_o)=0$.Risulta quin di $h(x) \ge 0$, cioè $f(x)-g(x) \ge 0$, per ogni $x \in (a,b)$

- 1.50 Dimostrare le disuguaglianze
 - (a) $e^{x} \ge 1+x$, $\forall x \in \mathbb{R}$;
 - (b) $x \ge \log (1+x)$, $\forall x > -1$.

[Si può utilizzare il criterio dell'esercizio precedente, con $x_o=0$. Ad esempio, per la disuguaglianza in (a) poniamo $f(x)=e^X$, g(x)=1+x. Risulta f(0)=g(0)=1 e inoltre $f'(x)=e^X \nmid 1=g'(x)$ se e solo se $x \nmid 0$. In base al criterio dell'esercizio precedente otteniamo $f(x) \geq g(x)$ per ogni $x \in R$.

Per dimostrare (a) si può procedere anche nel modo seguente:la funzione $h(x)=e^{X}-(1+x)$ ha un minimo assoluto per x=0; infatti la derivata $h^{1}(x)=e^{X}-1$ si annulla per x=0; è positiva per x>0, è

negativa per x < 0. Perciò $h(x) \ge h(0)$ = 0, cioè e^{X} -(1+x) \ge 0, per ogni x \in R.

La disuguaglianza in (b) si può dimostrare come fatto per la disuguaglianza in (a). Si noti anche che la (b) segue dalla (a), calco lando il logaritmo in base e di entrambi i membri. Infine (a),(b) si possono interpretare come disuguaglianze di convessità, secondo la definizione (2) del paragrafo precedente, con x $_{\rm o}$ =0 e f(x) data ri spettivamente da e^X oppure -log(1+x)]

-1.51 Verificare che, per ogni x > 0, vale la disugu<u>a</u> glianza

$$\frac{x^2+1}{8} \geq \frac{x^2}{(x+1)^2}$$

[Le derivate di $f(x) = \frac{x^2+1}{8}$, $g(x) = \frac{x^2}{(x+1)^2}$ valgono $f'(x) = \frac{x}{4}$ e

$$g^{\, t}(x) \, = \, \frac{2x(x+1)^{\, 2} \, -2(x+1)x^{\, 2}}{(x+1)^{\, 4}} \, = \, \frac{2x(x+1)^{\, \left[\, (x+1)^{\, 4} \, \right]}}{(x+1)^{\, 4}} \, = \, \frac{2x}{(x+1)^{\, 3}} \, .$$

Per x > 0 risulta $f'(x) \ge g'(x)$ se e solo se

$$(x+1)^3 \geq 8 \iff x+1 \geq 2 \iff x \geq 1$$
.

Essendo f(1)=g(1) = 1/4, la disuguaglianza segue dall'esercizio 1.49. Si può anche procedere direttamente considerando la funzione h(x)=f(x)-g(x). Come in precedenza si verifica che h'(x) si annulla per x=1, h'(x) > 0 per x > 1, h'(x) < 0 se $x \in (0,1)$. Perciò il punto x=1 è di minimo assoluto per h(x) in $(0,+\infty)$. Essendo h(1)=f(1)-g(1)=1/4-1/4=0, risulta $h(x) \ge h(1)=0$ per ogni x > 0, che è quanto si voleva dimostrare]

1.52 Dimostrare che, per ogni x > 0, valgono le dis \underline{u} guaglianze

(a)
$$\frac{(x+1)^2}{x} \ge 4$$

(b)
$$\frac{(x+1)^2}{\sqrt{x}} > 2$$

(c)
$$\frac{x+1}{\sqrt{x}} \ge 2$$

(d)
$$\sqrt{x} \leq \frac{x+1}{2}$$

[(a) La derivata della funzione $f(x)=(x+1)^2/x$ vale $f'(x)=(x^2-1)/x^2$ ed è positiva per x>1, negativa per (0<) x<1. Perciò il punto x=1 è di minimo assoluto per f(x) nell'intervallo $(0,+\infty)$, e risulta $f(x) \ge f(1) = 4$ per ogni x>0. Si noti che, più semplicemente, la disuguaglianza si può provare per via algebrica: Se x>0, $(x+1)^2 \ge 4x$ equivale a $(x-1)^2 \ge 0$, che è sicuramente verificata. (b) La derivata della funzione $f(x)=(x+1)^2/\sqrt{x}$ vale

$$f'(x) = \frac{2(x+1)\sqrt{x} - (1/2\sqrt{x})(x+1)^{2}}{x} = \frac{x+1}{2x\sqrt{x}} \left[4x-(x+1)\right] = \frac{(x+1)(3x-1)}{x}$$

Dal segno della derivata prima si deduce che il punto x=1/3 è di minimo assoluto per f(x) nell'intervallo $(0,+\infty)$. Perciò, per ogni x>0, si ha:

$$f(x) \, \geq \, f\left(\frac{1}{3}\right) = \frac{16\,\,\sqrt{3}}{9} > 2 \quad \text{(infatti } \frac{16\,\,\sqrt{3}}{9} > 2 \iff 8\,\sqrt{3} > 9 \iff 64\cdot 3 > 81)$$

(c) La derivata della funzione $f(x)=(x+1)/\sqrt{x}$ vale $f^+(x)=(x-1)/(2x\sqrt{x})$ e si annulla per x=1, è positiva per x>1, è negativa se 0< x<1. Perciò, il punto x=1 è di minimo assoluto per f(x) nell'intervallo $(0,+\infty)$. Per x>0 risulta quindi $f(x)\geq f(1)=2$. Si noti che la disuguaglianza si può provare per via algebrica: $(x+1)\geq 2\sqrt{x}$ equivale a $(\sqrt{x}-1)^2\geq 0$. La (d) si prova in modo analogo. Infine, si noti che le disuguaglianze (a), (c), (d) sono fra loro equivalenti]

- 1.53 Verificare che, per ogni x > 0, valgono le dis \underline{u} guaglianze
 - (a) $x \log x \ge x 1$

(b)
$$x \log_a x \ge (x-1) \log_a e$$
 (a > 1)

[(a) La derivata della funzione $f(x) = x \log x - (x-1)$ vale $f'(x) = \log x$ e si annulla per x=1, è positiva per x>1, è negativa per $x \in (0,1)$. Il punto x=1 è di minimo assoluto per f(x).Perciò $f(x) \geq f(1)=0$, che è quanto si voleva dimostrare. Si può procedere in mo-

do analogo per provare la (b)]

1.54 Dimostrare che, per x > 0, valgono le disugua-glianze

$$\frac{1}{x+1} < \log (1 + \frac{1}{x}) < \frac{1}{x}$$

[Proponiamo due metodi di dimostrazione. Con il primo proveremo le disuguaglianze con il segno \leq ; poniamo

$$f_1(x) = \frac{1}{x+1}$$
; $f_2(x) = \log(1 + \frac{1}{x})$; $f_3(x) = \frac{1}{x}$.

Le derivate valgono:

$$f'_1(x) = \frac{-1}{(x+1)^2}$$
; $f'_2(x) = \frac{-1}{x(x+1)}$; $f'_3(x) = \frac{-1}{x^2}$.

Dato che 0 < x < x+1, risulta $f_1'(x) > f_2'(x) > f_3'(x)$, $\forall x > 0$. Inoltre essendo $\lim_{x \to +\infty} f_1(x) = \lim_{x \to +\infty} f_2(x) = \lim_{x \to +\infty} f_3(x) = 0$, si ottiene la tesi in modo analogo all'esercizio 1.48(b), o, più precisamente, come indicato nell'esercizio seguente. Il secondo metodo, più semplice, si basa direttamente sul teorema di Lagrange per la funzione log x: Fissato x > 0, esiste $\xi \in (x, x+1)$ tale che

$$\log(x+1) - \log x = \frac{1}{\xi}$$
.

Si ottengono le disuguaglianze enunciate osservando che:

$$\frac{1}{x+1} < \frac{1}{\xi} < \frac{1}{x} \quad , \qquad \qquad \log(1+\frac{1}{y}) = \log(x+1) - \log x \quad]$$

1.55 Siano f(x), g(x) due funzioni derivabili per x>a. Dimostrare che $f(x) \le g(x)$, per ogni x > a, se valgono le due condizioni:

$$f'(x) \ge g'(x)$$
, $\forall x>a$; $\lim_{x\to +\infty} [f(x)-g(x)] = 0$.

[Applichiamo il teorema di Lagrange alla differenza f-g nell'interval-

lo [x,b] , con a < x < b: Esiste $\ \xi \in (x,b)$ per cui $[f(b)-g(b)]-[f(x)-g(x)]=[f'(\xi)-g'(\xi)](b-x)>0.$ Al limite, per $b \rightarrow +\infty$, otteniamo la tesi]

- 1.56 Consideriamo per x > 0 la funzione $f(x) = (1 + \frac{1}{x})^{x}$. Utilizzando le disuguaglianze dell'esercizio 1.54 verificare che:
 - (a) la funzione f(x) è strettamente crescente per
 - (b) per ogni x > 0 risulta f(x) < e.
 - [(a) La derivata della funzione $f(x) = e^{x \log(1 + \frac{1}{x})}$ vale $f'(x) = \frac{1}{x}$

=
$$e^{x \log(1+\frac{1}{x})} \left[\log(1+\frac{1}{x}) - \frac{1}{x+1}\right]$$

ed è strettamente positiva per la disuguaglianza dell'esercizio $1.54\ ;$ (b) la limitazione f(x) < e equivale a log f(x) < log e = 1, cioè

$$\log (1 + \frac{1}{x}) < \frac{1}{x},$$

she è verificata in base all'esercizio 1.54. La limitazione f(x) < e, per x > 0, segue anche dalla precedente parte (a) e dal fatto che f(x)converge ad é, per $x \to +\infty$]

1.57 Siano p,q due numeri reali maggiori di 1 e tali che 1/p + 1/q = 1. Dimostrare che, per ogni coppia x,y di numeri non negativi, si ha

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}$$

 $xy \le \frac{x^p}{p} + \frac{y^q}{q}$. [Fissato $y \ge 0$, consideriamo la funzione $f(x) = \frac{x^p}{p} + \frac{y^q}{q} - xy$, per cui risulta f'(x)= x^{p-1} -y.

Perciò $f'(x) \ge 0$ per $x \ge y^{\frac{1}{p-1}}$ e f(x) assume il suo valore per $x = y^{1/(p-1)}$. Quindi

$$f(x) \geq f \ (y^{\frac{1}{p-1}}) = \frac{1}{p} \ y^{\frac{p}{p-1}} + \frac{1}{q} \ y^q - y^{\frac{1}{p-1} + 1} \ .$$

Si verifica facilmente che gli esponenti sono uguali fra loro, cioè

$$\frac{1}{p-1} + 1 = \frac{p}{p-1} = q$$
 (essendo $\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p}$)

Si ottiene $f(x) \ge 0$ per ogni $x \ge 0$

1.58 Siano a,b due numeri reali. Verificare che

$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$
.

 $\begin{bmatrix} \text{La funzione } f(x) = \frac{x}{1+x} & \text{è (strettamente) crescente per } x \geq 0. \text{ Perciò,} \\ \text{essendo} & \left| a+b \right| \leq \left| a \right| + \left| b \right| \text{, risulta anche } f(\left| a+b \right|) \leq f(\left| a \right| + \left| b \right|) \\ \end{bmatrix}$

$$\leq \frac{\left|a\right|}{1+\left|a\right|} + \frac{\left|b\right|}{1+\left|b\right|}$$

- 1.59 Dimostrare le seguenti disuguaglianze, dette di Bernoulli:
 - (a) $(1+x)^{\alpha} \ge 1+\alpha x$,
- $\forall \alpha > 1, \forall x \geq -1;$
- (b) $(1+x)^{\alpha} \le 1+\alpha x$,
- $\forall \alpha \in (0,1), \forall x > -1.$
- [(a) Si verifica che la funzione definita per x \geq 1 da

$$f(x) = (1+x)^{\alpha} - (1+\alpha x)$$
,

ha il suo minimo assoluto in corrispondenza del punto x=0 e inoltre f(0) = 0; (b) si ricava dalla disuguaglianza in (a) scambiando α con 1/ α e ponendo x= α y. Con tali posizioni la disuguaglianza in (a)

$$(1+\alpha y)^{\frac{1}{\alpha}} = (1+x)^{\frac{1}{\alpha}} \ge 1 + \frac{1}{\alpha} x = 1 + y$$
,

1.60 Per $p \ge 0$ consideriamo la funzione

$$f(x) = x^{p} \log (1+x), x \ge 0.$$

Mediante la disuguaglianza di Bernoulli 1.59(b) verificare che, per ogni $x \ge 0$ e per ogni $\alpha \in (0, 1)$, risulta

$$f(\alpha)f(x) \leq f(\alpha x)$$
.

[Semplificando per la potenza $(\alpha x)^p$, la tesi equivale a

$$\log (1+\alpha) \log (1+x) \le \log (1+\alpha x)$$
.

Utilizzando la relazione $\log(1+\alpha) \le \alpha$ (si veda l'esercizio 1.50(b)) e la disuguaglianza di Bernoulli 1.59(b), otteniamo

log (1+
$$\alpha$$
) log (1+ x) $\leq \alpha$ log (1+ x) =
= log (1+ x) $\propto \log$ (1+ αx)

1.61 Dimostrare che, se p > 1, risulta

$$(x+y)^{p} \le 2^{p-1} (x^{p}+y^{p})$$
, $\forall x,y \ge 0$.

 $\label{eq:continuous} \left[\begin{array}{lll} \text{Se y=0 la disuguaglianza \`e verificata. Altrimenti, se y > 0, divide\underline{n}} \\ \text{do entrambi i membri per y}^p \text{ e ponendo t=x/y, otteniamo} & \text{la disuguaglianza equivalente} \end{array}\right.$

$$\left(\mathtt{t+1}\right)^{p} \leq 2^{p-1} \, \left(\mathtt{t}^{p} + 1\right)$$
 , $\forall \, \mathtt{t} \geq 0$

Si può provare tale disuguaglianza studiando il segno della derivata (rispetto a t) di entrambi i membri e osservando che vale il segno di uguale se t=1 (si vedano i dettagli nell'esercizio 10.41 della parte prima).

Si può anche procedere, più rapidamente, nel seguente modo: la funzione $f(t)=t^{-1}$ è convessa per $t\geq 0$, dato che f''(t)=p(p-1) $t^{p-2}>0$ se t>0. Perciò, in base alla definizione di convessità (si veda la (1) del paragrafo 1D con $\lambda=1/2$) risulta

$$f(\frac{1}{2}x+\frac{1}{2}y) \le \frac{1}{2}f(x) + \frac{1}{2}f(y)$$
, $\forall x,y \ge 0$,

cioè $2^{-p}(x+y)^p \le 2^{-1}(x^p+y^p)$, che equivale a quanto si voleva dimo-

strare]

1F. Applicazioni della formula di Taylor

Ricordiamo la formula di Taylor con il resto di Lagrange: Se f(x) è una funzione derivabile n+1 volte in un intervallo I, per ogni x,x $_{o}$ \in I esiste un punto ξ \in I tale che

$$\begin{split} & \underbrace{f(x)} = f(x_{\circ}) + f^{\dagger}(x_{\circ}) (x - x_{\circ}) + \ldots + \frac{f^{(n)}(x_{\circ})}{n!} (x - x_{\circ})^{n} + \\ & + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_{\circ})^{n+1} = \sum_{k=0}^{n} \frac{f^{(k)}(x_{\circ})}{k!} (x - x_{\circ})^{k} + \\ & + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_{\circ})^{n+1}. \end{split}$$

Nel paragrafo 11C della parte prima è proposto un elenco delle formule di Taylor (con centro $x_o=0$ e con resto di Peano) per alcune funzioni elementari.

Dalla formula di Taylor con il resto di Lagrange si ottiene la seguente stima del resto: sia f(x) una funzione derivabile n+1 volte in un intervallo I e sia M_{n+1}

$$|\mathbf{f}^{(n+1)}(x)| \leq M_{n+1}, \quad \forall x \in I$$

Allora, per ogni x,x₀∈I, si ha

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + R_n(x),$$

$$\textit{dove} \quad \left| R_{n} \left(x \right) \right| \; \leq \; M_{n+1} \; \; \frac{\left| \left. x - x_{\circ} \right| \right|^{n+1}}{\left(n+1 \right) \; !}$$

1.62 Esprimere in forma decimale, con tre cifre $\det\underline{\underline{i}}$ mali esatte, il seno di un radiante.

[Consideriamo la formula di Taylor per la funzione sen \mathbf{x} , con centro

 $\mathbf{x}_{_{\mathbf{0}}}$ = 0 e con x=1. La derivata n-sima vale \pm sen x, oppure \pm cos x , in dipendenza da n (si veda anche l'esercizio 10.25 della parte prima). In ogni caso $\mid \mathbf{f}^{(\mathbf{n})}(\mathbf{x}) \mid \leq 1$ per ogni x \in R. Perciò vale la stima del resto con $\mathsf{M}_{\mathbf{n}+1}$ = 1:

$$\left| R_{n}(x) \right| \leq \left| x-x_{n} \right|^{n+1}/(n+1)!$$

Tenendo conto che x_0^{-0} , x=1, risulta quindi $\prod R_n(1) \le 1/(n+1)!$, Cal coliamo 1/(n+1)! per alcuni valori di n:

n	1	2	3	4	5	6	7
(n+1)!	2	6 ·	24	120	720	5040	40320
1/(n+1)!	0.5	0.16	0.041	0.0083	0.0013	0.00019	0.00002

Dalla tabella risulta in particolare che $\left|R_6\left(1\right)\right| \leq 0.00019... < < 0.0002.$ Perciò, con un errore inferiore a $0.0002 = 2 \cdot 10^{-4}$, sen 1 è uguale al polinomio di Taylor $x - x^3/3! + x^5/5!$ (che è di grado non superiore a 6) calcolato per x = 1:

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} = 1 - \frac{1}{6} + \frac{1}{120} = \frac{120 - 20 + 1}{120} = \frac{101}{120} = 0.84\overline{16}$$
;

perciò sen 1 = 0.8416 ± 0.0002, cioè

0.8414 < sen 1 < 0.8419 .

Quindi sen 1, con tre cifre decimali esatte, è espresso da 0.841..]

1.63 Utilizzando la formula di Taylor, verificare che le prime tre cifre decimali di $\sqrt{2}$ sono 1.414..

[Le derivate prima e seconda di $f(x) = \sqrt{x}$ valgono

$$f'(x) = \frac{1}{2\sqrt{x}}$$
, $f''(x) = -\frac{1}{4}x^{-3/2}$.

Utilizziamo la formula di Taylor al primo ordine per $f(\boldsymbol{x})$ —con $% \boldsymbol{x}$ il

resto di Lagrange: Esiste $\,\xi\,$ nell'intervallo di estremi ${\bf x}_{_{\rm O}}, {\bf x}$ per cui

$$\sqrt{x} = \sqrt{x_o} + \frac{1}{2\sqrt{x_o}} (x-x_o) + \frac{1}{2} (-\frac{1}{4}) \xi^{-3/2} (x-x_o)^2$$
.

Essendo x=2, è opportuno scegliere per x_o un valore vicino a 2, in modo che sia semplice calcolarne la radice quadrata. Ad esemplo, se x_o = (1.4) 2 = 1.96, risulta evidentemente $\sqrt{x_o}$ = 1.4. Essendo 1 < < 1.96 < ξ (<2), il resto di Lagrange verifica le limitazioni

$$0 \ge \frac{1}{2} \left(-\frac{1}{4} \right) \xi^{-3/2} (x - x_o)^2 \ge -\frac{1}{8} \left(x - x_o \right)^2 = -\frac{\left(0.04 \right)^2}{8} = -0.0002;$$
perciò, essendo $\sqrt{x_o} + \frac{1}{2\sqrt{x_o}} \left(x - x_o \right) = 1.4 + \frac{1}{2 \cdot 1.4} \cdot 0.04 = 1.4 + \frac{1}{70} = -0.002;$

= 1.41428..; risulta 1.4142-0.0002 < $\sqrt{2}$ < 1.41428, da cui $\sqrt{2}$ = =1.414..]

1.64 Utilizzando la formula di Taylor, verificare che le prime tre cifre decimali del numero e sono 2.718..

[La derivata n-sima della funzione $f(x)=e^x$ è $f^{(n)}(x)=e^x$; \forall n. In particolare $f^{(n)}(0)=1$, \forall n \in N. In base alla formula di Taylor di centro x_o =0 per la funzione f(x), con x>0, esiste $\xi\in(0,x)$ tale che

$$e^{x} = \sum_{k=0}^{n} \frac{1}{k!} x^{k} + \frac{e^{\xi}}{(n+1)!} x^{n+1}$$
.

Il resto è positivo e, essendo e^X crescente, risulta $e^{\textstyle \frac{\zeta}{\xi}} < e^X. \quad \text{Per } x$ = 1 otteniamo

$$e=1+1+\frac{1}{2}+\frac{1}{3!}+\ldots+\frac{1}{n!} + R_n(1), \text{ con } 0 < R_n(1) < \frac{e}{(n+1)!} < \frac{3}{(n+1)!}$$

Con l'ausilio della tavola dell'esercizio 1.62 per n=6, od anche direttamente, si verifica che 3/7! = 1/1680 < 0.0006, che è quindi una stima dell'errore che si commette nel calcolare il numero e con la somma (n=6):

$$1+1+\frac{1}{2}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}=\frac{1957}{720}=2.71805$$
;

perciò 2.718 < e < 2.7187, da cui e = 2.718..]

1.65 Verificare che, per $x \in (0, \pi/2)$, valgono le disuguaglianze

$$1 - \frac{x^2}{6} < \frac{\text{sen } x}{x} < 1 - \frac{x^2}{6} + \frac{x^4}{120}$$

[Consideriamo la formula di Taylor con il resto di Lagrange per la funzione sen x con centro x_o =0 e x \in (0, π /2). Essendo $f^{(5)}(x)$ =cos x, esiste $\xi \in (0,x)$ per cui

$$sen~x=x-\frac{x^{-3}}{3!}+\frac{\cos~\xi}{5!}~x^5~.$$
 Essendo $~\xi~\in(0,~\pi/2)~risulta~0<\cos~\xi<1. Perciò$

$$x - \frac{x^3}{3!} < \text{sen } x < x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
,

da cui la tesi, dividendo tutti i membri per x

1.66 Verificare che, per ogni $x \in [0, \pi/4]$, si ha

$$0 \le tg x - x \le 2x^2$$
.

[Si può utilizzare la formula di Taylor con il resto di Lagrange per la funzione f(x) = tg x con centro in x_o =0. Esiste $\xi \in (0,x)$ per

$$tg x = x + \frac{1}{2} f''(\xi) x^2$$

 $\mbox{tg } x=x+\frac{1}{2} \; f''(\xi) \; x^2 \;\; .$ La tesi si ottiene osservando che la derivata seconda

$$f''(x) = 2 \frac{\text{sen } x}{(\cos x)^3}$$

è crescente in $[0, \pi/4]$ (infatti sia sen x, che $(\cos x)^{-3}$, sono funzioni positive e crescenti) e quindi

$$0 = f''(0) \le f''(\xi) \le f''(\frac{\pi}{4}) = \frac{2 \operatorname{sen} (\pi/4)}{\cos^3(\pi/4)} = 4 \quad]$$

1.67 Dimostrare che, per ogni $x \in R$, risulta

$$1 - \frac{x^2}{2} - \frac{x^4}{24} \le \cos x \le 1 - \frac{x^2}{2} + \frac{x^4}{24}$$

[Si proceda in modo analogo agli esercizi precedenti, utilizzando la formula di Taylor (con $\mid\xi\mid<\mid x\mid$):

$$\cos x = 1 - \frac{x^2}{2} + \frac{\cos \xi}{4!} x^4$$

1.68 Dimostrare che, per ogni x > 0 e per ogni $\alpha \varepsilon (0$,

$$1+\alpha x+\frac{\alpha (\alpha -1)}{2} x^2 < (1+x)^{\alpha} < 1 + \alpha x$$

[Si utilizzi la formula di Taylor con centro x =0 per la funzione f(x)=(1+x) α e si osservi che, con le ipotesi fatte, risulta α (α --1) \leq $f^{**}(x)$ \leq 0 (si confronti anche con l'esercizio 1.59(b))]

1.69 Dimostrare le seguenti disuguaglianze

(a)
$$log (1+x) > x - x^2/2$$
, $\forall x > 0$;

(b)
$$e^x \ge ex$$
 , $\forall x \in R$

[(a) Utilizziamo la formula di Taylor per la funzione $f(x)=\log (1+x)^{x}$, con x > 0 e $x_0 = 0$. Le derivate prima e seconda valgono

$$f'(x) = 1/(1+x)$$
; $f''(x) = -1/(1+x)^2$.

Perciò
$$f(0)=0$$
, $f'(0)=1$, ed esiste $\xi \in (0,x)$ tale che
$$\log (1+x) = x - \frac{x^2}{2(1+\xi)^2} \times \frac{x^2}{2(1+\xi)^2} \times \frac{x^2}{2(1+\xi)^2}$$

La (a) si ottiene osservando che $1+\xi > 1$, dato che $\xi > 0$. La (b) segue dalla formula di Taylor per la funzione $\mathbf{e}^{\mathbf{X}}$ con centro $x_0=1$, oppure, più semplicemente, dalla convessità della funzione e^X : la funzione e^{x} è al di sopra della sua retta tangente nel punto x=1, che ha equazione y=f(1)+f'(1)(x-1)=ex

1.70 Le seguenti disuguaglianze forniscono una stima

della velocità di convergenza della successione $a_n = (1+1/n)^n$ al suo limite e:

$$0 \ < \ e \ - \ (1+ \ \frac{1}{n})^n \ < \frac{e}{2n} \ < \frac{3}{2n} \quad , \qquad \quad \forall \, n \, \varepsilon N$$

A titolo indicativo, per valutare la stima precedente, riportiamo la seguente tavola per alc $\underline{\mathrm{u}}$ ni valori di n.-

n	a _n	e - a _n	e/2n	3/2n
1	2	0.7182818	1.3591409	1.5
10	2.5937424	0.1245393	0.1359140	0.15
100	2.7048138	0.0134679	0.0135914	0.015
1000	2.7169239	0.0013578	0.0013591	0.0015
10000	2.7181459	0.0001359	0.0001359	0.00015

Dimostrare la stima sopra proposta.

[La disuguaglianza di sinistra (a $_{n}$ < e, $\,\,\forall\,n\in\,\mathbb{N})$ è ben nota (si $\,\,\,$ veda anche l'esercizio 1.56(b)). Con lo scopo di provare le disuguaglianze a destra, effettuiamo la sostituzione 1/n = x e studiamo la fun-

$$f(x) = (1+x)^{1/x} = e^{(1/x)\log(1+x)}$$
 (x > 0)

In base alla (a) dell'esercizio precedente abbiamo

$$\frac{1}{x} \log (1+x) > \frac{1}{x} (x - \frac{x^2}{2}) = 1 - \frac{1}{2} x$$
.

Per la (b) dell'esercizio precedente risulta poi

$$f(x) \, = \, e^{\big(1/x\big)log\big(1+x\big)} \, \geq \, e \, \frac{1}{x} \, \log \, \left(1+x\right) \, > \, e \, \left(1\, -\, \frac{1}{2} \, x\right) \, \, .$$

Perciò, ponendo di nuovo x=1/n e ricordando che e < 3, abbiamo

$$e-(1+\frac{1}{n})^n = e-f(\frac{1}{n}) < e - e(1-\frac{1}{2n}) = \frac{e}{2n} < \frac{3}{2n}$$

Capitolo 2

GRAFICI DI FUNZIONI

2A. Insiemi di definizione

Se, come spesso accade, una funzione è assegnata mediante la sua espressione analitica y = f(x), un primo problema da risolvere è quello di determinare il dominio di f, cioè l'insieme dei numeri reali x per i quali l'espressione f(x) ha significato. Tale insieme si chiama anche insieme di definizione di f o campo di esistenza di f.

Spesso, la funzione f(x) è composta mediante due funzioni ψ e ϕ , cioè si ha

$$f(x) = \psi (\phi(x))$$

con ψ definita in un intervallo I di R.

Supposto, per fissare le idee, che I sia l'inter vallo aperto (a,b), allora, per determinare il dominio della funzione (1), si dovranno risolvere le disequazioni

$$\begin{cases} a < \phi(x) \\ \phi(x) < b \end{cases}$$

Queste considerazioni suggeriscono che in molti casi, per determinare il campo di esistenza di una funzione, si dovranno risolvere certe disequazioni.

Supponendo, per cominciare, che la funzione (1) sia composta mediante una funzione elementare ψ ed una funzione ϕ : $X\subseteq R\to R$, possiamo esaminare \hat{i} seguenti casi:

- 1°) L'insieme di definizione di $(\phi(x))^n, \ \sqrt[m]{\phi(x)} \ (\text{m dispari}), \ a^{\varphi(x)}, \\ \text{sen } \phi(x), \ \cos\phi(x), \ \text{arctg } \phi(x), \\ (\text{ove n e m sono interi positivi e a} > 0) \text{ coincide con l'insieme X di definizione di } \phi(x).$
- 2°) L'insieme di definizione di $\sqrt[m]{\phi(x)} \quad (m \text{ pari}), \quad (\phi(x))^{\alpha}$ $(\text{ove } \alpha > 0, \quad \alpha \not \in \mathbb{N}) \text{ è uguale a } \{x \in X : \phi(x) \ge 0\}.$
- 4°) L'insieme di definizione di $\mbox{arcsen } \varphi(x), \mbox{ arcccos} \varphi(x)$ è uguale a $\{x \in X : -1 \leq \varphi(x) \leq 1 \}$.

Determinare il campo di esistenza delle seguenti funzioni $% \left(1\right) =\left(1\right) \left(1\right) \left($

- 2.1 $y = \sqrt{x+1}$; $y = \sqrt[3]{x+1}$; $y = \sqrt{x(1-x^2)}$ [[-1,+\infty]; R; (-\infty], -1]U[0,1]]
- 2.2 $y = \sqrt{2-x^2}$; $y = \sqrt{(x-3)(x+5)}$; $y = \sqrt{(x-2)(x+6)}$ $[[-\sqrt{2}, \sqrt{2}]$; $(-\infty, -5) \cup [3, +\infty); (-\infty, -6] \cup [2, +\infty)]$
- 2.3 $y = \sqrt{6x^2-5x+1}$; $y=\sqrt{12+x-x^2}$; $y=\sqrt{x-1} + \sqrt{2-x}$

of Charles in method in the post of the second

[(- \infty, 1/3]U[1/2,+\infty); [-3,4]; [1,2]]

2.4 $y = \sqrt[5]{x-4}$; $y = \sqrt[4]{(x+1)/(6-x)}$; $y=1/\sqrt{|x+2|}$ [R; [-1,6); R-{-2}]

2.5 y=
$$\sqrt{\frac{x^2-2x}{x^2-7x+12}}$$
; y = $\frac{\sqrt{x^2-4}-\sqrt{1-x}}{\sqrt{x+5}}$
[(-\infty,0]U[2,3) U(4,+\infty); (-5,-2]]

- 2.6 $y = 3^{x/(x-1)}$; $y=5^{x^2-7x+15}$; $y=3^{\cos x}$ [R-{1}; R; R]
- 2.7 $y = log [x/(x-2)]; y=log[(2+x)/(3-x)]; y=log\sqrt{x}$ $[(-\infty,0) \cup (2,+\infty); (-2,3); (0,+\infty)]$
- 2.8 y = log $(10x^2-7x+1)$; $\sqrt{\log x}$; $\sqrt[4]{3-\log_2 x}$ $[(-\infty,1/5) \cup (1/2,+\infty); [1,+\infty); (0,8]]$
- 2.9 $y = log \frac{x^2 3x + 2}{x + 1}$; $y = log \sqrt{\frac{x + 1}{x}}$; $y = log_2 6^x$ $[(-1,1) \cup (2,+\infty); (-\infty,-1) \cup (0,+\infty); R]$
- $(2.10) y=3^{\log_2 x}; y=\log(4^x-3); y=\log[(\log x)-1]$ $[(0,+\infty); (\log_4 3,+\infty); (e,+\infty)]$
 - 2.11 $y=\sqrt{\log(x+1+1/x)}$; $y = \sqrt{\log_{1/3}(2x-1)}$ [$(0,+\infty)$; (1/2,1]]
 - 2.12 $y=(\log_3 x)^{\pi}$; $y=[(\log_5 x)^{-1}]^{\sqrt{2}}$; $y=(\log_5 x^{-5})^{-\sqrt{3}}$ [[1,+\infty]; [e,+\infty]; (5⁵,+\infty]

2.13
$$y = (\sqrt{3x} - 6)^{-1/6}$$
; $y=\log \left[(\log x-1)^{\pi} \right]$; $y = \log \left[(\log x-1)^{-\sqrt{5}} \right]$

$$\left[(12,+\infty); (e,+\infty); (e,+\infty) \right]$$
2.14 $y = \sqrt{\arccos x}$; $y=\log \sec x$; $y = \log \cos x$; $\left[[0,1]; \bigcup_{k \in \mathbb{Z}} (2k\pi,(2k+1)\pi); \bigcup_{k \in \mathbb{Z}} (-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi) \right]$
2.15 $y = \arcsin \left[x/(x-1) \right]$; $y=\arccos \log x$; $y - \cdot rcsen 2^x$ $\left[(-\infty,1/2]; [1/e,e]; (-\infty,0] \right]$
2.16 $y=\log \left[\arccos x \right]$; $y=\log \left[\arccos x \right]$; $y=7^{\arccos x}$ $\left[[-1,1); [-1,1] - \{0\}; [-1,1] \right]$
2.17 $y=3^{\sin \log_{\frac{1}{2}}x}$; $y = \sqrt{\arccos x}$; $y=2^{\arctan x}$ $\left[(0,+\infty); [0,+\infty); R-\{0\} \right]$
2.18 $y = \log \arctan x$; $y = \log \left(\frac{\pi}{4} - \arcsin x \right)$; $y = \sqrt{\sec 2 x}$ $\left[(0,+\infty); [-1,\sqrt{2}/2); \bigcup_{k \in \mathbb{Z}} \left[k\pi, \frac{\pi}{2} + k\pi \right] \right]$
2.19 $y=\log \left(\arctan x - \pi\right)$; $y=\arcsin \left(1 + \frac{1}{x}\right)$; $y = \sec t \sec h 3^x$ $\left[\phi; (-\infty, -1/2) \right]$; $R \right]$
2.20 $y = \log \arccos \frac{x-2}{x-3}$; $y=\log_x 5$; $y=tg \left[x \right]$

```
2.21 y = \sqrt{[\log(x+1)]/3^{\arctan x}}; y=\log_x x; y=\log_x \log x
[(0,+\infty); (0,+\infty)-\{1\}; (1,+\infty)]
2.22 y=[(\arcsin\log_{1/3} x)/x \log_{1/2} x]^{-3/2}
[[1/3,3]-\{1\}]
2.23 y=\log_x(x^2-3x+2); y=\log_{x^2-2x}(3x^2-4x+1)
[(0,1) \cup (2,+\infty); (-\infty,0) \cup (2,+\infty)]
```

2B. Asintoti

Una funzione f(x) ammette per $x\to +\infty$ (oppure per $x\to -\infty$) asintoto orizzontale di equazione y=% se

$$\lim_{x \to +\infty} \ f(x) = \ell \qquad \qquad (\text{oppure } \lim_{x \to -\infty} \ f(x) = \ell) \ .$$

Una funzione f(x) ammette asintoto verticale, per x \to x $_{\circ}^+$ (oppure per x \to x $_{\circ}^-$),di equazione x=x $_{\circ}$ se

$$\lim_{x \to x_0^+} f(x) = \pm \infty \qquad \text{(oppure } \lim_{x \to x_0^-} f(x) = \pm \infty \text{)}$$

In figura 2.1 è schematizzato il grafico di una funzione che ammette asintoti orizzontali di equazione y=\$\mathbb{l}_1(per x++\pi)\$, y=\$\mathbb{l}_2(per x+-\pi)\$ ed asintoti verticali di equazione x=\$x_o\$, x=\$x_1\$, x=\$x_2\$; in particolare in \$x_o\$ la funzione ammette un asintoto verticale destro (per x+x_o^+) e sinistro (per x+x_o^-)\$, mentre in \$x_1\$, \$x_2\$ ammette rispettivamente solo asintoti per x+\$x_1^-\$ e per x+\$x_2^+\$.

 $x o x_2^+$.

Un asintoto obliquo per $x o +\infty$ (in modo analogo si può considerare il caso in cui $x o -\infty$) per una funzione f(x) è una retta di equazione f(x) tale che

$$\lim_{x \to +\infty} [f(x) - (mx + q)] = 0.$$

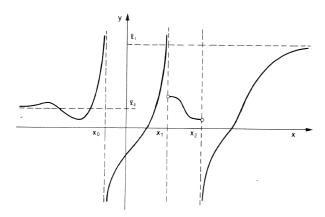


figura 2.1

Le costanti m,q si determinano calcolando i limiti:

$$\label{eq:mass_def} m \; = \; \lim_{x \to +\infty} \; \frac{f(x)}{x} \quad \text{,} \qquad \qquad q \; = \; \lim_{x \to +\infty} \; \left[\, f(x) \, \text{-mx} \, \right] \; .$$

Notiamo che, se una funzione ammette asintoto orizzontale per $x \! + \! + \! \infty$, allora, come mostrato nell'eser

~ 2.24 Dimostrare che, se f(x) ammette per $x \to +\infty$ un asintoto orizzontale di equazione y = 2, allora f(x) non ammette, per $x \to +\infty$, asintoto obliquo (non orizzontale).

[Per ipotesi $\lim_{x \to +\infty} f(x) = \lambda$. Perciò

$$m = \lim_{X \to +\infty} \frac{f(x)}{x} = \lim_{X \to +\infty} f(x) \cdot \lim_{X \to +\infty} \frac{1}{x} = \text{ ℓ $\cdot 0=0 $;}$$

$$q = \lim_{x \to +\infty} [f(x)-mx] = \lim_{x \to +\infty} f(x) = \ell$$
.

Quindi si ritrova l'asintoto orizzontale di equazione y= $\ensuremath{\text{\ensuremath{\mathbb{L}}}}\xspace$

.✓2.25 Determinare gli asintoti orizzontali e verticali della funzione

$$f(x) = \frac{2x-1}{1-x}$$

[La funzione è definita per $x \neq 1$. Perciò l'insieme di definizione è dato dall'unione di intervalli $(-\infty,1) \cup (1,+\infty)$. I limiti per $x \to +\infty$ valeono

$$\lim_{x \to +\infty} \frac{2x-1}{1-x} = -2, \qquad \lim_{x \to -\infty} \frac{2x-1}{1-x} = -2;$$

perciò la retta di equazione y=-2 è un asintoto orizzontale.Per $x \rightarrow 1$, il numeratore 2x-1 converge ad 1, mentre il denominatore 1-x tende a zero, ed è positivo per x < 1, mentre è negativo se x > 1. Perciò

$$\lim_{x\to 1^+} \frac{2x\text{-}1}{1\text{-}x} = -\infty \quad , \qquad \lim_{x\to 1^-} \frac{2x\text{-}1}{1\text{-}x} = +\infty \quad ;$$

la retta di equazione x=1 è un asintoto verticale per f(x)

∠2.26 Determinare gli asintoti orizzontali e verticali delle funzioni

(a)
$$f(x) = \frac{3x^2-2x+1}{x^2-x-2}$$

(b)
$$f(x) = \frac{x^4 + 1}{x^2 + 1}$$

[(a) La retta di equazione y=3 è un asintoto orizzontale per $x\!\to\!\pm\infty$. Le rette di equazione x=-1, x=2 sono asintoti verticali; (b) La fun zione non ha asintoti]

 $\times 2.27$ Determinare gli asintoti della funzione f(x) = $=\frac{x^4+1}{x^3+1}$

> [II denominatore di f(x) si annulla se e solo se x^3 =-1, cioè x=-1.La funzione non è definita in -1. Dato che $f(x) \to \pm \infty$ per $x \to 1^{\pm}$, la retta di equazione x=-1 è un asintoto verticale per $f(\boldsymbol{x}).$

Per x $\rightarrow \pm \infty$ la funzione tende a $\pm \infty$ e perciò non ha asintoti o rizzontali. Per stabilire l'eventuale esistenza di un asintoto obliquo calcoliamo i limiti

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^{\frac{4}{4}+1}}{x^{\frac{4}{4}+x}} = 1 ;$$

Quindi la retta di equazione y=x è un asintoto obliquo per f(x)

st 2.28 Determinare gli asintoti delle funzioni

(a)
$$f(x) = \log x$$
 (b) $f(x) = e^x$

(c)
$$f(x) = sen x$$

(d)
$$f(x) = arctg x$$

 $[\ (a)\ \text{La funzione } f(x) = \log \ x \ \text{\'e definita per} \ x > 0 \ \text{ed i limiti} \quad \text{agli}$ estremi dell'intervallo $(0,+\infty)$ di definizione valgono:

Perciò l'asse y (x=0) è un asintoto verticale (destro) per f(x),che invece non ha asintoti orizzontali (si veda il grafico della funzio ne logaritmo in figura 2.2). Per stabilire l'eventuale esistenza di un asintoto obliquo per $x^{\to}\,+\infty$, calcoliamo (utilizzando la regola di l'Hôpital):

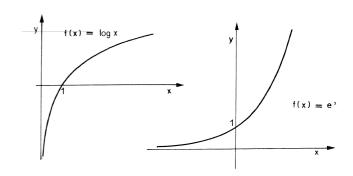


figura 2.2

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\log x}{x} = \lim_{x \to +\infty} \frac{1}{x} = 0 = m ;$$

$$\lim_{x\to +\infty} \left[\ f(x)\text{-m}x \right] = \lim_{x\to +\infty} \log x = +\infty \ .$$

Dato che il secondo limite è infinito, la funzione logaritmo non ammette asintoti obliqui; (b) la funzione $f(x) = e^{x}$, in base ai limiti

$$\lim_{x\rightarrow +\infty} \mathrm{e}^{\mathrm{X}} = + \infty, \quad \lim_{x\rightarrow +\infty} \frac{\mathrm{e}^{\mathrm{X}}}{\mathrm{x}} = + \infty, \quad \lim_{x\rightarrow -\infty} \mathrm{e}^{\mathrm{X}} = 0,$$

ammette l'asse x come asintoto orizzontale per x $\rightarrow -\infty$ e non ha altri asintoti (si veda il grafico della funzione e^X in figura 2.2); (c) la funzione sen x non ha asintoti di alcun tipo; (d) in base ai limiti

$$\lim_{x\to +\infty} \ \operatorname{arctg} \ x = \frac{\pi}{2} \ , \qquad \lim_{x\to -\infty} \ \operatorname{arctg} \ x = -\frac{\pi}{2} \ ,$$

la funzione arcotangente ammette asintoti orizzontali di equazione $y = \pi/2$ (per $x \to +\infty$) e $y = \pi/2$ (per $x \to -\infty$) e non ha altri asintoti (si veda il grafico della funzione arcotangente in figura 2.3)]

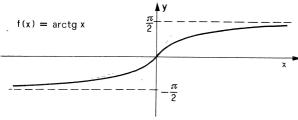


figura 2.3

2.29 Determinare gli asintoti delle funzioni

(a)
$$f(x) = x \log x$$

(b)
$$f(x) = e^{1/x}$$

[(a) La funzione $f(x) = x \log x$ è definita per x > 0. Calcoliamo i limiti agli estremi dell'intervallo $(0,+\infty)$; in base alla regola di L'Hôpital abbiamo

$$\frac{\lim_{x\to 0^+} x \log x = \lim_{x\to 0^+} \frac{\log x}{1/x} = \lim_{x\to 0^+} \frac{1/x}{-1/x^2} = \lim_{x\to 0^+} (-x) = 0.$$

Essendo il limite finito, la retta di equazione x=0 non è un asintoto verticale. La funzione non ha asintoti verticali, nè orizzontali, nè obliqui, dato che

$$\lim_{x\to +\infty} f(x) = + \infty; \quad \lim_{x\to +\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} \log x = +\infty$$

Il grafico di f(x) = x log x è rappresentato in figura 2.54. (b) La funzione è definita negli intervalli $(-\infty,0)$ e $(0,+\infty)$. Risulta:

$$\lim_{\substack{X\to\pm\infty\\ x\to\pm\infty}} e^{\frac{\overline{1}X}{\overline{X}}}=e^{0}=1\ ;\quad \lim_{\substack{X\to0^+\\ x\to0^+}} e^{\frac{\overline{1}X}{\overline{X}}}=+\infty\ ;\quad \lim_{\substack{X\to0^-\\ x\to0^-}} e^{\frac{\overline{1}X}{\overline{X}}}=0.$$

Perciò la retta di equazione y=1 è un asintoto orizzontale per f(x), mentre l'asse y è un asintoto verticale per $x \to 0^+$. Il grafico è rappresentato in figura 2.74

2.30 Determinare gli asintoti delle funzioni

(a)
$$f(x)=x(1-\log^2 x)$$

$$(b) f(x) = \frac{\log x}{1+x}$$

[(a) La funzione f(x) = x (1-log² x) non ha asintoti di alcun tipo; (b) gli assi x=0, y=0 sono rispettivamente asintoto verticale e orizzontale per f(x)]

2.31 Determinare gli asintoti della funzione f(x) = |x-2|.

[La funzione non ha asintoti orizzontali, nè verticali. Risulta poi

$$\begin{cases} \lim\limits_{x\to +\infty} \frac{f(x)}{x} = \lim\limits_{x\to +\infty} \frac{x-2}{x} = 1 \\ \lim\limits_{x\to +\infty} \left[f(x) - x \right] = \lim\limits_{x\to +\infty} (x-2) - x = -2 \\ \lim\limits_{x\to +\infty} \left[f(x) + x \right] = \lim\limits_{x\to -\infty} (2-x) + x = 2 \\ \lim\limits_{x\to -\infty} \left[f(x) + x \right] = \lim\limits_{x\to -\infty} (2-x) + x = 2 \end{cases}$$

Ne segue che la retta di equazione y=x-2 è un asintoto obliquo per x \rightarrow + ∞ (e coincide con f(x) per x \geq 2), mentre la retta di equazione y=2-x è un asintoto obliquo per x \rightarrow - ∞ (e coincide con f(x) per x \leq 2)]

2.32 Determinare gli asintoti della funzione $f(x) = \sqrt{1+x^2}$.

[La funzione è definita su R e non ha asintoti verticali, nè orizzontali. Risulta inoltre

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{1+x^2}}{x} = \lim_{x \to +\infty} \sqrt{\frac{1}{x^2} + 1} = 1;$$

$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} \sqrt{1 + x^2} - x = \lim_{x \to +\infty} \frac{(1 + x^2) - x^2}{\sqrt{1 + x^2} + x} = 0.$$

La retta di equazione y-x è quindi asintoto obliquo per $x\to +\infty$. Nel cal colo dell'asintoto per $x\to -\infty$, è opportuno ricordare che $\sqrt{x^2}$ = x solo se $x\ge 0$, mentre $\sqrt{x^2}$ = -x se x<0; cioè:

$$\sqrt{x^2} = |x|$$
, $\forall x \in \mathbb{R}$.

Si ottiene:

$$\lim_{\chi \to -\infty} \frac{f(\chi)}{\chi} = \lim_{\chi \to -\infty} \frac{\sqrt{1+\chi^2}}{\chi} = \lim_{\chi \to -\infty} - \frac{\sqrt{1+\chi^2}}{\sqrt{\chi^2}} = -1;$$

$$\lim_{x \to -\infty} f(x) + x = \lim_{x \to -\infty} \sqrt{1 + x^2} + x = \lim_{x \to -\infty} \frac{(1 + x^2) - x^2}{\sqrt{1 + x^2} - x} = 0.$$

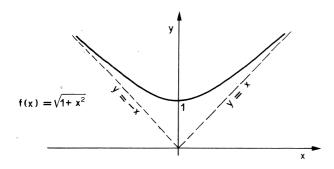


figura 2.4

Quindi la retta di equazione y=-x è un asintoto obliquo per $x\to -\infty$. Il grafico della funzione $f(x)=\sqrt{1+x^2}$ è rappresentato in figura 2.4. Si osservi che f(x) è crescente per $x\ge 0$ ed è decrescente per $x\le 0$ (e quindi il punto x=0 è di minimo). Inoltre, come indicato $n\ge 1$ 'esercizio 1.30, f(x) è convessa su R

2.33 Determinare gli asintoti della funzione $f(x) = \frac{\text{sen } x}{x}$.

_____ E' definita per x ≠ 0 e risulta

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 , \qquad \lim_{x \to +\infty} \frac{\sin x}{x} = 0.$$

Perciò f(x) ammette come unico asintoto la retta di equazione y=0 (asse x). Il grafico di f(x) è rappresentato in figura 2.5. Si noti che la funzione f(x) interseca infinite volte il suo asintoto (preci samente per $x=k\pi$, con $k\in Z$). Per comprendere più facilmente il di segno in figura 2.5, si può osservare che f(x) è una funzione pari (cioè f(x)=f(-x), per ogni $x\in R$) che verifica le limitazioni

$$-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x} , \qquad \forall x > 0$$

dato che $-1 \le \text{sen } x \le 1$. Geometricamente ciò corrisponde al fatto che il grafico della funzione f(x) è, per x > 0, al di sopra dell'iperbo le di equazione y=1/x, ed è al di sotto dell'iperbole di equazione y=1/x (il grafico della funzione f(x) tocca l'iperbole di equazione y=1/x, per x > 0, nei punti $\pi/2+2k\pi$, con $k=0,1,2,\ldots$). In figura 2.5 abbiamo assunto due diverse unità di misura per gli assi x,y]

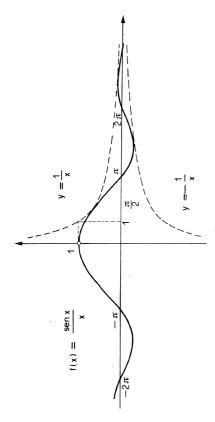


figura 2.5

A. Schema per lo studio del grafico di una funzione

Per disegnare in un piano cartesiano il grafico di una funzione y=f(x) è opportuno seguire lo schema indicato di seguito.

1) Inizialmente si determini il dominio , o insi \underline{e} me di definizione I della funzione f(x) (come negli esempi del paragrafo 2A).

 \wp 02) Si esamini se la funzione f(x) gode di qualche proprietà di simmetria; ad esempio, si esamini se:

 $f(x) \stackrel{.}{e} pari$, $cio\stackrel{.}{e} f(-x)=f(x)$, $\forall x \in I$;

f(x) è dispari, cioè f(-x)=-f(x), $\forall x \in I$;

 $f\left(x\right) \text{ \`e periodica di periodo T:} f\left(x+T\right) = f\left(x\right), \quad \forall x \in I \,.$

Ad esempio, è ben noto che le funzioni sen x, cos x sono periodiche di periodo 2T e che la funzione tg x è periodica di periodo T.

Il nome di pari o dispari per una funzione deriva dal fatto che $f(x)=x^n$, con n intero, è una funzione pari o dispari a seconda che n sia pari o dispari; infatti:

$$f(-x)=(-x)^n=(-1)^nx$$

$$= x^n=f(x) \qquad \text{se } n \text{ è pari}$$

$$= -x = -f(x) \qquad \text{se } n \text{ è dispari}.$$

Anche la funzione sen x è dispari, perchè sen (-x)=-sen x, $\forall x \in \mathbb{R}$; invece la funzione cos x è pari, perchè cos(-x)= cos x, $\forall x \in \mathbb{R}$. Nella figura 2.6 è riportato il grafico di una funzione pari, che è simmetrica rispetto all'asse y, ed il grafico di una funzione dispari, simmetrica rispetto all'origine.

Evidentemente, se la funzione f(x) è pari oppure dispari, basta studiarla per $x \geq 0$; è poi possibile disegnare per simmetria il grafico della funzione an che per x < 0. Analogamente, se la funzione è periodica di periodo T, è sufficiente studiarla in un intervallo di lunghezza T.

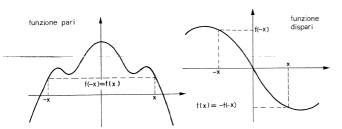


figura 2.6

3) Se è semplice, si può determinare il segno del la funzione, cioè determinare per quali x risulta f(x) > 0, f(x) < 0, f(x) = 0.

E' bene osservare che, in alcuni casi, può essere anche molto complicato risolvere l'equazione f(x) = 0, o la disequazione f(x) > 0, e la risoluzione spes so è facilitata dallo studio preliminare del segno della derivata prima e dal calcolo degli asintoti(per questo punto si veda anche il capitolo 3).

4) Si determinano gli eventuali asintoti vertica li, orizzontali e obliqui (calcolando i limiti agli estremi degli intervalli di definizione, se l'insieme di definizione è costituito da una unione di intervalli), come indicato nel paragrafo precedente.

κο 5) Si determinano gli eventuali punti dell'insie me di definizione dove la funzione non è continua, o dove non è derivabile.

Ad esempio la funzione

$$f(x) = \begin{cases} \frac{\text{sen } x}{x} & \text{per } x \neq 0 \\ \\ 1/2 & \text{per } x = 0 \end{cases}$$

è definita su tutto l'asse reale, ma non è continua (con discontinuità eliminabile) per x=0, perchè $\lim_{x\to 0} f(x) = 1 \neq f(0) = 1/2$. In figura 2.7 è tracciato $x\to 0$

il grafico di f(x) in un interne di x=0 (si confronti con il grafico in figura 2.5).

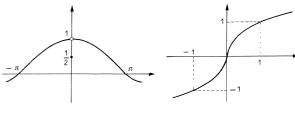


figura 217 figura 2.8

In figura 2.8 è rappresentato il grafico della funzione $f(x) = \sqrt[3]{x}$, che è definita e continua su tutto l'asse reale, ma non è derivabile per x=0, dato che il limite del rapporto incrementale in corrispondenza del punto x=0 è infinito (ciò corrisponde ad un grafico con tangente verticale per x=0):

$$\lim_{h \to 0} \ \frac{f(0\text{+}h)\text{-}f(0)}{h} \ = \ \lim_{h \to 0} \ \frac{\sqrt[3]{h}}{h} \ = \ \lim_{h \to 0} \ \frac{1}{\sqrt[3]{h^2}} \ = + \ \infty \ .$$

6) Si calcola, quando esiste, la derivata prima e si stabilisce per quali valori x risulta f'(x)=0, op pure f'(x) \leq 0. In base a ciò si determinano gli intervalli in cui la funzione risulta crescente o decrescente (si veda il paragrafo 1A) ed i punti di massimo o di minimo relativo (paragrafo 1B).

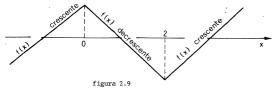
7) Si calcola la derivata seconda e si determinano

i valori x per cui risulta f"(x)=0, oppure f"(x) > 0, oppure f"(x) < 0. In base a ciò si determinano gli $i\underline{n}$ tervalli in cui la funzione è concava o convessa e gli eventuali punti di flesso (si veda il paragrafo 1C).

Nel seguito di questo capitolo applichiamo lo sche ma proposto allo studio di alcune funzioni reali di una variabile reale. Avvertiamo che i disegni hanno lo scopo di dare un'idea grafica approssimativa delle principali proprietà delle funzioni considerate. Talvolta essi non sono riprodotti in scala, con le esatte proporzioni fra i numeri; comunque, anche quando ciò avviene, non vengono alterate le proprietà significative determinate analiticamente.

.2D. Grafici di funzioni razionali

2.34 Studiare le seguenti funzioni e disegnarne il grafico

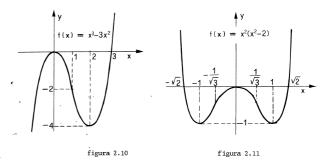

$$f(x) = x^3 - 3x^2$$

(b)
$$f(x)=x^2(x^2-2)$$

[(a) La funzione $f(x)=x^3-3x^2$ è definita su tutto l'asse reale.Il se gno della funzione si determina scrivendo $f(x)=x^2$ (x-3): risulta f(x)=0 per x=0, x=3; f(x)>0 per x>3; f(x)<0 per x<3 e $x\ne0$. La derivata prima vale

$$f'(x) = 3x^2 - 6x = 3x(x-2)$$

e si annulla per x=0, x=2; è positiva all'esterno dell'intervallo [0,2], è negativa per 0 < x < 2. Quindi f(x) risulta decrescente nel l'intervallo [0,2] e crescente altrimenti, come nello schema seguente:


Il punto x=0 è di massimo relativo ed il punto x=2 è di minimo relativo. La derivata seconda vale

$$f''(x) = 6x-6=6(x-1)$$
,

si annulla per x=1, è positiva per x > 1, è negativa per x < 1. Per ciò la funzione è convessa nell'intervallo [1,+ $^{\infty}$) ed è concava in (- $^{\infty}$,1]. Nel disegnare il grafico risultano utili i valori di f(x) corrispondenti ai punti di massimo, di minimo e di flesso: f(0) = 0, f(2)=-4, f(1)=-2. Il grafico è rappresentato in figura 2.10. (b) E' una funzione pari definita su tutto R. Si annulla per x=0 e x $\pm \sqrt{2}$. E' positiva per x esterno all'intervallo [- $\sqrt{2}$, $\sqrt{2}$]. Non ha asintoti. Le derivate prima e seconda valgono

$$f'(x) = 4x(x^2-1)$$
; $f''(x)=4(3x^2-1)$.

I punti ± 1 sono di minimo (relativo ed assoluto) per f(x); il punto x=0 è di massimo relativo. I punti $x=\pm 1/\sqrt{3}$ sono di flesso.La funzione è convessa negli intervalli $(-\infty, -1/\sqrt{3}]$, $[1/\sqrt{3}, +\infty)$ ed è concava altrimenti. Risulta f(± 1)=-1. Il grafico di f(x) è rap presentato in figura 2.11]

2.35 Studiare le seguenti funzioni e disegnarne i grafico

(a)
$$f(x) = \frac{x^2-3}{x-2}$$
 (b) $f(x) = \frac{x^2}{1-x}$

(b)
$$f(x) = \frac{x^2}{1-x}$$

[(a) Il dominio di f(x) è l'insieme {x \in R: x \neq 2 }. La funzione si annulla se il numeratore x 2 -3 vale zero; ciò accade per x = \pm $\sqrt{3}$. Risulta f(x) > 0 per tutti i numeri reali x che risolvono uno dei due sistemi:

$$\begin{cases} x^2 - 3 > 0 \\ x - 2 > 0 \end{cases}; \begin{cases} x^2 - 3 < 0 \\ x - 2 < 0 \end{cases}$$

Il primo sistema è risolto da $x\in (2,+^\infty)$, mentre il secondo sistema ha per soluzioni $x\in (-\sqrt{3}$, $\sqrt{3}$). Perciò f(x) è positiva per $x \in (-\sqrt{3}, \sqrt{3}) \cup (2, +\infty)$. Dato che

$$\lim_{x\to 2^+} \frac{x^2-3}{x-2} = + \infty, \quad \lim_{x\to 2^-} \frac{x^2-3}{x-2} = - \infty,$$

la retta di equazione x=2 è un asintoto verticale per f(x).Inoltre:

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^2 - 3}{x^2 - 2x} = 1$$

$$\lim_{x \to \pm \infty} \left[f(x) - x \right] = \lim_{x \to \pm \infty} \left[\frac{x^2 - 3}{x - 2} - x \right] = \lim_{x \to \pm \infty} \frac{2x - 3}{x - 2} = 2;$$

ne segue che la retta di equazione y=x+2 è un asintoto obliquo per f(x). La funzione è derivabile per ogni $x\neq 2$ e la derivata vale

$$f'(x) = \frac{x^2 - 4x + 3}{(x-2)^2}$$

La derivata è positiva se x 2 -4x+3 > 0, cioè se x è esterno all'inte<u>r</u> vallo $[\ 1,3 \]$. Perciò la funzione f(x) è crescente negli intervalli $(-\infty,1]$ e $[3,+\infty)$ ed è decrescente negli intervalli [1,2) e (2,3]. Il punto x=1 risulta essere di massimo relativo, mentre punto x=3 è di minimo relativo. La derivata seconda, per $x \neq 2$, vale

$$f''(x) = 2/(x-2)^3$$
.

Essendo f''(x) > 0 per x > 2, la funzione f(x) è convessa nell'inter vallo $(2,+\infty)$ ed è concava in $(-\infty,2)$. Il grafico di f(x) è rappresen tato in figura 2.12.

(b) La funzione è definita per x \neq 1. E' positiva per x < 1, x \neq 0; è negativa per x > 1; si annulla per x = 0. La retta di equazione x=1è un asintoto verticale per f(x), e la retta di equazione y=-x-1 è un asintoto obliquo. La derivata prima si annulla nei punti x=0 $\,$ e $\,$ x =2. Il punto x=0 è di minimo relativo, mentre il punto x=2 è di massimo r $\underline{\mathrm{e}}$ lativo. La funzione è convessa per x < 1, è concava per x > 1 e non ha punti di flesso. Il grafico è rappresentato in figura 2.13]

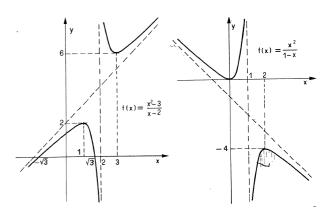
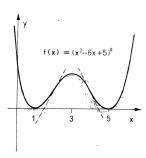


figura 2.12

figura 2.13

2.36 Studiare le seguenti funzioni e disegnarne il grafico


(a)
$$f(x) = (x^2 - 6x + 5)^4$$
 (b) $f(x) = (x^2 - 6x + 5)^5$

 $\left[\ (a) \ La \ funzione \ \grave{e} \ definita per \ ogni \ x \in R. \ Si \ annulla per \ x=1, \ x=5 \quad ed \\ \grave{e} \ positiva \ altrimenti. \ Le \ derivate prima \ e \ seconda \ valgono$

$$f'(x)=8(x^2-6x+5)^3(x-3); f''(x)=8(x^2-6x+5)^2(7x^2-42x+59)$$
.

La derivata prima si annulla per x=1, x=5 e x=3; è positiva negli intervalli (1,3) e (5,+ $^{\infty}$) ed è negativa negli intervalli (- $^{\infty}$,1),(3,5). Il punto x=3 risulta di massimo relativo; i punti x=1 e x=5 sono di minimo relativo. La derivata seconda si annulla per x=1, x=5 (che,come già detto, non sono punti di flesso) e per x=3 \pm $\sqrt{28/7}$ che sono punti di flesso. La funzione è concava nell'intervallo [$3-\sqrt{28/7}$, $3+\sqrt{28/7}$] ed è convessa altrimenti. Il grafico è rappresentato in figura 2.14.

(b) La funzione si annulla per x=1, x=5, è positiva negli intervalli $(-\infty,1)$, $(5,+\infty)$ ed è negativa in (1,5). Non ha asintoti. La derivata prima si annulla per x=1, x=3, x=5. Il punto x=3 è di minimo, mentre i punti x=1, x=5 sono di flesso. La funzione ammette altri due punti di flesso. Si veda il grafico in figura 2.15]

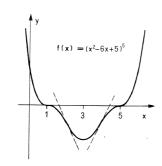


figura 2.14

figura 2.1

2.37 Studiare le seguenti funzioni

(a)
$$f(x) = \frac{x^2 + x - 2}{x - 2}$$

(b)
$$f(x) = \frac{x^2 + 6x + 6}{x + 1}$$

[(a) E' definita per x # 2. La retta di equazione x=2 è un asintoto verticale; la retta di equazione y=x+3 è un asintoto obliquo. Le derivate prima e seconda valgono

$$f'(x) = \frac{x^2 - 4x}{(x-2)^2}$$
; $f''(x) = \frac{8}{(x-2)^3}$

La derivata prima si annulla per x=0 (punto di massimo) e per x=4 (punto di minimo). La derivata seconda è positiva per x>2, è negativa per x<2; non ci sono punti di flesso. Si ottiene un grafico simile a quello della figura 2.12.

(b) E' definita per x \neq -1. Ammette asintoto verticale di equazione x=-1 ed asintoto obliquo di equazione y=x+5. E' crescente negli in tervalli $(-\infty,-2]$ e $\begin{bmatrix} 0,+\infty \end{bmatrix}$. Il punto x=0 è di minimo relativo , il punto x=-2 è di massimo relativo. E' convessa in $(-1,+\infty)$, è concava in $(-\infty,-1)$. Il grafico è simile a quello della figura 2.12

2.38 Si consideri una funzione f(x) definita su R. I grafici delle funzioni $f_1(x) = |f(x)|$, $f_2(x) = f(|x|)$ si deducono facilmente dal grafico di f(x) scambiando, nel primo caso, y con |y|, e nel secondo caso scambiando x con |x|. Tenendo conto di ciò, disegnare i grafici delle funzioni

(a)
$$f(x)=x^3-1$$
?

(b)
$$f_1(x) = |f(x)| = |\dot{x}^3 - 1|$$

(c)
$$f_2(x)=f(|x|)=|x|^3-1$$
 (d) $f_3(x)=|f(|x|)|=||x|^3-1|$

[(a) La funzione f(x) è crescente su R. Il punto x=0 è di flesso orizzontale. Il grafico è rappresentato in figura 2.16; (b) il grafico della funzione $f_1(x)$, in figura 2.17, si ottiene da quello della funzione f(x) cambiando il segno delle ordinate dei punti che hanno la y negativa. La funzione $f_1(x)$ risulta non derivabile per x=1; (c)la funzione $f_2(x)$ è pari. Il suo grafico, in figura 2.18, si ottiene per simmetria rispetto all'asse y dal grafico della funzione f(x), per x>0. La funzione risulta derivabile anche per x=0; (d) il grafico della funzione $f_3(x)$ è rappresentato in figura 2.19. La funzione non è derivabile per $x=\pm 1$

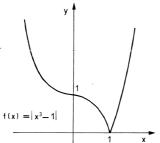
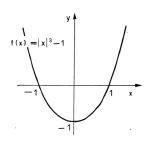



figura 2.16

figura 2.17

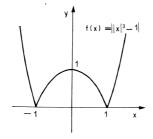


figura 2.18

figura 2.19

2.39 Studiare le seguenti funzioni e disegnarne grafico

(a)
$$f(x) = x |x-2|$$

$$(b) f(x) = x|x|$$

[(a) Essendo | x-2 | = x-2 se $x \ge 2$, e | x-2 | = - (x-2) se x<2, risulta:

$$f(x) = \begin{cases} x^2 - 2x & \text{se} & x \ge 2 \\ 2x - x^2 & \text{se} & x < 2 \end{cases}$$

Si ottiene facilmente il grafico in figura 2.20. Si noti che f(x)non è derivabile per x=2, dato che, in tale punto, la derivata $\,$ de some verivabile per x=2, dato one, in tale punto, la derivata de stra (f $_{+}^{+}(2)$ =2) è diversa dalla derivata sinistra (f $_{-}^{+}(2)$ =-2); (b) il grafico di f(x)=x |x | è rappresentato in figura 2.21. La funzione è derivabile anche per x=0]

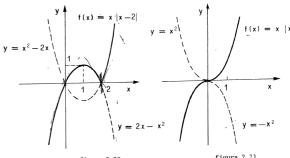


figura 2.20

figura 2.21

2.40 Studiare le seguenti funzioni e disegnarne grafico

(a)
$$f(x) = \frac{(x+1)^3}{x^2}$$

(b)
$$f(x) = \frac{|x+1|^3}{x^2}$$

[(a) E' definita per $x\neq 0$. E' positiva negli intervalli (-1,0) e (0, + ∞). Ammette x=0 come asintoto verticale e y=x+3 come asintoto o bliquo. Le derivate prima e seconda valgono

La derivata prima si annulla per $\underline{x}=-1$ e $\underline{x}=2$. La funzione risulta crescente negli intervalli $(-\infty,0)$ e $[-2,+\infty)$. Il punto $\underline{x}=2$ è di minimo relativo. La derivata seconda è positiva per $\underline{x}>-1$. Di conseguenza la funzione è convessa negli intervalli [-1,0) e $(0,+\infty)$ ed è concava in $(-\infty,-1)$. Il punto $\underline{x}=-1$ è di flesso. Il grafico è rappresentato in figura 2.22.

(b) Si può procedere in modo analogo a come fatto nella parte (b) dell'esercizio 2.38. Oppure, si può tener conto che f(x) ha la seguen te espressione analitica ($x \in \mathbb{R} - \{0\}$):

$$f(x) = \begin{cases} (x+1)^3 / x^2 & \text{se } x \ge -1 \\ -(x+1)^3 / x^2 & \text{se } x < -1. \end{cases}$$

Si ottiene il grafico rappresentato in figura 2.23; in particolare , gli asintoti obliqui hanno equazione : y=x+3 (per $x\to +\infty$) e y==-x-3 (per $x\to -\infty$). Circa la derivabilità, osserviamo che f(x) è de rivabile anche nel punto x=-1; infatti, essendo f(-1)=0, si ha

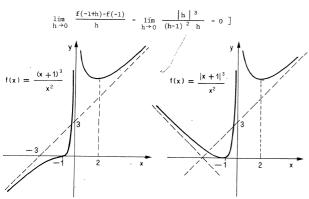


figura 2.22

figura 2.23

2.41 Studiare le seguenti funzioni e disegnarne il grafico

(a)
$$f(x) = \frac{2|x|-x^2-x}{x+1}$$
 (b) $f(x) = \frac{x^2+x+2|x|}{x+1}$

[(a) Si veda la figura 2.24; (b) figura 2.25]

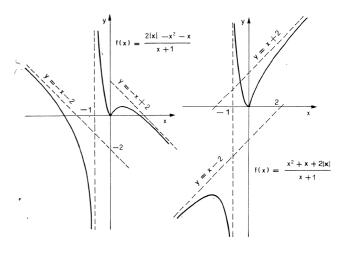


figura 2.24

figura 2.25

2.42 Studiare la funzione
$$f(x) = \frac{x}{|x| + |x-1|}$$
.

[La funzione è definita per ogni $x \in R$, è positiva per x > 0, è negat<u>i</u> va per x < 0 . Risulta:

$$f(x) = \begin{cases} x/(2x-1) & \text{se} & x > 1 \\ x & \text{se} & 0 \le x \le 1 \\ x/(1-2x) & \text{se} & x < 0 \end{cases}.$$

In base ai limiti

$$\lim_{x\rightarrow +\infty} \ f(x) = \lim_{x\rightarrow +\infty} \frac{x}{2x-1} = \frac{1}{2} \ , \ \lim_{x\rightarrow -\infty} f(x) = \lim_{x\rightarrow -\infty} \frac{x}{1-2x} = -\frac{1}{2} \ ,$$

la retta di equazione y=1/2 è asintoto orizzontale per x \rightarrow + $^{\infty}$, mentre y=-1/2 è asintoto orizzontale per x \rightarrow - $^{\infty}$. La funzione risulta crescente nell'intervallo (- $^{\infty}$,1] e decrescente nell' intervallo [1,+ $^{\infty}$). Non è derivabile per x=1, che comunque risulta essere un punto di massimo (relativo ed assoluto). Invece la funzione è derivabile per x=0, dato che f'_{+}(0) = f'_{-}(0)=1, come si verifica facilmente calcolando la derivata delle funzioni y=x e y=x/(1-2x) per x=0. La funzione risulta convessa separatamente negli intervalli (- $^{\infty}$,1] e [1,+ $^{\infty}$). Il grafico è rappresentato in figura 2.26]

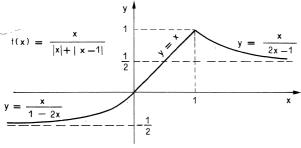


figura 2.26

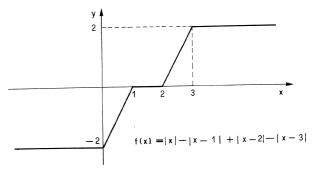
2.43 Disegnare il grafico della funzione

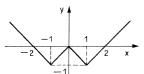
$$f(x) = |x| - |x-1| + |x-2| - |x-3|$$
.

[La funzione è definita e continua su tutto l'asse reale. Tenendo con to della definizione del valore assoluto, f(x) è un polinomio di pri mo grado (o di grado zero, cioè una costante) in ognuno degli inter valli $(-\infty,0]$, [0,1], [1,2], [2,3], $[3,+\infty)$. Quindi il grafico di f(x), in ognuno di tali intervalli, è costituito da un seg mento di retta. Basta allora determinare i valori di f(x) in corrispondenza dei punti x=0,1,2,3, per disegnare il grafico della funzione nell'intervallo [0,3]. Risulta f(0)=2, f(1)=0, f(2)=0, f(3)=2 Per $x\geq 3$ la funzione vale:

$$f(x) = x - (x-1)+(x-2)-(x-3) = 2$$
 $(x \ge 3),$

ed analogamente f(x) =-2 se x \leq 0. Si ottiene il grafico in figura 2.27 \rceil




figura 2.27

2.44 Data la funzione f(x) = |x|-1, disegnare il grafico di

(a)
$$f(f(x))$$

(b)
$$f(f(f(x)))$$

[(a) Risulta f(f(x)) = |f(x)| -1 = ||x| -1| -1. Procedendo come nel l'esercizio precedente, si ottiene il grafico in figura 2.28; (b) si veda la figura 2.29]

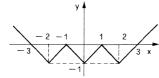
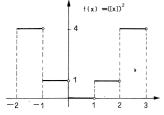


figura 2.28

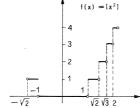

figura 2.29

2.45 Indichiamo con [x] la parte intera di x, cioè il più grande intero minore od uguale ad x. Disegnare i grafici delle funzioni

(a)
$$f(x) = ([x])^2$$

(b)
$$f(x) = [x^2]$$

[(a) La funzione è definita su R ed è discontinua per ogni x \in Z. Il grafico è rappresentato in figura 2.30; (b) si veda la figura 2.31 , tenendo presente che f(x) è una funzione pari]



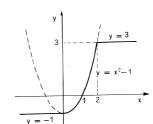

figura 2.30

figura 2.31

2.46 Disegnare il grafico delle funzioni

(a)
$$f(x) = \begin{cases} -1 & \text{se } x \le 0 \\ x^2 - 1 & \text{se } 0 < x < 2 \\ 3 & \text{se } x \ge 2 \end{cases}$$
 (b) $f(x) = \frac{x^4 - 1}{x^2 - 1}$

[(a) Il grafico della funzione è costituito da un arco di parabola (per 0<x<2) e da due semirette orizzontali, come in figura 2.32. Si noti che la funzione è continua su tutto l'asse reale ed è derivabile per ogni x \neq 2. In particolare, è derivabile anche nel punto x=0 (a tal fine si verifichi che, per x=0, le derivate destra e sinistra coincidono); (b) la funzione è definita per x²-1 \neq 0, cioè per x \neq 11. Essendo x⁴-1=(x²+1)(x²-1), dove è definita, la funzione vale f(x)=x²+1. Il grafico, in figura 2.33, è costituito dalla parabola di equazione y=x²+1, privato dei due punti di ascissa x= \pm 1]

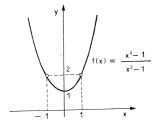


figura 2.32

figura 2.33

2.47 Studiare la seguente funzione e disegnarne il grafico

$$f(x) = max \{x^2; 3x-2\}$$

[In figura 2.34 sono disegnate (tratteggiate) la parabola di equazione y= x^2 e la retta di equazione y=3x-2. Tali curve si incontrano nei punti le cui ascisse soddisfano l'equazione x^2 = 3x-2, cioè x=1

e x=2. Essendo x $^2\!>\!3x\text{-}2$ all'esterno dell'intervallo [1,2] ,risul -ta:

$$f(x) = \begin{cases} x^2 & \text{se} & x \le 1 \text{ oppure} & x > 2 \\ 3x-2 & \text{se} & 1 \le x \le 2 \end{cases}.$$

Il grafico della funzione f(x) è disegnato in linea continua in figu ra 2.34]

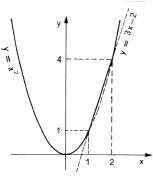


figura 2.34

2.48 Studiare la seguente funzione e disegnarne il grafico

$$f(x) = \max \{3x-x^2; x; -\frac{1}{x^2}\}$$

 $\big[$ Si ottiene il grafico in figura 2.35, dopo aver verificato che

$$f(x) = \begin{cases} 3x-x^2 & \text{se} & 0 \le x \le 2 \\ -1/x^2 & \text{se} & x < -1 \\ x & \text{altrimenti} \end{cases}$$

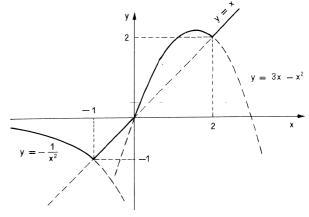


figura 2.35

2.49 Studiare la seguente funzione e disegnarne il grafico

$$f(x) = \left(5 + \frac{1}{x^2}\right)^2 - \frac{8}{x^3}$$

[La funzione è definita per x \neq 0. In base ai limiti

$$\lim_{x\to 0} f(x) = +\infty , \qquad \lim_{x\to \pm \infty} f(x) = 25 ,$$

la retta x=0 è un asintoto verticale, mentre la retta y=25 è asintoto orizzontale. Si ha:

$$f(x) = \frac{1}{x^4} + \frac{10}{x^2} + 25 - \frac{8}{x^3};$$

$$f'(x) = \frac{h}{x^5} \Rightarrow \frac{1}{x^3} + \frac{2h}{x^4} = \frac{-2}{x^5} (10x^2 - 2x + 2);$$

$$f''(x) = \frac{20}{x^6} + \frac{60}{x^4} - \frac{96}{x^5} = \frac{4}{x^6} (15x^2 - 24x + 5)$$
.

La derivata prima si annulla per x=1/5 e x=1. Il punto x=1/5 è di minimo e risulta f(1/5)=-100; il punto x=1 è di massimo e si ha: f(1)=28. La derivata seconda si annulla per x=(12 $\pm\sqrt{69}$)/15 che sono punti di flesso. La funzione risulta concava nell'intervallo [$(12-\sqrt{69}$)/15, $(12+\sqrt{69}$)/15]. Il grafico è rappresentato in figura 2.36]

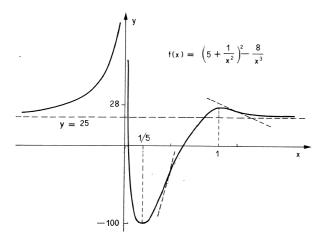


figura 2.36

2.50 Disegnare in uno stesso sistema di riferimento i grafici delle funzioni

$$f_1(x) = 1 - \frac{x^2}{2} - \frac{x^4}{24}$$
, $f_2(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24}$.

Tenendo conto delle disuguaglianze dell'esercizio 1.67, confrontare i grafici ottenuti con il grafico della funzione $f(x)=\cos x$.

[Si verifica facilmente che la funzione $f_1(x)$ è pari, è decrescente per $x \geq 0$ ed è crescente per $x \leq 0$. Perciò x=0 è un punto di massimo per $f_1(x)$. Inoltre $f_1(x)$ è concava su R. Anche la funzione $f_2(x)$ è pari; le sue derivate prima e seconda valgono:

$$f_2^1(x) = \frac{x}{6}(x^2 - 6)$$
; $f_2^{11}(x) = \frac{1}{2}(x^2 - 2)$.

La derivata prima si annulla per x=0 (punto di massimo) e per x= $\pm\sqrt{6}$ (punti di minimo). Risulta f(0) = 1 e f($\pm\sqrt{6}$)=-1/2. La derivata seconda si annulla per x = $\pm\sqrt{2}$, che risultano punti di flesso. La fum zione. f $_2$ (x) è concava nell'intervallo $\left[-\sqrt{2}\right.$, $\sqrt{2}\right.$] ed è convessa altrimenti.

In base alle disuguaglianze dell'esercizio 1.67, risulta $f_1(x) \leq \infty x \leq f_2(x)$, $\forall x \in R$. I grafici delle tre funzioni sono rappresentati in figura 2.37. Per il teorema dell'esistenza degli zeri e per le proprie

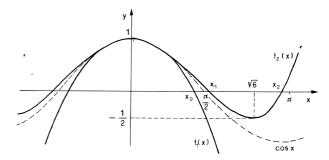


figura 2.37

83

tà di monotonia di f $_1$ (x), f $_2$ (x), esistono numeri positivi x $_0$ <x $_1$ <xx $_2$ tali che f $_1$ (± x $_0$)= f $_2$ (± x $_1$)=f $_2$ (± x $_2$)=0. A titolo indicativo segnaliamo le valutazioni numeriche approssimate: x $_0$ =1.32..., x $_1$ ==1.59..., x $_2$ =3.076...; si noti che, essendo π /2=1.57..., π =3.14..., in accordo con le stime dell' esercizio 1.67, risulta x $_0$ < π /2 < < x $_1$ < x $_2$ < π

2.51 Siamo a,b,c,d numeri reali. Studiare la funzione

$$f(x) = \frac{ax+b}{cx+d}$$

 $\left[\text{ Se c=0, d=0, la funzione non è definita per alcun valore di x.Se c=0 e d#0, la funzione si scrive nella forma$

$$f(x) = \frac{a}{d}x + \frac{b}{d}$$

ed ha per grafico una retta. Ciò completa la discussione $\mbox{ nel}$ $\mbox{ caso}$ in cui c=0. Supponiamo nel seguito c \neq 0.

Se c \neq 0, la funzione è definita per x \neq - d/c. Se risulta ad-bc=0 , con la sostituzione b=ad/c otteniamo

$$\mathbf{f}(\mathbf{x}) = \frac{\mathbf{a}\mathbf{x} + \mathbf{a}\mathbf{d}/\mathbf{c}}{\mathbf{c}\mathbf{x} + \mathbf{d}} = \frac{\mathbf{a}}{\mathbf{c}} \ \frac{\mathbf{c}\mathbf{x} + \mathbf{d}}{\mathbf{c}\mathbf{x} + \mathbf{d}} = \frac{\mathbf{a}}{\mathbf{c}} \quad , \qquad \forall \ \mathbf{x} \neq -\frac{\mathbf{c}}{\mathbf{d}} \ .$$

In tal caso il grafico di f(x) è costituito da una retta orizzontale (y=a/c) privata del punto di ascissa x=-c/d. Infine, se $c\neq 0$ e ad-bc $\neq 0$, la funzione si può rappresentare nella forma

$$f(x) = \frac{1}{c} \frac{ax + b}{x+d/c} = \frac{1}{c} \frac{ax+ad/c-ad/c+b}{x+d/c}$$

$$=\frac{1}{c}\left(a+\frac{b-ad/c}{x+d/c}\right)=\frac{a}{c}+\frac{1}{c^2}\frac{bc-ad}{x+d/c}$$

Essendo bc-ad \neq 0, la funzione diverge per x \rightarrow -d/c. Perciò la retta di equazione x=-d/c è un asintoto verticale. Inoltre la retta y=. a/c è un asintoto orizzontale. Le derivate prima e seconda valgono

$$f'(x) = -\frac{1}{c^2} - \frac{bc - ad}{(x+d/c)^2} ; \qquad f''(x) = \frac{2}{c^2} - \frac{bc - ad}{(x+d/c)^3} .$$

2E. Grafici di funzioni irrazionali

2.52 Disegnare i grafici delle funzioni

scente negli stessi intervalli.

(a)
$$\sqrt{x}$$
 (b)

[(a) $f(x) = \sqrt{x}$. è una funzione definita e continua per ogni $x \ge 0$, ma non è derivabile per x=0; infatti il limite (destro) del rapporto incrementale per x=0 è infinito:

$$\lim_{h \to 0^+} \frac{f(0\text{+}h)\text{-}f(0)}{h} \ = \lim_{h \to 0^+} \frac{\sqrt{h}}{h} \ = \lim_{h \to 0^+} \frac{1}{\sqrt{h}} \ = + \ \infty \ .$$

Geometricamente ciò corrisponde ad un grafico a tangente verticale per x=0 (la tangente è l'asse y). Si noti che vale l'equivalenza:

$$y=\sqrt{x}$$
 \iff
$$\begin{cases} y \ge 0 \\ y^2 = x \end{cases}$$

per cui il grafico di f(x), rappresentato in figura 2.38 da un tratto continuo, è parte della parabola (tratteggiata) di equazione $x=y^2$ (b) la funzione $f(x)=\sqrt[3]{x}$ è definita e continua per ogni $x\in R$, è dispari, ma non è derivabile per x=0, dato che il limite del rapporto incrementale vale $+\infty$ (figura 2.39) (c) la funzione $f(x)=\sqrt{|x|}$, il cui grafico è rappresentato in figura 2.40, è definita e continua su R. E' una funzione pari; non è derivabile per x=0 perchè il limite del rapporto incrementale, per x=0, non esiste (precisamente, il limite destro vale $+\infty$ mentre il limite sinistro vale $-\infty$)

figura 2.38

figura 2.39

figura 2.40

2.53 Studiare le seguenti funzioni e disegnarne i grafico

(a)
$$f(x) = \sqrt{x+1} - \sqrt{x}$$

(b)
$$f(x) = \sqrt{2-x} - \sqrt{x}$$

[(a) E' definita per $x \ge 0$, è positiva per ogni $x \ge 0$ e risulta f(0)==1. L'asse x è un asintoto orizzontale per $x \to +\infty$. Non è derivabile per x = 0 e risulta:

$$\lim_{x\to 0^+} f'(x) = -\infty ;$$

tenendo conto di ciò, il grafico in figura 2:41 $\,$ è a tangente verticale in corrispondenza di x=0.

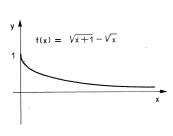


figura 2.41

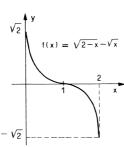


figura 2.42

La funzione è decrescente e convessa; (b) è definita nell'intervallo [0,2]. Risulta f(1)=0, è positiva per $x \in [0,1)$, è negativa per $x \in \{(1,2]$. Non è derivabile per x=0, x=2 e la derivata prima tende a $-\infty$ in corrispondenza di tali punti. La funzione è decrescente in [0,2], è convessa in [0,1] ed è concava in [1,2]. Il punto x=1 è di flesso orizzontale. Il grafico è rappresentato in figura 2.42]

2.54 Il potenziale elettrico V nei punti dell'asse di un disco di raggio R (come in figura 2.43) car<u>i</u> co uniformemente è dato da

$$V(x) = K(\sqrt{x^2 + R^2} - |x|),$$

con K > 0 dipendente solo dalla densità di car \underline{i} ca e dalla costante dielettrica. Si studi l'andamento del potenziale V(x) in funzione di x e si verifichi che V(x) ha il grafico disegnato \underline{i} figura 2.44.

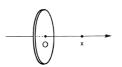
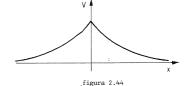



figura 2.43

2.55 Studiare la funzione $f(x) = \sqrt{x^2 - \frac{8}{x}}$.

[E' definita per x < 0 e x \geq 2. Si annulla per x=2 ed è positiva altrimenti. Valgono i limiti:

$$\lim_{x\to 0^-} f(x) = \lim_{x\to -\infty} f(x) = \lim_{x\to +\infty} f(x) = +\infty ;$$

la funzione ammette asintoto verticale sinistro di equazione x=0~e non ha asintoti orizzontali. Riguardo agli asintoti obliqui, abbiamo:

$$\lim_{x\to\pm\infty}\frac{f(x)}{x} = \lim_{x\to\pm\infty}\frac{1}{x}\sqrt{x^2 - \frac{8}{x}} = \lim_{x\to\pm\infty}~\pm~\sqrt{1 - \frac{8}{x^3}} = ~\pm~1~;$$

87

$$\lim_{x \to \pm \infty} [f(x) + x] = \lim_{x \to \pm \infty} \frac{-8/x}{\sqrt{x^2 - 8/x} \pm x} = 0$$

Perciò la retta di equazione y=x è asintoto obliquo per x \rightarrow + $^{\infty}$,mentre la retta y=-x è asintoto obliquo per x \rightarrow - ∞ . La dérivata prima

$$f'(x) = \frac{1}{\sqrt{x^2-8/x}} \left(x + \frac{\lambda}{x^2}\right)$$

 $f'(x) = \frac{1}{\sqrt{x^2 - 8/x}} \left(x + \frac{\hbar}{x^2}\right) \ .$ Si noti che la funzione non è derivabile per x = 2 e che $f'(x) \to +\infty$ per $x \to 2^+$. La derivata prima si annulla per $x = -\sqrt[3]{4}$ ed è negativa per $x < -\sqrt[3]{4}$. La funzione è decrescente in $(-\infty, -\sqrt[3]{4}]$ ed è crescente negli intervalli $\begin{bmatrix} -\sqrt[3]{4}, & 0 \end{bmatrix}$, $\begin{bmatrix} 2, +\infty \end{bmatrix}$. Il punto $x = -\sqrt[3]{4}$ è di minimo relativo (interno); anche il punto x = 2 è di minimo (assolu to). Il grafico è disegnato in figura 2.45]

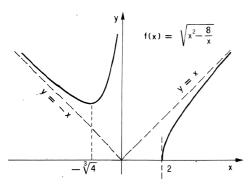


figura 2.45

2.56 Studiare la seguente funzione (prescindendo dal segno della derivata seconda) e disegnarne grafico:

$$f(x) = \sqrt{\frac{x^2(x-1)}{x+1}}$$

[E' definita nell'insieme (- $^{\infty}$,-1) \cup { 0 } \cup [1,+ $^{\infty}$). Si annulla per x= =0 e x=1 ed è positiva altrimenti. Ha un asintoto verticale di equazione x=-1 e due asintoti obliqui di equazione y=x-1 (per x \rightarrow + ∞) e y=1-x (per $x \to -\infty$). Non è derivabile per x=1 e risulta

$$\lim_{x\to 1^+} f'(x) = +\infty .$$

La funzione risulta decrescente per x < x_o = $(-1-\sqrt{5})/2$ ed x_o è un punto di minimo relativo. Il grafico è rappresentato in figura 2.46. Si noti in particolare il punto di coordinate (0,0)]

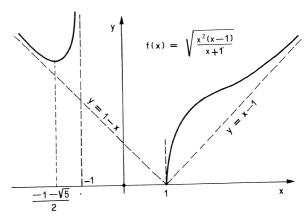
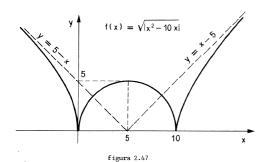


figura 2.46

2.57 Studiare la seguente funzione e disegnarne grafico:

$$f(x) = \sqrt{|x^2-10|x|} .$$

首件


[E' definita per ogni x $\in \mathbb{R}$. Si annulla per x=0, x=10, ed è positiva altrimenti. Ammette asintoti obliqui di equazione y=x-5 (per x $\rightarrow +\infty)$ e y=5-x (per x \rightarrow - $^{\infty}$). Non è derivabile per x=0, x=10, che risultano punti di minimo assoluto (perchè f(0)=f(10)=0 \leq f(x), \forall x \in R). La de rivata prima si annulla per x=5, che risulta di massimo relativo. Da notare i seguenti limiti relativi alla derivata prima

$$\lim_{x \to 10^+} f'(x) = \lim_{x \to 0^+} f'(x) = +\infty , \quad \lim_{x \to 10^-} f'(x) = \lim_{x \to 0^-} f'(x) = -\infty$$

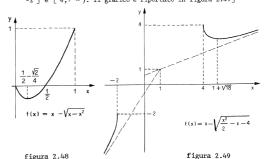
che, nel grafico in figura 2.47, corrispondono alle singolarità per x=0, x=10. La derivata seconda, dove esiste, è negativa. Per finire, osserviamo che vale l'equivalenza:

$$\begin{cases} y = \sqrt{|x^2 - 10x|} \\ 0 \le x \le 10 \end{cases} \iff \begin{cases} (x-5)^2 + y^2 = 25 \\ y \ge 0 \end{cases}$$

Ciò comporta che, nell'intervallo [0,10], il grafico della funzione f(x) è costituito dalla semicirconferenza di centro (5,0), raggio 5, con $y \ge 0$]

2.58 Studiare le seguenti funzioni

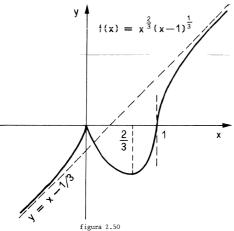
(a)
$$f(x) = x - \sqrt{x-x^2}$$


(a)
$$f(x) = x - \sqrt{x-x^2}$$
 (b) $f(x) = x - \sqrt{\frac{x^2}{2} - x - 4}$

[(a) E' definita nell'intervallo [0,1] . Si annulla per x=0 e x=1/2; è positiva nell'intervallo (1/2,1]. Non è derivabile per x=0, x=1, che risultano punti di massimo. La derivata prima si annulla per x= =1/2- $\sqrt{2}/4$, che è un punto di minimo interno. La funzione è convessa nel suo insieme di definizione. Il grafico è riportato in fi-

(b) E' definita nell'insieme (- ∞ ,-2] \cup [4,+ ∞). E' positiva per $x \ge 4$ ed è negativa per $x \le -2$. Le rette di equazione

$$y = \left(1 + \frac{\sqrt{2}}{2}\right)x \pm \frac{\sqrt{2}}{2}$$
 (per $x \to \pm \infty$


sono asintoti obliqui per f(x). La funzione non è derivabile x=-2, x=4, che sono punti di massimo relativo. Il punto x=1+ $\sqrt{18}$ è di minimo relativo. La funzione è convessa negli intervalli $(-\infty,$ -2] e [4,+ $^{\infty}$). Il grafico è riportato in figura 2.49]

2.59 Studiare la funzione $f(x) = x^{2/3} (x-1)^{1/3}$.

[La funzione è definita su tutto l'asse reale. Si annulla per x=0,x==1 ed è positiva per x > 1. La retta di equazione y=x-1/3 è un asi $\underline{\mathbf{n}}$ toto obliquo per x $\rightarrow \pm \infty$. La derivata si annulla per x=2/3, che $\,$ è un punto di minimo relativo. La funzione non è derivabile nei punti x=0, x=1 e valgono i limiti:

il diverso comportamento della derivata prima a destra e sinistra di 0 rispetto al comportamento a destra e sinistra di 1 si rispecchia nelle differenze del grafico in figura 2.50 nell'intorno di x=0, rispetto all'intorno di x=1. La funzione risulta convessa negli intervalli $(-\infty,0$], [0,1]e concava in $[1,+\infty)$]

2.60 Studiare le seguenti funzioni e disegnarne grafico

(a)
$$f(x) = \sqrt[3]{2x^2 - x(1+x^2)}$$
 (b) $f(x) = \sqrt[3]{x^3 + 5x^2 + 8x}$

[(a) Definita per ogni $x \in R$; si annulla per x=0 e x=1 (ed in tali punti la funzione non è derivabile); è positiva per x < 0. La derivata prima si annulla per x=1/3, che è un punto di minimo relativo.La retta di equazione y=2/3-x è un asintoto obliquo (per $x\to\pm\infty$) per la funzione. E' convessa negli intervalli [0,1] e [1,+ ∞) ed è concava in $(-\infty,0$]. Il grafico è rappresentato in figura 2.51. (b) La funzione, definita per ogni $x \in R$, si annulla per x=0, è positiva per x>0 ed è negativa per x<0. Ammette asintoto obliquo per

 $x\to\pm\infty$ di equazione y=x+5/3. La funzione è derivabile per ogni $x\neq0$ e f'(x) $\to+\infty$ per x $\to0$. La derivata prima si annulla per x=-2 (punto di massimo) e x=-4/3 (punto di minimo). E' crescente negli'intervalli (-\pi,-2], [-4/3,+\pi), mentre è decrescente nell'intervallo [-2,-4/3]. Il grafico è rappresentato in figura 2.52]

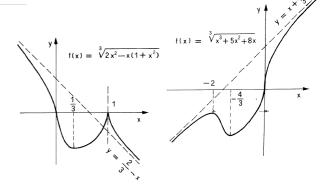


figura 2.51

figura 2.52

 $\frac{1}{4}$ 2.61 Studiare la funzione $f(x) = x^{2/5} (5-x)^{3/5}$

[E' definita su R. E' negativa per x > 5, si annulla per x=0, x=5, è positiva altrimenti. Ammette asintoto obliquo di equazione y=3-x.Non è derivabile per x=0, x=5. La derivata prima si annulla per x=2 ed è positiva nell'intervallo (0,2). Il punto x=2 è di massimo relativo. Il punto x=0 risulta di minimo relativo (perchè f(x) è decrescente per x \leq 0 ed è crescente per x \in [0,2]). La derivata seconda, quan-

do esiste, è positiva per x > 5 ed è negativa per x < 5. La funzione risulta convessa nell'intervallo $\ \big[\ 5,+\ ^{\infty}\,\big).$ Il grafico è rappresentato in figura 2.53 $\big]$

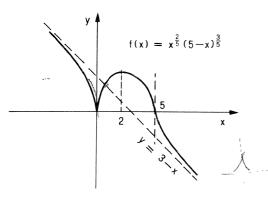


figura 2.53

2F. Grafici di funzioni logaritmiche

2.62 Studiare la funzione $f(x) = x \log x$.

[E' definica e continua per x > 0. Risulta f(x) > 0 se e solo se $\log x > 0$, cioè se e solo se x > 1. Come verificato nell'esercizio 2.29 (a), la funzione non ha asintoti verticali, nè orizzontali, nè obliqui. La derivata prima vale $f'(x) = \log x + 1$, per ogni x > 0. Perciò f'(x) > 0 se e solo se $\log x > -1$, cioè se e solo se x > 1/e; inoltre f'(x) = 0 per x = 1/e. Ne segue che f(x) è strettamente crescente in (0,1/e] ed è strettamente crescente in $(1/e, +\infty)$; il punto x=1/e è di minimo (relativo ed assoluto). Essendo f''(x)=1/x > 0 per ogni x > 0, la funzione è convessa in $(0, +\infty)$. Si osservi anche

che f'(x) \rightarrow - ∞ per x \rightarrow 0⁺. Il grafico è rappresentato in figura 2.54]

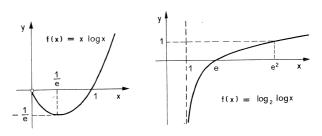


figura 2.54

figura 2.55

2.63 Studiare la funzione $f(x) = \log_2 \log x$.

[La funzione è definita per quei valori di x per cui log x > 0, cioè per x \in (1,+ ∞). Per x=e risulta log e=1, e quindi f(e)=0; inoltre f(x) > 0 per x > e, f(x)<0 per x \in (1,e). Dato che f(x) \rightarrow ∞ per x \rightarrow 1⁺, la retta di equazione x=1 è un asintoto verticale per il grafico di f(x). La funzione non ha asintoti orizzontali, perchè f(x) \rightarrow \rightarrow \rightarrow ∞ per x \rightarrow + ∞ . Non ha neanche asintoti obliqui, perchè, in base alla regola di L'Hôpital, risulta

$$\lim_{x \to +\infty} \frac{F(x)}{x} = \lim_{x \to +\infty} \frac{\log_2 \log x}{x} = \lim_{x \to +\infty} \frac{1}{x \log x \log 2} = 0.$$

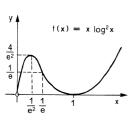
Le derivate prima e seconda valgono, per ogni x > 1,

$$f'(x) = \frac{1}{x \log x \log 2}$$
; $f''(x) = \frac{1 + \log x}{\log 2(x \log x)^2}$.

Si vede facilmente che f'(x) > 0 e che f''(x) < 0 per ogni x > 1. Per ciò f(x) è crescente e concava in (1+ $^{\infty}$). Il grafico è rappresentato in figura 2.55; per fare il disegno è utile osservare che f(e²)=1]

2.64 Studiare le seguenti funzioni e disegnarne grafico

(a) $f(x) = x \log^2 x$


(b) $f(x) = \log^2 x + 2 \log x$

[(a) E'definita e continua per x > 0, si annulla per x=1 ed è positiva altrimenti. Il limite di f(x) per x \rightarrow 0⁺ vale 0. Non ha asintoti. La funzione è derivabile per x > 0 e le derivate prima e seconda valgono

 $f'(x) = \log x (\log x + 2)$; $f''(x) = \frac{2}{x} (\log x + 1)$.

La derivata prima si annulla per x=1 e x=e^{-2}, è negativa nell'intervallo (e^{-2},1) ed è positiva altrimenti. Inoltre, si noti che f'(x) \rightarrow + \leftrightarrow per x \rightarrow 0[†]. Il punto x=e^{-2} è di massimo relativo (e risulta f(e^{-2})=4e^{-2}), mentxe x=1 è di minimo. La derivata seconda si annulla per x=e^{-1}, che è un punto di flesso, dato che f''(x)>0 per x > e^{-1}, mentre f''(x) < 0 per x \in (0,e^{-1}). Il grafico è rappresentato in figura 2.56.

(b) E' definita per x > 0. Si annulla per x=e^2 e x=1 ed è negativa in (e^2,1). L'asse y è asintoto verticale. E' decrescente in $(0,e^{-1}]$ crescente in $[e^{-1},+\infty)$; il punto $x=e^{-1}$ è di minimo assoluto ed il valore minimo è $f(e^{-1})=-1$. La funzione è convessa in (0,1], è conca va in $[1,+\infty)$. Il grafico è rappresentato in figura 2.57]

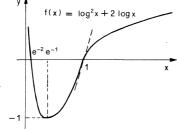


figura 2.56

figura 2.57

+ 2.65 Studiare la funzione $f(x) = \frac{\log x}{1 + \log x}$

[L'insieme di definizione è $(0,e^{-1}) \cup (e^{-1},+\infty)$. La funzione si annul la per x=1, è negativa nell'intervallo $(e^{-1},1)$ ed è positiva altrimenti. Valgono le relazioni di limite

Perciò, la retta x=1/e è asintoto verticale per f(x), mentre la retta di equazione y=1 è asintoto orizzontale. Le derivate prima e seconda valgono:

$$f'(x) = \frac{1}{x(1+\log x)^2}$$
; $f''(x) = \frac{-(\log x+3)}{x^2(1+\log x)^3}$

Si osservi che f'(x) \rightarrow + ∞ per x $^+$ 0 † . Essendo f'(x) > 0 per ogni x del l'insieme di definizione, la funzione è strettamente crescente in $(0,e^{-1})$ e $(e^{-1},+\infty)$. La derivata seconda si annulla per x $^-$ 8 3 ed è positiva nell'intervallo $(e^{-3},\ e^{-1})$, dove la funzione è convessa. Il punto x $^-$ 8 3 9 è di flesso. Il grafico è rappresentato in figura 2.58

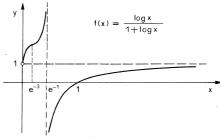


figura 2.58

2.66 Studiare le seguenti funzioni e disegnarne i grafico

(a) $f(x) = \log \frac{1+x}{1-x}$

(b) $f(x) = \log \left| \frac{1+x}{1-x} \right|$

[(a) E' definita nell'intervallo (-1,1). Si annulla per x=0 ed è positiva per x \in (0,1). E' una funzione dispari, infatti

$$f(-x)=\log \frac{1-x}{1+x} = \log \left(\frac{1+x}{1-x}\right)^{-1} = -\log \frac{1+x}{1-x} = -f(x)$$
.

Le rette di equazione x=-1, x=1 sono asintoti verticali per la fun zione. Le derivate prima e seconda valgono

$$f'(x) = \frac{2}{1-x^2}$$
; $f''(x) = \frac{4x}{(1-x^2)^2}$

Si verifica che f(x) è strettamente crescente, e che è convessa in [0,1). Il punto x=0 è di flesso. Il grafico è in figura 2.59. Osser viamo che f(x) è esprimibile in termini della funzione inversa della tangente iperbolica nel modo seguente: f(x) = 2 sett tg h x.

(b) E' definita per x# ±1. E' una funzione dispari. Le rette $x=\pm 1$ sono asintoti verticali; la retta y=0 è asintoto orizzontale. Le derivate di f(x) hanno la stessa espressione analitica delle derivate calcolate nella precedente parte (a) (si ricordia tal fine che la derivata, rispetto a t, della funzione log $\mid t \mid$ è 1/t). La funzione è crescente in (-1,1) ed è convessa in $\left[\ 0,1\right)$ e (1,+ $^{\infty}$). Il grafico è riportato in figura 2.60 $\right]$

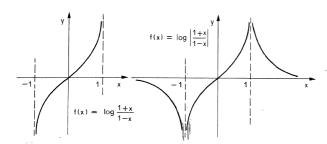


figura 2.59

figura 2.60

2.67 Disegnare il grafico della funzione f(x) =

$$= \log \frac{x^2}{|x+2|}$$

[E' definita per x \neq - 2, x \neq 0. Si annulla per x=-1, x=2. Valgono le relazioni di limite

La funzione ammette due asintoti verticali, di equazione x+2=0, x=0. La derivata prima si annulla per x=-4 ed è positiva negli intervalli (-4,-2), $(0,+^{\infty})$. Il punto x=-4 è di minimo relativo. Il grafico è rappresentato in figura 2.61]

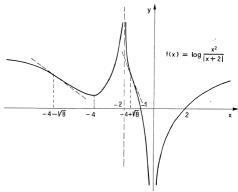


figura 2.61

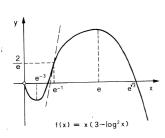
2.68 Studiare le seguenti funzioni e disegnarne il grafico

(a)
$$f(x)=x(3-\log^2 x)$$

(b)
$$f(x) = x(1+\log^2|x|)$$

[(a) E' definita per x > 0. Si annulla per x = $e^{\pm \sqrt{3}}$ ed è positiva nell'intervallo $\left(e^{-\sqrt{3}}, e^{\sqrt{3}}\right)$. La funzione non ha asintoti, a

causa delle relazioni di limite:


$$\lim_{x\to 0^+} f(x) = 0 \quad ; \qquad \lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{f(x)}{x} = -\infty.$$

La derivata prima f'(x)=3-log ^2 x-2 log x si può studiare ponendo t= log x e risolvendo la disequazione di secondo grado $3-t^2-2t>0$.La derivata prima risulta positiva per x \in (e^3,e). Il punto x=e^{-3} è di minimo, mentre il punto x=e è di massimo; in corrispondenza la funzione assume i valori $f(e^{-3})=-6e^{-3}$, f(e)=2e. Si verifica anche che la funzione è convessa nell'intervallo (0,1/e] ed è concava in $[1/e,+\infty)$; il punto x=1/e è di flesso, e risulta f(1/e)=2/e.Il grafico è rappresentato in figura 2.62.

(b) E' definita per x \neq 0. E' una funzione dispari. Non ha asintoti. Le derivate prima e seconda valgono

$$f'(x) = (1+\log |x|)^2$$
; $f''(x) = \frac{2}{x} (1+\log |x|)$, $\forall x \neq 0$.

E' una funzione crescente. I punti $x=\pm 1/e$, in cui si annullano sia la derivata prima che la derivata seconda, sono di flesso a tangente orizzontale. Si noti infine che, per $x\to 0$, la retta tangente diventa verticale. Il grafico è in figura 2.63]

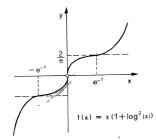


figura 2.62

figura 2.63

2.69 Disegnare i grafici delle funzioni

(a)
$$f(x)=x^3(\log |x|-\frac{1}{3})$$
 (b) $f(x)=x^4(\log |x|-\frac{1}{4})$

[(a) E' una funzione dispari,definita per x#0; f($\pm \sqrt[3]{e}$) =0; x=1 è un punto di minimo, x=-1 è un punto di massimo. E' convessa negli intervalli (-e^{-1/2},0), (e^{-1/2},+ ∞); i punti x= \pm e^{-1/2} sono di flesso. Per x \rightarrow 0 risulta f(x) \rightarrow 0, f'(x) \rightarrow 0. Grafico in figura 2.64. (b) E' una funzione pari, definita per ogni x#0. Si annulla per x = $\pm \sqrt[4]{e}$; x = \pm 1 sono punti di minimo. E' convessa per | x | > e^{-1/3}. Per x \rightarrow 0 risulta f(x) \rightarrow 0, f'(x) \rightarrow 0. Grafico in figura 2.65]

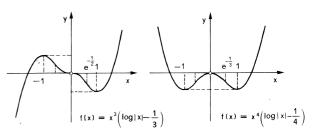
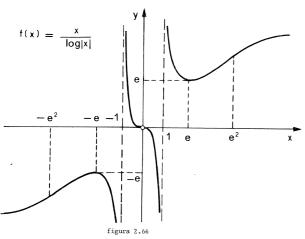


figura 2.64

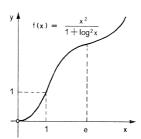

figura 2.65

2.70 Studiare la funzione $f(x) = x/\log|x|$.

[\mathbb{E}^{1} una funzione dispari, definita per x \neq 0 e x \neq ± 1. In base ai limiti

si può affermare che f(x) ammette x= $\pm\,1$ come asintoti verticali, e non ha altri asintoti. La derivata prima si annulla per x=e (punto di minimo) e x=-e (punto di massimo). La derivata prima converge a zero per x $\rightarrow\,0$. La derivata seconda si annulla per x= $\pm\,e^2$, che sono

punti di flesso. Il grafico è rappresentato in figura 2.66] $\,$



2.71 Disegnare il grafico delle funzioni

(a)
$$f(x) = \frac{x^2}{1 + \log^2 x}$$
 (b) $f(x) = \log x - \log^2 x$

[(a) Definita per ogni x > 0; $\lim_{x\to 0^+} f(x) = 0$. Non ha asintoti. La derixo vata prima è positiva per ogni x>0 e converge a zero per $x\to 0^+$. La funzione è concava nell'intervallo [1,e]. I punti x=1, x=e sono di flesso. Il grafico è in figura 2.67.

(b) Definita per $x \in (0, +\infty)$. L'asse y è asintoto verticale. Si annulla per x=1, x=e; è positiva nell'intervallo (1,e). Ha massimo per x== $e^{1/2}$ ed ha un punto di flesso per x= $e^{3/2}$. Il grafico è in figura 2.68

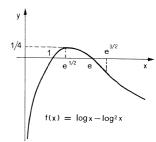


figura 2.67

figura 2.68

2.72 Studiare le seguenti funzioni:

(a)
$$y=x^2-5x+\log |x-1|$$
 (b) $y=x^2-3x-\log |x-1|$

[(a) Definita per $x\neq 1$. Asintoto verticale per x=1. Punto di massimo per x=3/2, punto di minimo per x=2. E' convessa negli intervalli $(-\infty, 1-\sqrt{2}/2]$, $[1+\sqrt{2}/2, +\infty)$.

(b) Definita per x#1. Asintoto verticale per x=1. I punti x=1/2, x=2 sono di minimo relativo. E' convessa negli intervalli $(-\infty,1),(1,+\infty)$ e non ha punti di flesso]

2.73 Disegnare il grafico de'lle funzioni f(x) sottoindicate, dopo aver semplificato l' espressione in base alle proprietà dei logaritmi e del valo re assoluto.

(a)
$$f(x)=x+ \log|x|- \log|x^3-x|$$

(b)
$$f(x)=2x+1+\log |x^3+x^2+x+1|-\log |x+1|$$

[(a) La funzione è definita per x \neq 0. Semplificando in base alle proprietà dei logaritmi e del valore assoluto, si ottiene per ogni x \neq 0:

$$f(x) = x - \log |x^2 - 1|$$
.

La funzione tende a $\pm \infty$ per x $\to \pm \infty$. Le rette di equazione x= ± 1 so

no asintoti verticali non ci sono altri asintoti. Le derivate prima e seconda valgono

$$f'(x) = \frac{x^2 - 2x - 1}{x^2 - 1}$$
; $f''(x) = 2 \frac{x^2 + 1}{(x^2 - 1)^2}$.

La derivata prima si annulla per $x=1\pm\sqrt{2}$, che sono punti di minimo relativo. La derivata seconda, quando è definita, è positiva.Il grafico è rappresentato in figura 2.69; si noti la discontinuità (eliminabile) per x=0.

(b) La funzione è definita per x#-1. Semplificando si ottiene

$$f(x) = 2x+1+log(x^2+1)$$
 , $\forall x\neq -1$

Le derivate prima e seconda valgono

$$f'(x) = 2 \frac{x^2 + x + 1}{x^2 + 1}$$
; $f''(x) = 2 \frac{1 - x^2}{(x^2 + 1)^2}$.

La funzione risulta crescente; è convessa nell'intervallo (-1,1] ed è concava all'esterno. Il punto x=1 è di flesso, mentre si ricordi che f(x) non è definita per x=-1 (ma può essere prolungata con continuità)]

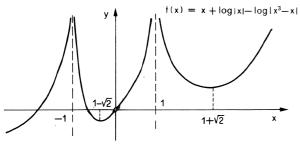
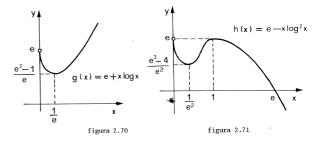


figura 2.69

2.74 Determinare l'insieme di definizione, il segno, gli asintoti, il segno della derivata prima, e disegnare il grafico della funzione


$$f(x) = \frac{\log x}{e + x \log x}$$

[La funzione non è definita per $x \leq 0$. Per determinare l'insieme di de finizione di f(x) occorre stabilire se il denominatore si annulla per qualche $x \in (0, +\infty)$; a tal fine, studiamo, per x > 0, la funzione

$$g(x) = e+x \log x$$
.

Risulta lim
$$g(x)$$
 = e, lim $g(x)$ =+ ∞ , lim $g(x)/x=+\infty$. $x \to +\infty$

La derivata g'(x) = log x + 1 si annulla per x=1/e, è positiva per x> >1/e, ed è negativa se x $\in (0,1/e)$. La funzione g(x) è decrescente in (0,1/e] ed è crescente in $[\ 1/e,+^\infty)$. Il punto x=1/e è di minimo assoluto ed il valore minimo è g(1/e)=(e²-1)/e > 0. Perciò la funzio ne g(x) è positiva per ogni x $\in (0,+^\infty)$. Il grafico di g(x) è rappresentato in figura 2.70.

Dato che g(x)>0 per ogni x>0, la funzione f(x) è definita per ogni x>0, si annulla per x=1, è positiva per x>1 ed è negativa nell'intervallo (0,1). Si verifica facilmente che l'asse y è un asintoto verticale (destro) e che l'asse x è asintoto orizzontale per f(x). La derivata prima, per x>0, vale:

$$f'(x) = \frac{e - x \log^2 x}{x(e+x \log x)^2}$$

Il denominatore di f'(x) è positivo per ogni x > 0. Consideriamo 11

$$h(x) = e^{-x} \log^2 x$$
.

La funzione h(x) è definita per x>0, tende ad e per $x\to0^+,$ diverge a- ∞ per $x\to+\infty$. La derivata

$$h'(x) = - \log x (\log x + 2)$$

si annulla per x=1 e x=e^-2. Il punto x=1 risulta di massimo, mentre il punto x=e^{-2} è di minimo relativo. Si veda il grafico di h(x) in figura 2.71. In particolare, essendo h(e^-2) = (e^3-4)/e^2 > 0, la fum zione h(x) è positiva nell'intervallo (0,1]; dato che h(x)è stret tamente decrescente per x \geq 1, si annulla una sola volta. Da verifi ca diretta si riconosce che h(x)=0 per x=e. Perciò h(x) < 0 per x>e e h(x) > 0 per x \in (0,e).

In base al segno di h(x), la derivata $f^{\dagger}(x)$ risulta positiva in (0,e) e negativa in (e,+ ∞). Il punto x=e è di massimo (assoluto) per f(x). Il grafico di f(x) è rappresentato in figura 2.72]

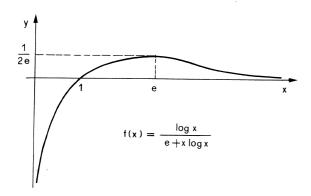
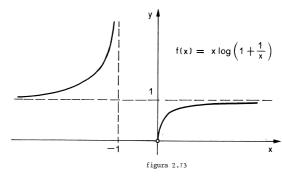


figura 2.72

2.75 Studiare le seguenti funzioni e disegnarne il grafico

(a)
$$f(x) = x \log \left(1 + \frac{1}{x}\right)$$

(b)
$$f(x) = \log \left(1 + \frac{1}{x}\right) - \frac{1}{1+x}$$


[(a) La funzione è definita nell'insieme $(-\infty,-1)$ U $(0,+\infty)$. E' positiva nel suo insieme di definizione. In base alle relazioni di limite

$$\lim_{x\to 0^+}f(x)=0 \text{ , } \lim_{x\to -1^-}f(x)=+\infty \text{ , } \lim_{x\to \pm\infty}f(x)=1 \text{ , }$$

si deduce che la retta x=-l è un asintoto verticale (sinistro)e y=1 è asintoto orizzontale per f(x). Le derivate prima e seconda valgono

$$f'(x) = \log\left(1 + \frac{1}{x}\right) - \frac{1}{1+x}$$
; $f''(x) = \frac{-1}{x(1+x)^2}$.

Dal segno della derivata seconda si può risalire al segno della derivata prima. Infatti, ad esempio per x>0, risulta $f^{**}(x)<0$ e quin di $f^{*}(x)$ è una funzione strettamente decrescente. Dato che $f^{*}(x)\rightarrow0$ per $x\rightarrow+\infty$, ne segue che $f^{*}(x)>0$ per ogni x>0. Analogamente, essendo $f^{**}(x)>0$ per ogni x<-1, in questo caso la derivata prima è strettamente crescente; dato che $f^{*}(x)\rightarrow0$ per $x\rightarrow-\infty$, ne segue di nuovo che $f^{*}(x)>0$. Perciò $f^{*}(x)>0$ nell'insieme di definizione (si

veda anche l'esercizio 1.54). La funzione risulta crescente e conves sa in (- ∞ ,-1), crescente e concava in (0,+ ∞). Il grafico è rap presentato in figura 2.73.

(b) La funzione è crescente e convessa in (- ∞,-1), decrescente e convessa in (0,+∞). Le rette x=0, x=-1 sono asintoti verticali, la retta x=0 è asintoto orizzontale

26. Grafici di funzioni esponenziali

2.76 Studiare le seguenti funzioni e disegnarne il grafico

(a)
$$f(x) = e^{\frac{1}{x}}$$
 (b) $f(x) = e^{\frac{x-1}{x}}$

[(a) E' definita per x#0; è positiva per ogni x#0. Dalle relazioni di limite

$$\lim_{x\to\,0^+} f(x) = + \,\,^{\infty} \,, \quad \lim_{x\to\,0^-} f(x) = 0 \quad, \quad \lim_{x\to\,\pm\,\infty} f(x) = 1 \,\,,$$

segue che la retta di equazione x=0 è un asintoto verticale destro , mentre y=1 è un asintoto orizzontale per $x \to \pm \infty$ (si veda anche l'e sercizio 2.29 (b)). Le derivate prima e seconda valgono

$$f'(x) = e^{\frac{1}{x}} \left(-\frac{1}{x^2}\right)$$
 ; $f''(x) = e^{\frac{1}{x}} \cdot \frac{1+2x}{x^4}$

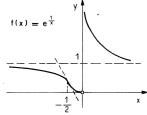


figura 2.74

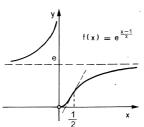


figura 2.75

Si noti che f'(x) \rightarrow 0 per x \rightarrow 0 ; ciò significa che la retta tangente diventa orizzontale quando x si avvicina a 0 da sinistra. Dal segno della derivata prima si deduce che f(x) è decrescente in (- ∞ ,0),(0,+ ∞). Dal segno della derivata seconda si deduce che f(x) è convessa negli intervalli [-1/2,0) e (0,+ ∞) ed è concava in (- ∞ ,-1/2] . Il grafico è rappresentato in figura 2.74.

(b) Grafico in figura 2.75]

2.77 Studiare la funzione $f(x) = e^{x} - x \cdot x$

[La funzione è definita su tutto l'asse reale. Prima di studiarne il segno, è opportuno calcolare la derivata prima:

$$f'(x) = e^{X} - 1.$$

Risulta f'(x)=0 per x=0, f'(x) > 0 per x > 0 e f'(x)<0 per x < 0.La funzione è quindi crescente in $[0,+\infty)$, ed è decrescente in $(-\infty,0]$. Il punto x=0 è di minimo assoluto e risulta

$$f(x) \ge f(0) = e^{0} - 0 = 1$$
 $\forall x \in R.$

In particolare ne segue che la funzione è positiva per ogni $x \in R$. Si verifica che la retta di equazione y=-x è asintoto obliquo per la funzione per $x \to -\infty$. La funzione è convessa su R. Il grafico è rap presentato in figura 2.76]

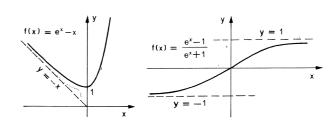


figura 2.76

figura 2.77

2.78 Studiare la funzione $f(x) = \frac{e^x - 1}{e^x + 1}$.

[E' definita su R. E' una funzione dispari; infatti:

$$f(-x) = \frac{e^{-x} - 1}{e^{-x} + 1} = \frac{1/e^{x} - 1}{1/e^{x} + 1} = \frac{1 - e^{x}}{1 + e^{x}} = -f(x) .$$

La retta y=1 è asintoto orizzontale per x $\rightarrow +\infty$; la retta y=-1 è asintoto orizzontale per x $\rightarrow -\infty$. Le derivate prima e seconda valgono

$$f'(x) = \frac{2e^x}{(1+e^x)^2}$$
;

$$f''(x) = \frac{2e^{X}(1-e^{X})}{(1+e^{X})^{3}}$$

Essendo f'(x) > 0 per ogni x \in R, la funzione è crescente su R. Essendo f''(x) \gtrless 0 per x \lessgtr 0, la funzione è convessa in (- ∞ ,0] ed è concava in [0,+ ∞). Il punto x=0 è di flesso. Il grafico è rappresentato in figura 2.77]

2.79 Studiare le seguenti funzioni e disegnarne il grafico

(a)
$$f(x) = \frac{1}{e^{x}-2}$$

(b)
$$f(x) = \frac{1}{3+e^{-x}}$$

[(a) E' definita per ogni x \neq log 2. E' positiva per x > log 2, è negativa per x < log 2. La retta di equazione x = log 2 è un asintoto verticale. La retta y=0 è un asintoto orizzontale per x \rightarrow + ∞ , la retta y=-1/2 è asintoto orizzontale per x \rightarrow - ∞ . E' decrescente e convessa per x > log 2, è decrescente e concava per x < log 2. Il grafico è in figura 2.78.

(b) E' definita, positiva e strettamente crescente su tutto 1' asse reale. Ammette asintoti orizzontali di equazione y = 1/3 (per $x \to +\infty$) e y = 0 (per $x \to -\infty$). E' convessa per x < - log 3 ed è concava per x > - log 3.

Il punto x = - log 3 è di flesso. Il grafico è $% \left[1\right] =-1$ rappresentato in figura 2.79]

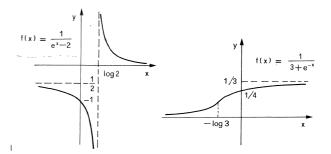


figura 2.78

figura 2.79

2.80 Studiare la funzione $f(x) = \frac{x-2}{e^x}$

[Fer il calcolo delle derivate è conveniente scrivere la funzione nel la forma $f(x) = (x-2)e^{-x}$. Ha un asintoto orizzontale (per $x \to +\infty$) di equazione y=0. Si annulla per x-2. Il punto x=3 è di massimo. Il punto x = 4 è di flesso. Il grafico è rappresentato in figura 2.80]

 $^{\it e}$ 2.81 Studiare le seguenti funzioni e disegnarne il gr $\underline{\underline{a}}$ fico

(a)
$$f(x) = e^{x-|x^2-x-2|}$$
 (b) $f(x) = e^{\frac{|x^2-x-2|}{x}}$

[(a) La funzione è definita, positiva e continua per ogni $x \in \mathbb{R}$. Dato che $f(x) \to 0$ per $x \to \pm \infty$, l'asse x è asintoto orizzontale per f(x). Per studiare la monotonia e la convessità di f(x), è opportuno preliminar mente stabilire il segno del trinomio x^2 -x-2 (che è positivo all'esterno dell'intervallo [-1,2] ed è negativo all'interno) ed in conseguenza scrivere:

$$f(x) = \begin{cases} e^{-x^2+2x+2} & \text{se } x < -1, \text{ oppure } x > 2 \\ e^{x^2-2} & \text{se } -1 \le x \le 2 \end{cases}.$$

La funzione non è derivabile per x=-1, x=2 (e ciò è ben visibile nel grafico in figura 2.81). Si verifica poi che la derivata prima è po sitiva per x < - 1 e 0 < x < 2, mentre è negativa per -1 < x < 0 e x > 2. La derivata prima si annulla per x=0, che è un punto di minimo relativo; i punti x=-1, x=2 risultano di massimo relativo. La derivata seconda, quando è definita, è positiva; la funzione non ha punti di flesso.

(b) Definita e positiva per x \neq 0. Valgono i limiti:

$$\lim_{x\to -\infty} f(x) = \lim_{x\to 0^+} f(x) = 0 ; \quad \lim_{x\to 0^+} f(x) = \lim_{x\to +\infty} f(x) = +\infty .$$

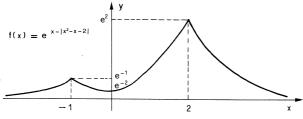


figura 2.81

La funzione ammette asintoto orizzontale di equazione y=0 e asintoto verticale x=0 (per x \Rightarrow 0†). La derivata prima è positiva per x < -1 e x > 2. La funzione non è derivabile per x=-1 (che è un punto di massimo relativo) e per x=2 (punto di minimo). La derivata seconda, dove è definita, è positiva]

2.82 Disegnare i grafici delle funzioni

$$(\mathbf{x}) \ \ \mathbf{f}(\mathbf{x}) = \frac{e^{\mathbf{x}^2 - 4\mathbf{x} - 5} + 1}{e^{\mathbf{x}^2 - 4\mathbf{x} - 5} - 1} \qquad (b) \ \ \mathbf{f}(\mathbf{x}) = \frac{e^{-(\mathbf{x} + 2)^2} + 1}{e^{-(\mathbf{x} + 2)^2} - 1}$$

[(a) figura 2.82 ; (b) figura 2.83]

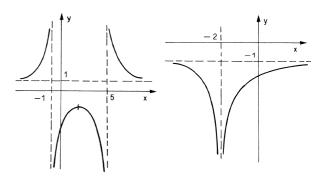


figura 2.82

figura 2.83

m imes 2.83 Studiare le seguenti funzioni e disegnarne il grafico

(a)
$$f(x) = e^x \sqrt{2x+1}$$

(b)
$$f(x) = e^{-x} \sqrt{x-1}$$

[(a) Definita per x \geq - 1/2; f(-1/2)=0; è positiva per x > - 1/2. Ten de a + ∞ per x \rightarrow + ∞ e non ha asintoti. Le derivate prima e secon-

da, per x > - 1/2, valgono

$$f'(x) = 2e^{x} \frac{x+1}{\sqrt{2x+1}}$$
; $f''(x) = 2e^{x} \frac{2x^{2}+4x+1}{(2x+1)^{3/2}}$

La derivata prima è positiva per ogni x > -1/2 e tende $a + \infty$ per $x \to -1/2$. La funzione è convessa per $x \ge -1+\sqrt{2}/2$; il punto $x = -1+\sqrt{2}/2$ è di flesso. Il grafico è rappresentato in figura 2.84. (b) Definita per $x \ge 1$; f(1) = 0; è positiva per x > 1. L'asse x è asintoto orizzontale per $x \to +\infty$. Non è derivabile per x = 1 e $f'(x) \to +\infty$ per $x \to 1^+$. Ha punto di massimo (assoluto) per x = 3/2 ed un punto di flesso per x > 3/2. Il grafico è rappresentato in figura 2.85

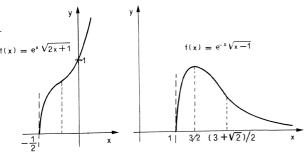


figura 2.84

figura 2,85

2.84 Studiare la funzione $f(x) = e^{-x/3} (3x-2)^{1/9}$.

[E' definita e continua su tutto l'asse realè. Si annulla per x=2/3. ed è positiva per x>2/3. L'asse x è asintoto orizzontale per $x\to +\infty$. Non è derivabile per x=2/3 e f' $(x)\to +\infty$ per $x\to 2/3$. La funzione ha un punto di massimo (assoluto) per x=1, due punti di flesso per x=0, x=2, e cambia la concavità anche in corrispondenza di x=2/3. Il grafico è rappresentato in figura 2.86]

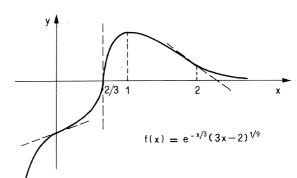


figura 2.86

$$2\sqrt{85}$$
 Studiare la funzione $f(x) = x e^{\frac{1}{\log x}} \times$

$$\lim_{x\to 0^+} f(x) = 0 \cdot 1 = 0, \ \lim_{x\to 1^-} f(x) = 1 \cdot e^{-\infty} = 0, \ \lim_{x\to 1^+} f(x) = 1 \cdot e^{+\infty} = +\infty,$$

la retta x=1 è l'unico asintoto verticale (destro) per f(x). Dato che f(x) \rightarrow + ∞ per x \rightarrow + ∞ , è opportuno verificare se esistono asintoti \underline{o} bliqui; risulta:

$$\lim_{x\to +\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} e^{\frac{1}{\log x}} = 1;$$

$$\lim_{x \to +\infty} \left[\begin{array}{c} \texttt{f}(\texttt{x}) - \texttt{x} \end{array} \right] = \lim_{x \to +\infty} \frac{\frac{1}{\log x}}{1/x} = \lim_{x \to +\infty} \frac{1}{e^{\log x}} = \frac{x}{\log^2 x}$$

Si verifica separatamente, utilizzando di nuovo il teorema di L'Hôpi tal, che $x/\log^2 x \to +\infty$ per $x \to +\infty$. Perciò $[f(x)-x] \to +\infty$ per $x \to +\infty$ e la funzione non ha asintoti obliqui. Le derivate prima e seconda valore.

$$f^{\, t}(x) = e^{\, \frac{1}{\log x}} - \frac{\log^2 x - 1}{\log^2 x} \quad ; \quad f^{\, tt}(x) = e^{\, \frac{1}{\log x}} - \frac{-\log^2 x + 2 \log x + 1}{x \, \log^4 x} \; .$$

Risulta f'(x)=0 per log x= ± 1 , cioè per x=e e per x=1/e; f(x) è crescente negli intervalli (0,1/e), (e,+ $^{\infty}$). Il punto x=1/e è di massimo relativo, x=e è di minimo relativo. Risultano utili per disegnare il grafico in figura 2.87 anche i limiti seguenti:

$$\lim_{x\to 0^+}f'(x)=1 \quad ; \quad \lim_{x\to 1^-}f'(x)=0.$$
 La funzione è convessa negli intervalli $\left[e^{1-\sqrt{2}},1\right)$, $\left(1,e^{1+\sqrt{2}}\right]$ I punti $x=e^{1\pm\sqrt{2}}$ sono di flesso]

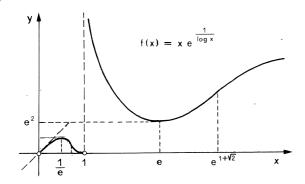


figura 2.87

2.86 Studiare la seguente funzione (prescindendo dal segno della derivata seconda) e disegnarne il grafico

$$f(x) = \frac{xe^{-x}}{x - \log x} .$$

definizione occorre stabilire se il denominatore si annulla; a tal fine, studiamo per x > 0 la funzione

$$g(x) = x - \log x.$$

La derivata g'(x) = (x-1)/x si annulla per x=1, è positiva per x>1ed è negativa nell'intervallo (0,1). Perciò x=1 è di minimo assoluto per la funzione g(x) e si ha g(x) \geq g(1)=1, per ogni x > 0.

Quindi il denominatore di f(x) è sempre positivo; ne segue $\ \ \,$ che $f\left(x\right)$ è definita e positiva per ogni x > 0. Essendo

$$\lim_{x\to 0^+} f(x) = 0 , \lim_{x\to +\infty} f(x) = 0 ,$$

la retta y=0 è l'unico asintoto per f(x). La derivata prima vale
$$f'(x) = \frac{e^{-x}}{(x\text{-log }x)^2} \ (x\text{-}1)(\log x\text{-}x\text{-}1) \quad .$$

Allo scopo di stabilire il segno di f'(x), è utile studiare per x>0la funzione:

$$h(x) = log x - x - 1$$
.

Come fatto in precedenza $\ \ per\ g(x)\,,$ si verifica che h(x) è crescente in (0,1] ed è decrescente in $[1,+\infty)$; il punto x=1 è di massimo assoluto per h(x) e si ha h(x) \leq h(1) =-2. Ne segue che

$$f^{\tau}(x) \geq 0 \iff x\text{-}1 \leq 0 \iff x \leq 1 \ ;$$

$$f^{\dagger}(x) \leq 0 \iff x-1 \geq 0 \iff x \geq 1.$$

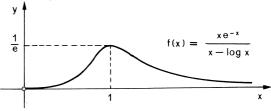


figura 2.88

Il punto x=1 è di massimo (assoluto) per f(x) ed il massimo vale f(l)=1/e. Per disegnare il grafico in figura 2.88 è anche utile osservare che f'(x) \rightarrow 0 per x \rightarrow 0 $^{+}$]

- 2.87 Studiare la funzione $f(x) = e^{-x} \left(\log|x| + \frac{x}{|x|} \right)$

E' definita per x≠0 e si può rappresentare nella forma:

$$\mathbf{f}(x) = \begin{cases} e^{-x} (\log x + 1) & \text{se} & x > 0 \\ e^{-x} (\log(-x) - 1) & \text{se} & x < 0 \end{cases}$$

Cominciamo a studiare la funzione per x > 0. E' positiva per x > 1/e ed è negativa nell'intervallo (0,1/e). In base ai limiti:

$$\lim_{x\to 0^+} f(x) = \infty , \qquad \lim_{x\to +\infty} f(x) = 0 ,$$

si può affermare che x=0 è asintoto verticale destro e y=0 è asintoto orizzontale per x $\to +\infty$. La derivata prima vale

$$\dot{f}'(x) = e^{-x} \left(\frac{1}{x} - \log x - 1 \right)$$
, $\forall x > 0$

Allo scopo di determinare il segno di f'(x), consideriamo

$$g(x) = \frac{1}{x} - \log x - 1$$
;

Essendo g'(x) = $-\frac{1}{x^2}$ (1+x) < 0 per ogni x > 0, la funzione g(x) è

strettamente decrescente. Dato che g(1)=0, la funzione g(x) è positiva in (0,1) ed è negativa in (1,+ ∞). Perciò f'(x) è positiva in (0,1) ed è negativa in (1,+ ∞); il punto x=1 è di massimo relativo per f(x), ed il massimo vale f(1)=1/e.

Fer x < 0 la funzione f(x) è positiva nell'intervallo (- $^{\infty}$,-e) , si annulla per x=-e ed è negativa in (-e,0). In base ai limiti

$$\lim_{x\to 0^-} f(x) = -\infty \;, \quad \lim_{x\to -\infty} f(x) = +\infty \;, \quad \lim_{x\to -\infty} \frac{f(x)}{x} = -\infty \;,$$

risulta che x=0 è asintoto verticale sinistro e che f(x) non ha al-

$$q(i)=0$$

 $\times > 1 \Rightarrow q(x) < 0$
 $\times < 1 \Rightarrow q(x) > 0$

tri asintoti per x $\rightarrow -\infty$. La derivata prima vale

$$f'(x) = e^{-x} \left(\frac{1}{x} - \log (-x) + 1 \right)$$
, $\forall x < 0$.

Per determinare il segno di f'(x) per x < 0, consideriamo

$$h(x) = \frac{1}{x} - \log(-x) + 1$$
;

la derivata prima vale $h^+(x) = -\frac{1}{x^2}$ (1+x), si annulla per x=-1,è positiva per x < -1 ed è negativa in (-1,0). La funzione h(x)è strettamente crescente in $(-\infty,-1]$ ed è strettamente decrescente in [-1,0). Il punto x=-1 è di massimo per h(x). Essendo h(-1)=0, risulta h(x) < 0 in $(-\infty,-1)$ e in (-1,0). In corrispondenza, $f^+(x)$ si annulla per x=-1 ed è negativa per ogni altro x < 0. La funzione f(x) risulta strettamente decrescente in $(-\infty,0)$ ed il punto x=-1 è di flesso a tangente orizzontale. Il grafico è rappresentato in figura 2.89 $\Big|$

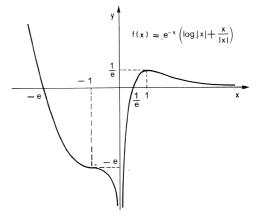


figura 2.89

2.88 Disegnare il grafico della funzione $f(x) = x^{\sqrt{x}}$.. [E' possibile rappresentare la funzione nella forma

$$f(x) = x^{\sqrt{X}} = e^{\sqrt{X} \log X}$$

E' definita e positiva per x > 0; valgono i limiti

$$\lim_{x\to 0^+} \operatorname{e}^{\sqrt{x} \log x} = \operatorname{e}^0 = 1 , \qquad \lim_{x\to +\infty} f(x) = + \infty$$

La funzione non ha asintoti. La derivata prima vale

$$f'(x) = \frac{e^{\sqrt{x} \log x}}{\sqrt{x}} \left(\frac{1}{2} \log x + 1\right)$$

e si annulla quando log x = -2, cioè per x=e $^{-2}$, che è punto di min<u>i</u> mo assoluto per f(x). La funzione è convessa. Il grafico è rappresentato in figura 2.90]

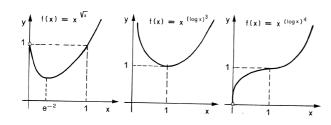


figura 2.90

figura 2.91

figura 2.92

2.89 Studiare le seguenti funzioni e disegnarne il : grafico

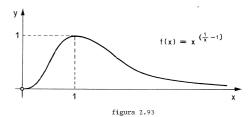
(a)
$$f(x) = x^{(\log x)^3}$$
 (b) $f(x) = x^{(\log x)^4}$

 $\left[\text{ (a) Si ha } f(x) = x^{\left(\log x\right)^3} = e^{\left(\log x\right)^{4\epsilon}} \text{. La funzione è definita e positiva per } x > 0. \text{ L'asse } y \text{ è asintoto verticale. La derivata prima }$

$$f'(x) = e^{(\log x)^4} \cdot 4(\log x)^3 \cdot \frac{1}{x}$$

Si annulla per x = 1, è positiva per x > 1 ed è negativa per x \in (0,1). Il punto x=1 è di minimo assoluto. La funzione è convessa in base al seguente argomento: la derivata seconda vale

$$f''(x) = e^{(\log x)^4} \cdot \frac{4}{x^2} [4(\log x)^4 + 12 - \log x];$$


la derivata della funzione g(t)=4t 4 +12-t vale g'(t)=16t 3 -1 e si annulla per t=16 $^{-1/3}$, che risulta punto di minimo per g(t). Il valore minimo è

$$g(16^{-1/3}) = 4 \cdot 16^{-4/3} + 12 - 16^{-1/3} > 4 \cdot 16^{-4/3} + 12 - 1 > 11 > 0;$$

(b) La funzione è definita, positiva e crescente per ogni x>0. Il punto x=1 è di flesso a tangente orizzontale. Il grafico è in figura 2.92. Si notino i limiti:

$$\lim_{x \to 0^+} f(x) = 0$$
, $\lim_{x \to 0^+} f'(x) = + \infty$

2.90 Verificare che il grafico della funzione

$$f(x) = x \qquad (\frac{1}{x} - 1)$$

è del tipo rappresentato in figura 2.93.

2.91 Studiare la seguente funzione e disegnarne i grafico

grafico
$$f(x) = \left(1 + \frac{1}{x}\right)^{x} \cdot \lim_{x \to 0} \left(\frac{1 + \frac{1}{x}}{x}\right)^{x} = \left[E' \text{ definita quando } 1 + 1/x > 0, e \text{ ciò accade negli intervalli } (-\infty, -1), e \text{ ciò accade negli } (-\infty, -1), e$$

E' definita quando 1+1/x > 0, e ciò accade negli intervalli $(-\infty,-1)$, $(0,+\infty)$. Nell'insieme di definizione la funzione è positiva. Per studiare ulteriormente la funzione è opportuno rappresentarla nella forma:

$$x \log \left(1 + \frac{1}{x}\right)^{x}$$

$$f(x) = e$$

Dai seguenti limiti:

$$\lim_{x\to\pm\infty}\left(1+\frac{1}{x}\right)^{X}=\text{e , } \overbrace{\lim_{x\to0^{+}}f(x)=1,}^{\text{lim }}\lim_{x\to-1^{-}}f(x)=+\text{ }^{\infty}\text{ ,}$$

si deduce che la retta di equazione y=e è asintoto orizzontale, e la retta x=-1 è asintoto verticale sinistro per f(x). La derivata prima vale

$$f^{\,t}(x) \! = \! e^{ \ \ \, x \, \log \, \left(1 \! + \, \frac{1}{x} \, \right) } \left[\ \, \log \, \left(1 \! + \, \frac{1}{x} \, \right) \ \, - \, \, \frac{1}{1 \! + \! x} \, \, \, \right] \ \, .$$

Il segno della derivata prima è identico al segno della funzione

$$g(x) = \log \left(1 + \frac{1}{x}\right) - \frac{1}{1+x}$$
.

L'insieme di definizione di g(x) è uguale all'insieme di definizione di f(x) e la derivata vale

$$g'(x) = \frac{-1}{x(1+x)^2}$$
.

Risulta g'(x) < 0 in $(0,+\infty)$ e g'(x) > 0 in $(-\infty,-1)$. Perciò g(x) è strettamente decrescente in $(0,+\infty)$, dato che g(x) > 0 per $x \to +\infty$ risulta g(x) > 0 in $(0,+\infty)$. Analogamente, g(x) è strettamente crescente in $(-\infty,-1)$; dato che $g(x) \to 0$ per $x \to -\infty$, risulta g(x) > 0 anche in $(-\infty,-1)$. Osserviamo che si può verificare che g(x) è positiva anche con i metodi dell'esercizio 1.54.

Dato che la funzione g(x) è positiva, anche f'(x) risulta positiva. Perciò f(x) è crescente negli intervalli $(-\infty,-1)$, $(0,+\infty)$. Si noti che f'(x) $\to +\infty$ per $x \to 0^+$. Il grafico di f(x) è rappresentato' in figura 2.94]

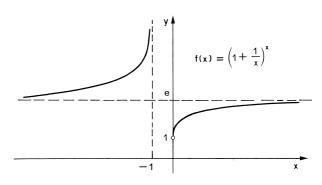


figura 2.94

2.92 Studiare la seguente funzione

$$f(x) = e^{2x} - 2(x+3)e^{x} + 3(x+1)^{2} + 3$$
.

[La funzione è definita su R e non ha asintoti. Dopo aver studiato il segno della derivata prima, si riuscirà ad affermare che f(x) è positiva per ogni $x \in R$; più precisamente, che $f(x) \geq 3(-1+\log^2 3) > 0$, per ogni $x \in R$. La derivata prima vale

$$f'(x)=2[e^{2x}-(x+4)e^{x}+3(x+1)]$$
.

Scriviamo l'equazione f'(x)/2=0 in forma equivalente per mezzo della formula risolutiva per le equazioni di secondo grado, ricordando che $e^{2x}=(e^x)^2$:

$$e^{x} = \frac{x^{+4}}{2} + \frac{1}{2} \sqrt{(x^{+4})^{2} - 12(x^{+1})} = \frac{x^{+4}}{2} + \frac{1}{2} \sqrt{x^{2} - 4x^{+4}}$$

$$=\frac{x+4}{2}$$
 $\pm \frac{x-2}{2}$ $=$ $=x+1$

Perciò f'(x) = 0 se e solo se e $\stackrel{X}{=}$ x+1, oppure $\stackrel{X}{=}$ 3. A posteriori è semplice verificare che vale la scomposizione:

$$f'(x)=2(e^{x}-(x+1))(e^{x}-3)$$
.

Ci sono molti metodi per verificare che la funzione $g(x) = e^X - (x+1)$ è non negativa. Si può utilizzare il criterio di convessità, o la formula di Taylor con il resto di Lagrange, per la funzione e con centro x_0 =0. Oppure si può mostrare direttamente che $g^1(x) \gtrless 0$ per $x \gtrless 0$; e segue che g(x) ha minimo (assoluto) per x=0 ed il valore minimo è g(0)=0.

Quindi f'(x)=0 per x=0 e per x=log 3; inoltre f'(x) \gtrless 0 per x \gtrless log 3. La funzione è crescente nell'intervallo [log 3,+ ∞) ed è decrescente in (- ∞ , log 3]; il punto x = log 3 è di minimo assoluto, mentre il punto x=0 è di flesso a tangente orizzontale. Il valore minimo è f(log 3):

$$f(\log 3) = 9-6(3+\log 3) + 3 (1+\log 3)^2 + 3 =$$

=-3 + 3 log² 3 = 3(-1+log² 3) > 0.

Studiando il segno della derivata terza, si riesce ad affermare che la derivata seconda si annulla, oltre che per x=0, anche in un punto dell' intervallo (0, log 3). Il grafico è rappresentato in figura 2.95]

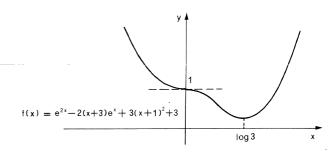
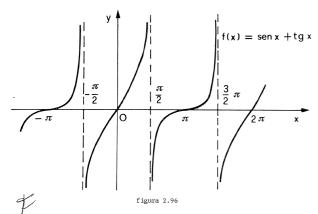


figura 2.95

2H. Grafici di funzioni trigonometriche $\frac{1}{2.93}$ Studiare la funzione f(x) = sen x + tg x.


[La funzione è definita per ogni $x \ne \pi/2 + k \pi$, con $k \in \mathbb{Z}$. E' una funzione dispari. E' periodica di periodo 2π . E' quindi sufficiente studiarne le proprietà in un intervallo di lunghezza 2π , ad esempio, $[-\pi,\pi]$ (ed anzi, essendo f(x) dispari, sarebbe sufficiente studiarla in $[0,\pi]$). Relativamente all'intervallo considerato, la funzione è definita per $x \ne \pm \pi/2$. Le rette di equazione $x = \pm \pi/2$ sono asintoti verticali. La derivata prima vale

$$f'(x) = \cos x + \frac{1}{\cos^2 x} = \frac{\cos^3 x + 1}{\cos^2 x}$$

Essendo cos x \geq - 1 per ogni x \in R, risulta anche cos 3 x \geq -1 e quin di f'(x) \geq 0 per ogni x; inoltre f'(x) = 0 se cos x =-1, cioè se x= = \pm T (nell'intervallo [- π , π]). La funzione è crescente ed i pun ti x= \pm T sono di flesso a tangente orizzontale. La derivata seconda vale

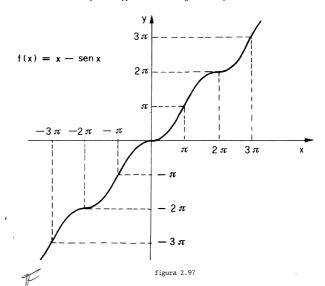
$$f''(x) = \frac{\sin x(2-\cos^3 x)}{\cos^3 x} = tg x \frac{2-\cos^3 x}{\cos^2 x}$$

Dato che 2-cos 3 x > 0 per ogni x \in R, il segno di f"(x) è determinato dal segno di tg x. Relativamente all'intervallo [$^-\pi$, $^-\pi$], la funzione è convessa in [0, π /2) e [$^-\pi$, $^-\pi$ /2) ed è concava in ($^-\pi$ /2, 0], (π /2, $^-\pi$]. Il grafico è rappresentanto in figura 2.96]

≠2.94 Studiare le seguenti funzioni e disegnarne il grafico

$$\chi(a)$$
 f(x)=x-sen x

(b) f(x)=x-sen x cos x


[(a) La funzione è definita su R e non è periodica. E' una funzione dispari. E' positiva per x > 0 ed è negativa per x < 0. La derivata prima f'(x)=1-cos x si annulla per $x=2k\pi$ ed è positiva altrimenti . Ne segue che la funzione è strettamente crescente su R ed i punti $x=2k\pi$ sono di flesso a tangente orizzontale. Studiando la derivata seconda, si verifica che anche i punti x=(2k+1) π sono di flesso ; perciò la funzione cambia la concavità in corrispondenza di $x=k\pi$,con $k\in Z$. Si noti che $f(k\pi)=k\pi$. Il grafico è rappresentato in figura

2.97.

(b) Utilizzando le formule di duplicazione, la funzione $\,$ si $\,$ può rap presentare nella forma $\,$

$$f(x) = x - \frac{1}{2}$$
 sen $2x = \frac{1}{2}$ (2x - sen 2x).

Perciò, pur di cambiare 2x con x' e 2y con y', si ottiene la funzione già considerata nella precedente parte (a). Il grafico è quindi simile a quello rappresentato in figura 2.97]

2.95 Studiare le seguenti funzioni e disegnarne il grafico (prescindendo dallo studio della deriva ta seconda):

(a) f(x)= $\cos^2 x - \cos x$ (b) f(x)= $\cos^2 x + \cos x$

[(a) La funzione è pari, ed è periodica di periodo 2π . Essendo $f(x) = \cos x$ ($\cos x - 1$), risulta f(x) = 0 quando $\cos x = 0$, oppure $\cos x = 1$. Quindi, nell'intervallo $\left[-\pi, \pi \right]$, la funzione si annulla per $x = \pm \pi/2$ e per x = 0. La derivata prima vale $f'(x) = \sin x$ (1-2cos x); nell'intervallo $\left[-\pi, \pi \right]$ si annulla per x = 0 (punto di mags simo), per $x = \pm \pi$ (punti di massimo) e per $x = \pm \pi/3$ (punti di minimo). Il grafico è rappresentato in figura 2.98.

(b) figura 2.99; (c) figura 2.100; (d) figura 2.101]

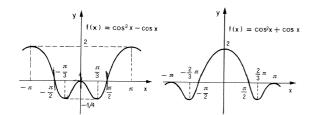


figura 2.98

figura 2.99

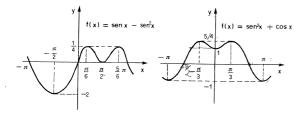
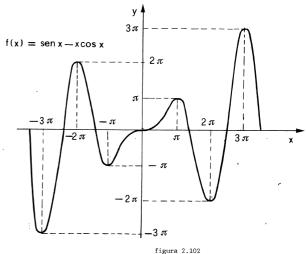



figura 2, 100

figura 2.101

2.96 Studiare la funzione f(x) = sen x - x cos x.

[E' una funzione dispari, definita su R, non periodica. Non ammette asintoti e non ha limite per x $\rightarrow \pm \infty$. La derivata prima vale f'(x) = x sen x; limitatamente ad x \geq 0, la derivata prima è positiva quan do sen x > 0, e cioè per x \in (2k π), (2k+1) π), con k=0,1,2,... I punti x=2k π , con k=1,2,3,..., sono di minimo relativo e risulta f(2k π)=-2k π . I punti-x=(2k+1) π), con k=0,1,2,..., sono di massimo relativo e risulta f((2k+1) π) = (2k+1) π . Infine, il punto x=0 è di fles so a tangente orizzontale. La derivata seconda f"(x)=sen x + x cos x si annulla in corrispondenza delle soluzioni dell'equazione x+tg x=0 Il grafico è rappresentato in figura 2.102

rigura 2.102

2.97 Disegnare, per $x \in [0, 4\pi]$, il grafico delle fun - zioni

(a) $f(x)=\sin x+4 \sin \frac{x}{2}$ (b) $f(x)=\sin x+4 \cos \frac{x}{2}$

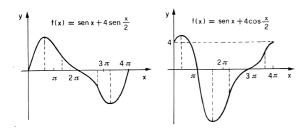
[Sono utili le formule di duplicazione:

sen x=2 sen
$$\frac{x}{2} \cos \frac{x}{2}$$
; $\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$.

(a) La funzione si annulla per x=0, x=2 π , x=4 π , ed è positiva in (0,2 π). La derivata prima si annulla in due punti; in particolare

$$x = 2 \arccos \frac{\sqrt{3} - 1}{2}$$

è un punto di massimo. La derivata seconda si annulla per x=0, 2 π , 4π ,(4/3) π , (8/3) π . Il grafico è rappresentato in figura 2.103. (b) La funzione si annulla per x= π , x=3 π ed è negativa in $(\pi,3\pi)$. La derivata prima si annulla in due punti; in particolare x = =2 arcsen [($\sqrt{3}$ -1)/2] è un punto di massimo. I punti x= π ,(7/3) π , 3 π , (11/3) π sono di flesso. Il grafico è rappresentato in figura 2.104]



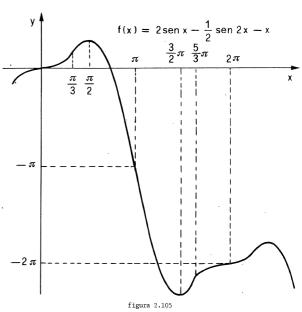

figura 2.103

figura 2.104

2.98 Disegnare il grafico della funzione

$$f(x) = 2 \text{ sen } x - \frac{1}{2} \text{ sen } 2x - x.$$

[La funzione non è periodica, ma le derivate prima e seconda sono periodiche di periodo 2π . Studiando tali derivate nell'intervallo[0, 2π], si trova che $x=\pi/2$ è un punto di massimo, $x=(3/2)\pi$ è un punto di minimo relativo. La funzione è convessa negli intervalli $(0, \pi/3)$, $(\pi,(5/3)\pi)$) ed i punti x=0, $\pi/3$, π , $(5/2)\pi$, 2π sono di fles so. Si noti infine che $f(k\pi)=-k\pi$, per ogni $k\in Z$. Il grafico è rappresentato in figura 2.105]

√2.101 Disegnare il grafico della funzione

$$f(x) = \log|1-\sin x| - 2 \log|\cos x|$$
,

dopo aver semplificato l'espressione in base \underline{a} le proprietà dei logaritmi e del valore assol $\underline{\underline{u}}$ t.o.

 $\left[\right.$ La funzione è periodica di periodo 2 π . Ci limitiamo $\,$ a studiarla nell'intervallo [0,2 π] . E' definita per x tale che sen x \neq 1 e cos x \neq 0; perciò è definita per x \neq $\pi/2$ e x \neq (3/2) π . Con tali restrizioni semplifichiamo l'espressione analitica di $f(\boldsymbol{x})$ (tenen-

$$f(x)=log(1-sen x)-log(|cos x|)^2 =$$

$$= \log \frac{1-\sin x}{\cos^2 x} = \log \frac{1-\sin x}{1-\sin^2 x} = -\log (1+\sin x).$$

Occorre perciò studiare la funzione f(x) =-log(1+sen x) con x \in [0, 2π], x \neq π /2, x \neq (3/2) π . La funzione si annulla per x=0, π ,2 π ed è negativa nell'intervallo (0, π). La retta $x=(3/2)\pi$ è asinto to verticale per f(x), dato che $f(x) \to +\infty$ per $x \to (3/2) \; \Pi.$ La de-

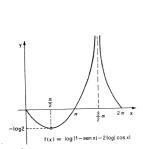


figura 2.110

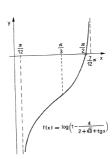


figura 2.111

rivata prima

$$f'(x) = -\frac{\cos x}{1 + \sin x}$$

è positiva per x $\in (\pi/2, (3/2)\pi)$. Il punto x= $\pi/2$ è di minimo per la funzione $-\log(1+\text{sen }x)$. La derivata seconda f''(x) = 1/(1+sen x)è positiva per ogni x. Il grafico della funzione è rappresentato in figura 2.110]

2.102 Studiare la funzione $f(x) = \log \left(1 - \frac{4}{2 + \sqrt{3} + \lg x}\right)$.

 $\left[\, {\tt E'}\,\, {\tt periodica}\,\, {\tt di}\,\, {\tt periodo}\,\, {\tt Ti}\,\, {\tt Per}\,\, {\tt determinare}\,\, 1' {\tt insieme}\,\, {\tt di}\,\, {\tt definizione}\,\,$ è utile ricordare, ad esempio, che tg(π /12)=tg(15°)=2- $\sqrt{3}$ (si veda l'esercizio 2.20 della parte prima); limitatamente all' intervallo [0, π] , la funzione è definita in ($\pi/12$, $\pi/2)\,U$ (π /2,(7/12) π). Converge a zero per $x \to \pi/2$, diverge a $-\infty$ per $x \to \pi/12^+$ e diverge a+∞ per x→(7/12) T . La derivata prima, dove è definita, è positiva. La derivata seconda si annulla per $x=\pi/3$,che è un punto di flesso. La funzione è concava nell'intervallo (π /12, π /3)ed è con vessa altrimenti. Il grafico è in figura 2.111]

vessa altrimenti. Il grafico e un rigura 2.111]

2.103 Studiare le seguenti funzioni

(a)
$$f(x) = \arcsin(|x|-1)$$
 (b) $f(x) = \arctan x^2$

[(a) La funzione arcsent è definita per $t \in [-1,1]$. Perciò $f(x)$ è

definita se $-1 \le |x| - 1 \le 1$, cioè $0 \le |x| \le 2$, cioè ancora $x \in$ $\bar{\varepsilon}\,\big[\,-2\,,2\,\big]$. La funzione è pari e non è derivabile per x= $\pm 2\,.$ E¹ nega tiva nell'intervallo (-1,1). Risulta crescente in [0,2] e decrescente in [-2,0]. E' convessa all 'esterno dell'intervallo [-1,1] . Il grafico è in figura 2.112.

(b) E' una funzione pari definita su R. Si annulla per x=0 ed è positiva altrimenti. La retta di equazione y= $\pi/2$ è asintoto orizzontale per $x \to \pm \infty$. Le derivate prima e seconda valgono

f'(x) =
$$\frac{2x}{1+x^4}$$
; f''(x) = $\frac{2(1-3x^4)}{(1+x^4)^2}$

La funzione è decrescente in (- $^{\infty}$,0] ed è crescente in [0,+ $^{\infty}$). Il punto x=0 è di minimo. La derivata seconda si annulla per x= = \pm 3^{-1/4}, che sono punti di flesso. Il grafico è in figura

- 2.99 Studiare le seguenti funzioni

(a)
$$f(x) = (sen x)^{sen x}$$
 (b) $f(x) = (tg x)^{tg x}$

[(a) La funzione è periodica di periodo 2π . Limitatamente all'intervallo [0,2 π] la funzione è definita quando la base sen x è positiva, cioè nell'intervallo $(0,\pi)$. E' positiva e converge ad 1 per x che tende agli estremi dell'intervallo. La derivata prima vale

$$f'(x)=(sen x)^{sen x} cos x (log sen x+1)$$

e si annulla quando cos x=0, cioè per x= $\pi/2$ (che è un punto di massimo e f($\pi/2$)=1), e quando log sen x=-1, cioè sen x=e⁻¹, cioè ancora:

$$x=arcsen e^{-1}$$
 oppure $x = \pi -arcsen e^{-1}$,

che risultano punti di minimo. Il grafico è rappresentato in figura 2.106. $\dot{}$

(b) La funzione è periodica di periodo π . Limitatamente all'intervallo [0, π], la funzione è definita in $(0,\pi/2)$ ed è positiva in tale intervallo. Valgono le relazioni di limite

$$\lim_{x\to 0^+} f(x) = 1 \quad ; \qquad \qquad \lim_{x\to \pi/2^-} f(x) = + \infty \ .$$

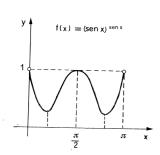


figura 2.106

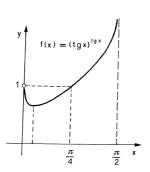


figura 2.107

La funzione ha un asintoto verticale sinistro di equazione x= $\Pi/2$.La derivata prima si annulla per x = arctg e $^{-1}$, che è un punto di minimo. Il grafico è rappresentato in figura 2.107

Disegnare il grafico delle funzioni $f(x) = \frac{1}{|\sec x + \cos x|}$ (b) $f(x) = \frac{|\tan x|}{|\sec x + 3|}$

[(a) La funzione è periodica di periodo 2 π . Nell'intervallo $[0,2\pi]$ è definita per $x \neq (3/4)\pi$ e $x \neq (7/4)\pi$. Le rette di equazione $x = (3/4)\pi$, $x = (7/4)\pi$ sono asintoti verticali. La funzione assume il valore 1 in corrispondenza dei punti x = 0, $\pi/2$, π , $(3/2)\pi$, 2π . La derivata prima si annulla per $x = \pi/4$ e $x = (5/4)\pi$, che sono punti di minimo ed il valore minimo è $\sqrt{2}/2$. Grafico in figura 2.108.

(b) La funzione è pari ed è periodica di periodo π . Nell'intervallo $[-\pi/2, \pi/2]$ non è definita agli estremi e converge a zero per $x \to \pm \pi/2$. Non è derivabile per x=0. La derivata prima si annul la per $x=\pm \pi/3$, che sono punti di massimo. Il punto x=0 è di minimo. Il grafico è in figura 2.109

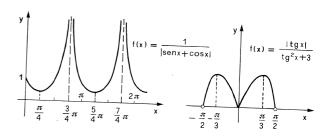


figura 2.108

figura 2.109

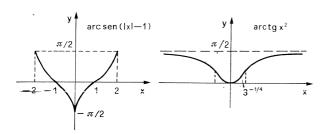


figura 2.112

figura 2.113

2.104 Disegnare i grafici delle funzioni

$$+$$
(a) f(x) = arcsen $|e^{2x}-1|$

(b)
$$f(x) = x + 4 \operatorname{arctg} \sqrt{x-1}$$

[(a) figura 2.114; (b) figura 2.115]

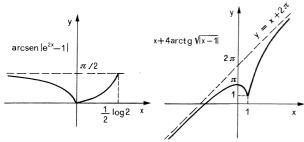


figura 2.114

figura 2.115

2.105 Studiare le seguenti funzioni e disegnarne il grafico

(a)
$$f(x) = \frac{x}{2} \log \frac{1+x^2}{4} + \operatorname{arctg} x - x$$
.

(b) $f(x) = x^3 - x^2 + 2x$ arctg x - log $(1+x^2)$

[(a) E' una funzione dispari definita su R. Non ha asintoti. Le derivate prima e seconda valgono

$$f'(x) = \frac{1}{2} \log \frac{1+x^2}{4}$$
; $f''(x) = \frac{x}{1+x^2}$.

La derivata prima si annulla per $x=\pm\sqrt{3}$. Il punto $x=\sqrt{3}$ è di minimo ed il punto $x=-\sqrt{3}$ è di massimo ; risulta inoltre $f(\pm\sqrt{3})=\pm(\arctan \sqrt{3}-\sqrt{3})$. La funzione è convessa in $[0,+\infty)$ ed il punto x=0 è di flesso. Il grafico è rappresentato in figura 2.116. (b) E' definita su R. Tende a $\pm\infty$ per $x\to\pm\infty$. Non ha asintoti. Le derivate prima e seconda valgono

$$f'(x)=3x^2-2x+2 \text{ arctg } x; \quad f''(x)=\frac{x}{1+x^2} (3x^2-x+3).$$

Non è agevole studiare direttamente il segno della derivata prima, ma è più opportuno determinare preliminarmente il segno della derivata seconda.

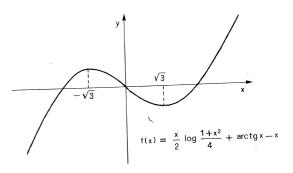


figura 2.116

Essendo $3x^2-x+3>0$ per ogni $x\in R$, la derivata seconda è positiva per x>0 ed è negativa per x<0. Perciò la funzione è conves sa in $[0,+\infty)$, è concava in $(-\infty,0]$ e x=0 è un punto di flesso. Inoltre, dato che $f''(x) \geqslant 0$ per $x \geqslant 0$, la derivata prima è strettamente crescente in $[0,+\infty)$ ed è strettamente decrescente in $[-\infty,0]$; il punto x=0 è di minimo assoluto per la derivata prima. Quindi:

$$f'(x) \ge f'(0) = 0, \quad \forall x \in R$$

Ne segue che la funzione non ha nè massimi, nè minimi ed è strettamente crescente su R. Il punto x=0 è di flesso a tangente orizzont \underline{a} le]

Capitolo 3

EQUAZIONI ALGEBRICHE E TRASCENDENTI

3A. Esistenza delle soluzioni

Prendiamo in considerazione equazioni del tipo

$$f(x) = 0,$$

con f(x) funzione reale di variabile reale definita in un insieme I. Risolvere l'equazione data significa determinare tutti i numeri reali $x \in I$ per cui f(x) = 0. Tali numeri x si chiamano soluzioni dell'equazione data, o zeri della funzione data.

Se la funzione f(x) è un polinomio, si dice che f(x) = 0 è un'equazione algebrica. Se f(x) è una funzione trascendente (ad esempio composta tramite le funzioni elementari e^x , log x, sen x, cos x) allora si dice che f(x) = 0 è un'equazione trascendente.

Una soluzione di un'equazione algebrica si dice anche radice dell'equazione. Per estensione, talvolta si usa il termine di radici anche per le soluzioni di equazioni trascendenti.

3.1 Determinare il numero ed il segno delle radici reali dell'equazione di Fibonacci:

$$x^3 + 2x^2 + 10x - 20 = 0$$
.

[La funzione $f(x) = x^3 + 2x^2 + 10x - 20$ tende a $\pm \infty$ per $x \to \pm \infty$. Perciò esistono due numeri a,b per cui f(a) < 0, f(b) > 0. In base al teorema dell'esistenza degli zeri, l'equazione f(x) = 0 ha almeno una soluzione reale nell'intervallo di estremi a,b. La derivata della funzione f(x) vale

$$f'(x) = 3x^2 + 4x + 10$$
.

La disequazione di secondo grado $3x^2 + 4x + 10 > 0$ è verificata per ogni $x \in R$. Perciò la derivata prima è positiva per ogni $x \in R$ e quindi la funzione f(x) è strettamente crescente su R. Ne segue che l'equazione f(x) ammette una sola radice reale. Per stabilire il segno di tale radice basta osservare che f(0) = -20 < 0 e quindi f(x) si annulla per x > 0 essendo crescente]

3.2 Dimostrare che l'equazione

$$1 - \frac{x^2}{2} + \frac{x^4}{24} = 0$$

ammette quattro radici reali.

[La funzione f(x)=1-x 2 /2 + x 4 /24 è pari; perciò, se ammette una radice x $_1$ > 0, ammette anche -x $_1$ come radice. Dal segno della derivata

$$f'(x) = -x + \frac{1}{6}x^3 = \frac{x}{6}(x^2 - 6)$$

si deduce che il punto x=0 è di massimo, mentre i punti x= \pm $\sqrt{6}$ sono di minimo per f(x). Risulta f(0)=1, f(\pm $\sqrt{6}$) = - 1/2, f(x) \rightarrow + ∞ per x \rightarrow ± ∞ . Per il teorema dell'esistenza degli zeri, f(x) ammette una radice reale in ognuno degli intervalli (- ∞ ,- $\sqrt{6}$), (- $\sqrt{6}$, 0),(0,+ $\sqrt{6}$) ($\sqrt{6}$,+ ∞). Più precisamente, f(x) ammette come radici \pm x₁, \pm x₂, con x₁ \in (0, $\sqrt{6}$), x₂ \in ($\sqrt{6}$,+ ∞). Si veda anche l'esercizio 2.50 e la figura 2.37, dove è rappresentato il grafico di f(x). Per finire,no tiamo che, essendo l'equazione biquadratica, è possibile determinare e splicitamente le quattro soluzioni, che risultano uguali a \pm x₁, \pm x₂ con x₁ = $\sqrt{6}$ -2 $\sqrt{3}$ e x₂ = $\sqrt{6}$ +2 $\sqrt{3}$]

3.3 Determinare il numero delle soluzioni reali delle seguenti equazioni, al variare del parametro reale λ.

(a)
$$x^{9}(x-4)^{9} = \lambda$$

(b)
$$x^{10}(x-2)^{10} = \lambda$$

[(a) Proponiamo due metodi di risoluzione. Il primo metodo consiste ne \underline{l} lo studiare la funzione

$$f(x) = x^{9} (x-4)^{9}$$
.

Si verifica che f'(x) si annulla per x=2, è positiva per x > 2 ed è negativa per x < 2. Perciò f(x) è strettamente decrescente in (- ∞ ,2] ed è strettamente crescente in [2,+ ∞). Il minimo assoluto vale f(2) = -2 18. Ne segue che l'equazione f(x)= λ ha due soluzioni se λ > -2 18, una sola soluzione se λ = -2 18 e non ha soluzioni se λ < < -2 18.

Il secondo metodo, più efficace perchè fornisce una rappresenta zione delle soluzioni, consiste nello scrivere l'equazione data nella forma equivalente

$$x(x-4) = \lambda^{1/9}$$
, cioè $x^2 - 4x - \lambda^{1/9} = 0$.

L'equazione ottenuta è di secondo grado, ed ha per soluzioni x = 2 ± ± $\sqrt{4+\lambda^{1/9}}$, purchè $\lambda \geq -4^{-9}$ =- 2^{18} .

- (b) Nessuma soluzione per $\lambda < 0$. Due soluzioni per $\lambda = 0$. Quattro soluzioni reali se $0 < \lambda < 1$. Tre soluzioni se $\lambda = 1$. Due soluzioni per $\lambda > 1$
- 3.4 Determinare il numero di radici reali dell'equ<u>a</u> zione algebrica

$$x^{12} - 6x^6 + 8x^3 - 9 = 0.$$

[L'equazione ha due radici reali. Ciò si può stabilire considerando la funzione $f(x)=x^{1/2}-6x^6+8x^3$ -9. La derivata vale

$$f'(x) = 12x^{-2} (x^{-9} - 3x^{-3} + 2)$$
.

Dato che il polinomio x^9 -3 x^3 +2 si annulla per x=1 e dato che esso è composto con potenze di x^3 , si vede che è divisibile per x^3 -1. E<u>f</u> fettuando la divisione si determina la scomposizione:

$$f'(x) = 12x^{2}(x^{3}-1)(x^{6}-x^{3}-2).$$

Il polinomio x 6 -x 3 -2 è di secondo grado rispetto a t=x 3 . Effettua<u>n</u>

do tale sostituzione si ottiene t^2 -t-2=(t-1)(t+2). Risulta quindi

$$f'(x) = 12x^2(x^3-1)^2(x^3+2).$$

La derivata prima si annulla per x=0, x=1, che risultano punti di fles so, e per x 3 =-2, cioè x=-2 $^{1/3}$, che è l'unico punto di minimo di f(x). La funzione f(x) è strettamente decrescente in $(-\infty,-2^{1/3}]$ ed è strettamente crescente in $[-2^{1/3},+\infty)$. Il valore minimo si ottiene quando x 3 =-2 e vale -1. Perciò l'equazione f(x)=0 ha due soluzioni, una minore ed una maggiore di x=-2 $^{1/3}$

3.5 Si consideri il polinomio di quarto grado

$$p(x) = x^4 + \alpha x^3 + \beta x^2 - \delta,$$

con α,β,δ numeri reali e $32\beta-9\alpha^2>0$. Verificare che, se δ è maggiore, uguale o minore di zero,a $\underline{1}$ lora in corrispondenza l'equazione p(x)=0 ammette due, una o nessuna radice reale.

[La funzione p(x) tende a + $^{\infty}$ per x $^{\textstyle{+\pm\infty}}$. La derivata vale

$$p'(x)=x(4x^{-2}+3\alpha x + 2\beta)$$

Il discriminante del polinomio di secondo grado $4x^2+3\alpha x+2\beta$ vale $\Delta=9$ α^2-32 β ed è negativo per ipotesi. Quindi il polinomio di secondo grado è positivo per ogni $x\in R$. Perciò p'(x) si annulla solo per x=0, è positiva per x>0 ed è negativa per x<0. Il punto x=0 è di minimo per p(x) ed il valore minimo è $p(0)=\delta$. Si ottiene poi facilmente la conclusione indicata]

3.6 Indicare il numero ed il segno delle radici reali dell'equazione

$$x^4 + x^2 = ax + b$$

in funzione dei parametri reali a,b, con b \geq 0.

[Poniamo f(x) = x^4 + x^2 ; g(x) = ax+b. La funzione f(x) è strettamente convessa su R; la funzione g(x) ha per grafico una retta. I grafici delle due funzioni si incontrano in due punti se la retta è secante,in un punto se la retta è tangente, oppure non si incontrano.

Dato che f(0)=0, g(0)=b, se b>0 si verifica che la retta incon -

tra il grafico di f(x) in due punti; in corrispondenza l'equazione ha due soluzioni, una positiva ed una negativa. Se b=0 l'equazione ha per soluzione x=0. Inoltre, se a=0, la retta di equazione y=0 è tangente al grafico di f(x) per x=0; quindi, se a=b=0, l'equazione ha soltanto la soluzione x=0. Infine, se a $\neq 0$ e b=0, la retta di equazione y=ax taglia il grafico di f(x) in un altro punto (oltre lo zero); in particolare l'equazione data ha una soluzione nulla e una positiva (se a>0)0 negativa (se a < 0)]

3.7 Indicare il numero delle radici reali dell'equazione

$$ax^{4}+bx^{3}-a = 0$$

in funzione dei parametri reali a,b.

[Se a # 0, 1'equazione ha due radici reali. Se a=0 e b # 0, 1'equazione ha una radice reale (x=0). Infine, se a=b=0, ogni x \in R \hat{e} soluzione]

3.8 Determinare le soluzioni dell'equazione

$$x^2 - 4x + 2 + \frac{x}{\sqrt{x-1}} = 0$$
.

[L'unica soluzione dell'equazione data è x=2. Per verificare ciò,si può scrivere l'equazione nella forma f(x) = g(x), con

$$f(x)=x^{2}-4x+2$$
; $g(x) = \frac{-x}{\sqrt{x-1}}$.

Il grafico della funzione f(x) è una parabola convessa con vertice nel punto del piano x,y di coordinate (2,-2). La funzione g(x) è definita per x>1; ha un asintoto verticale destro di equazione x=1; dallo st \underline{u} dio del segno della derivata prima

$$g'(x) = \frac{2-x}{2(x-1)^{3/2}}$$

si deduce che il punto x=2 è di massimo assoluto per g(x) ed il valore massimo è g(2)=-2. In figura 3.1 sono rappresentati i grafici di f(x), g(x) in uno stesso sistema da riferimento. Risulta f(2)=g(2)=-2 e inol tre f(x) > -2 > g(x) per ogni x \neq 2. Quindi x=2 è l'unica soluzione del l'equazione data]

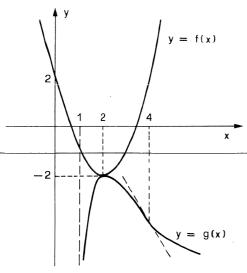


figura 3.1

3.9 Determinare il numero di soluzioni dell'equazione

$$\sqrt{x} + \frac{1}{x-3} = 0.$$

[E'] possibile scrivere l'equazione nella forma f(x)=g(x), con

$$f(x) = \sqrt{x}$$
; $g(x) = \frac{1}{3-x}$.

In figura 3.2 sono rappresentati i grafici di f(x), g(x) in uno stesso sistema di riferimento. L'equazione data non ha soluzioni per x < 0 (dove f(x) non è definita) e per x > 3 (dove f(x) > 0 e g(x) < 0). Invece nell'intervallo (0,3) l'equazione ha due soluzioni, dato che f(x) è

concava, g(x) è convessa, e inoltre f(1) = 1 > g(1) = 1/2

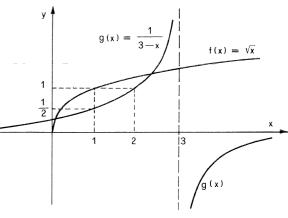


figura 3.2

3.10 Determinare, al variare del parametro reale λ ,il numero di soluzioni dell'equazione

$$\frac{1}{x} + \log x = \lambda.$$

[La funzione f(x) = 1/x + log x, definita per x > 0, diverge a+ ∞ per $x \to 0^+$ e per x \to + ∞ . La derivata prima vale

$$f'(x) = -\frac{1}{x^2} + \frac{1}{x} = \frac{x-1}{x^2}$$
;

si annulla per x=1, è positiva per x > 1 ed è negativa per x \in (0,1). Il punto x=1 è di minimo assoluto per f(x). Inoltre la funzione f(x) è strettåmente decrescente in (0,1] ed è strettamente crescente per x \in [1,+ ∞). Il valore minimo di f(x) è f(1) = 1.

Ne segue che l'equazione $f(x) = \lambda$ ha due soluzioni per $\lambda > 1$, una sola soluzione (x=1) per $\lambda = 1$ e nessuna soluzione se $\lambda < 1$]

3.11 Determinare il numero di soluzioni dell'equazi \underline{o} ne

$$\frac{1}{x} + \log |x| = 2.$$

[L'equazione f(x) = 1/x + log | x | = 2 è stata studiata nell'eserci - zio precedente (λ =2) se x > 0. Inoltre, per x < 0, si ha

$$\lim_{x\to -\infty} f(x) = + \infty \quad , \qquad \qquad \lim_{x\to 0^-} f(x) = - \infty \, ,$$

e, in base al segno della derivata prima, si verifica che f(x)è strettamente decrescente in $(-\infty,0)$. Ne segue che l'equazione f(x)= 2 ha tre soluzioni, una negativa, una compresa tra zero ed uno ed una maggiore di uno]

3.12 Determinare il numero ed il segno delle soluzi \underline{o} ni dell'equazione trascendente

$$\log |x| - \frac{x^2 - 4x}{1 - x^2} = 0.$$

[Scriviamo l'equazione nella forma f(x) = g(x), con

$$f(x) = \log |x|;$$
 $g(x) = \frac{x^2 - 4x}{1 - x^2}.$

La funzione f(x) è definita per x \neq 0 ed è pari. La funzione g(x) è definita per x \neq \pm 1; le rette di equazione x= \pm 1 sono asintoti verticali per g(x); la retta y=-1 è asintoto orizzontale per x $\rightarrow \pm \infty$; la funzione g(x) non ha punti di massimo, nè di minimo relativo.

I grafici di f(x), g(x) sono rappresentati in figura 3.3. Per x>0,f(x) è crescente e g(x) è decrescente (separatamente in (0,1)e (1,+ $^{\infty}$)); perciò esistono due soluzioni x_1 , x_2 con $x_1\in(0,1)$ e $x_2\in(1,4)$. L'equazione non ha soluzioni per x<0, dato che le funzioni f(x), g(x) hanno segni opposti negli intervalli (- $^{\infty}$,-1) e (-1,0)]

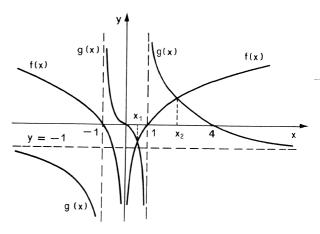


figura 3.3

3.13 Determinare, al variare del parametro reale λ , il numero di soluzioni reali dell'equazione

$$x log^2 x = \lambda$$
.

[Si veda lo studio della funzione f(x) = x log 2x fatto nell' esercizio 2.64(a) ed il grafico in figura 2.56. Si ottiene il seguente risultato;

se λ < 0 nessuna soluzione;

se $\lambda = 0$ una sola soluzione (x=1);

se 0 < λ < 4/e² tre soluzioni;

se $\lambda = 4/e^2$ due soluzioni;

se $\lambda > 4/e^2$ una soluzione]

3.14 Determinare il numero di soluzioni reali delle equazioni:

(a)
$$x \log^2 x = \frac{1}{e}$$

(b)
$$x \log^2 x = e$$

[(a) L'equazione ha tre soluzioni x_1 , x_2 , x_3 tali che : $x_1 \in (0,1/e^2)$, $x_2 = 1/e$, $x_3 \in (1,+\infty)$; (b) l'unica soluzione dell'equazione è x=e]

3.15 Si consideri la funzione

$$f(x) = 2x \log|x| - x^2.$$

Dimostrare che la derivata prima si annulla in corrispondenza a due numeri reali.

[L'equazione f'(x) = 0 ha due soluzioni: una negativa e l'altra uguale ad 1]

3.16 Verificare che l'equazione

$$x^2 - 2x \log x - 2 = 0$$

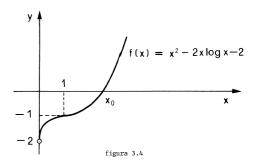
ammette una ed una sola soluzione reale. Inol-tre, senza far uso di macchine calcolatrici (ma ricordando che e = 2.71..., $\sqrt{3}$ = 1.73...) stab<u>i</u> lire se tale radice è maggiore o minore del numero e.

[La derivata della funzione $f(x) = x^2 - 2x \log x - 2$ vale

$$f'(x) = 2 (x-\log x - 1).$$

La funzione g(x) = x-log x - 1 ha un minimo assoluto per x=1 ed il minimo vale g(1) = 0; perciò g(x) > 0 per ogni x \neq 1 e g(1) = 0 (ciò segue anche dal fatto che la funzione log x è concava e che la retta di equazione y = x-1 è tangente al grafico della funzione logaritmo nel punto $x_o = 1$, perciò log x \leq x - 1 per ogni x > 0).

Quindi f'(x) si annulla per x = 1 ed è positiva per ogni altro x > 0. Ne segue che la funzione f(x) è strettamente crescente per x > 0.


Essendo

$$\lim_{x \to 0^+} f(x) = -2 , \qquad \lim_{x \to +\infty} f(x) = +\infty ,$$

l'equazione data ammette una ed una sola soluzione reale x_o . Dato che f(x) è strettamente crescente, tale soluzione x_o è minore o maggiore del numero e a seconda che f(x) sia positiva o negativa in corrispon denza ad x = e. Risulta

$$f(e) = e^2 - 2e - 2$$
.

Il polinomio di secondo grado t² - 2t - 2 si annulla in corrisponden za delle radici t = 1 ± $\sqrt{3}$ ed è negativo per t¢ $(1-\sqrt{3}, 1+\sqrt{3})$. Risulta quindi f(e) < 0 se e solo se e ¢ $(1-\sqrt{3}, 1+\sqrt{3})$, cioè: e<1+ $+\sqrt{3}$). Ricordando che e = 2.71... e che $1+\sqrt{3}$ = 1 + 1.73...=2.73..., risulta effettivamente e < 1 + $\sqrt{3}$, quindi anche f(e) < 0, cioè anco ra e < x_o . In figura 3.4 è rappresentato il graficò della funzione f(x)

3.17 Determinare il numero di soluzioni delle segue $\underline{\mathbf{n}}$ ti equazioni

(a)
$$e^x = \frac{x}{x+1}$$

(b)
$$e^{x} = \frac{1-x}{x}$$

[(a) Poniamo $f(x) = e^{x}$, g(x) = x/(x+1). I grafici delle due funzioni sono rappresentati in figura 3.5. Come si vede dalla figura, i due

grafici non si incontrano (e quindi l'equazione data non ha soluzioni). Analiticamente ciò risulta chiaro dalle disuguaglianze:

se x ≥ 0 allora

allora $f(x) \ge 1$, g(x) < 1;

se $x \in (-1,0)$:

f(x) > 0, g(x) < 0;

se x < -1:

f(x) < 1, g(x) > 1.

(b) Poniamo $f(x)=e^{X}$, g(x)=(1-x)/x. I grafici delle due funzioni sono rappresentati in figura 3.6. L'equazione data ha una sola soluzione (positiva). Ciò si verifica osservando che, per x<0, f(x) è positiva e g(x) è negativa (quindi l'equazione f(x)=g(x) non ha soluzioni negative); mentre, se x>0, f(x) è strettamente crescente e g(x) è strettamente decrescente $(g'(x)=-1/x^2<0)$ e risulta:

$$\begin{array}{lll} f(0) = 1, & \lim\limits_{x \to 0^+} g(x) = + & \infty; & \lim\limits_{x \to + \infty} f(x) = + & \infty, & \lim\limits_{x \to + \infty} g(x) = -1 \end{array} \right]$$

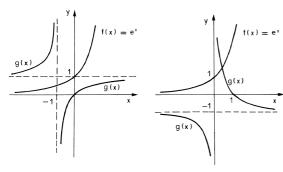


figura 3.5

figura 3.6

3.18 Determinare il numero di soluzioni reali dell' \underline{e} quazione

$$e^x = \frac{ax+b}{cx+d}$$
,

dove a,b,c,d sono parametri reali tali che a $\neq 0$, c \neq 0, bc-ad > 0.

[Poniamo $f(x) = e^{X}$, g(x) = (ax+b)/(cx+d). La funzione g(x) è definita per $x \neq -d/c$; la retta di equazione x=-d/c è un asintoto verticale e la retta di equazione y = a/c è un asintoto orizzontale per g(x). Inoltre, come mostrato nell'esercizio $\overline{2.51}$, risulta

$$g'(x) = -\frac{1}{c^2} - \frac{bc - ad}{(x+d/c)^2}$$
;

dato che, per ipotesi, bc-ad > 0, la funzione g(x) è strettamente de crescente negli intervalli (- $^{\infty}$,-d/c), (-d/c, + $^{\infty}$). Tenendo conto che f(x) = $^{\alpha}$ è strettamente crescente su R e tenendo conto delle rela zioni di limite

$$\begin{cases} \lim_{x \to -\infty} f(x) = 0 \\ \lim_{x \to -\infty} g(x) = \frac{a}{c} \end{cases}, \quad \lim_{x \to \left(-\frac{d}{c}\right)^{-}} g(x) = -\infty,$$

si deduce che, nell'intervallo (- ∞ , -d/c), l'equazione data ha una soluzione se a/c > 0 e nessuna soluzione se a/c < 0. Inoltre, tenendo conto delle relazioni di limite

$$\lim_{x \to \left(-\frac{d}{c}\right)^{+}} g(x) = + \infty,$$

$$\lim_{x \to \left(-\frac{d}{c}\right)^{+}} g(x) = + \infty$$

$$\lim_{x \to +\infty} g(x) = \frac{a}{c}$$

si deduce che, nell'intervallo (-d/c,+ ∞), l'equazione data ha, in ogni caso, una ed una sola soluzione reale.

Riassumendo, l'equazione ha due soluzioni reali se a,c hanno lo stesso segno (a/c > 0) ed ha una sola soluzione reale se a,c hanno segni discordi (a/c < 0)]

3.19 Determinare il numero di soluzioni dell'equazi \underline{o} ne

$$e^{x} + \frac{1}{x} = 0 .$$

[E' opportuno scrivere l'equazione nella forma equivalente $xe^{X}=-1$. La funzione f(x)=x e^{X} , il cui grafico è rappresentato in figura 3.7, ha minimo assoluto per x=-1 ed il valore minimo è $-e^{-1}$. Perciò

$$x e^{X} = f(x) \ge f(-1) = -\frac{1}{e} > -1,$$

yx ∈ R,

e l'equazione data non ha soluzioni]

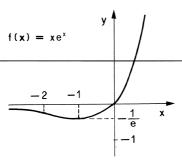


figura 3.7

3.20 Determinare il numero di soluzioni delle equa - zioni

$$e^{x} = (x-1)^{2}$$

(b)
$$e^{-x} = (x-1)^2$$

 $\Bigl[$ (a) Una soluzione è data da x=0. E' opportuno scrivere l'equazione nella forma equivalente

$$f(x) = (x-1)^{2}, e^{-x} = 1.$$

Risulta f'(x) = $e^{-x}(x-1)(3-x)$. Il punto x=1 è di minimo (ed il valore minimo è f(1)=0) ed il punto x=3 è di massimo (ed il valore massimo è f(3) = $4/e^3$ < 1). Inoltre $f(x) \to 0$ per $x \to +\infty$. Il grafico di f(x) è rappresentato in figura 3.8. Risulta che l'equazione f(x) = 1 ha soltanto la soluzione x = 0.

(b) L'equazione, oltre alla soluzione x=0, ha un'altra soluzione mag

giore di 1]

R 3 $harpoonup^{-3}$ Determinare il numero ed il segno delle soluzione

$$2^{-x} = |x|.$$

$$f'(x) = \begin{cases} -2^{-x} \log 2 - 1 & \text{se} & x > 0 \\ -2^{-x} \log 2 + 1 & \text{se} & x < 0 \end{cases}$$

Per x > 0 la derivata prima è sempre negativa, mentre, nell'interva<u>l</u> lo (- ∞ ,0), è negativa per

$$2^{-x}$$
 log 2 > 1 <=> 2^x < log 2 <=> x < log 2 log 2.

I1 punto x = $\log_2\log 2$ risulta di minimo relativo per f(x) (si noti che 0 < $\log 2$ < 1 e quindi $\log_2\log 2 < 0$). Il valore minimo è

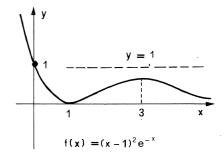


figura 3.8

essendo $\log_2 t < t$ per ogni t > 0, in particolare per $t=1/\log 2$ si ottiene $f(\log_2 \log 2) > 0$. Il grafico di f(x) è rappresentato in figura 3.9 (si verifica facilmente che f(x) è convessa negli intervalli $(-\infty,0]$ e $[0,+\infty)$). Essendo f(0)=1, l'equazione data ammette una ed una sola soluzione (positiva)

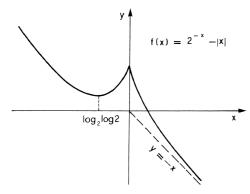


figura 3.9

3.2 Determinare, al variare del parametro $\lambda \in (0, +\infty)$, il numero ed il segno delle soluzioni dell'equazione

$$\lambda^{x} = |x|.$$

[Invece di procedere come nell'esercizio precedente, scriviamo l'equazione nella forma (si tratta di una forma equivalente, dato che $\,$ x =0 non è soluzione):

$$\lambda = \left| \ x \right|^{1/x}.$$
 La funzione $f(x) = \left| \ x \right|^{1/x} = e^{(\log \left| x \right|)/x}$ è definita per x#0, ha un

asintoto verticale sinistro per x=0 ed un asintoto orizzontale di equazione y=1 per x \to ± $^\infty$. La derivata prima vale

$$f'(x) = e^{\frac{\log |x|}{x}} \frac{1-\log |x|}{x^2}$$
, $\forall x \neq 0$

(si ricordi che la derivata della funzione log |x| è 1/x anche per x < 0). La derivata si annulla quando log |x| = 1, cioè per x= ± e. Inoltre la derivata è negativa all'esterno dell'intervallo [-e,e]—Consideriamo nel seguito f(x) separatamente per x > 0 e per x < 0.

Riassumendo, il numero ed il segno delle soluzioni in funzione di

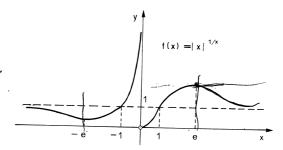


figura 3.10

λ > 0 è dato da:

Si noti che l'esercizio precedente è considerato, e si ottiene ponendo $\lambda = 1/2 < e^{-1/e}$

3.23 Determinare le soluzioni delle equazioni

(a)
$$e^{x} = 1 + x + \frac{x^2}{2}$$

(b)
$$\frac{\log x}{x-1} = \frac{3-x}{2}$$

[(a) Scriviamo la formula di Taylor con il resto di Lagrange per la fu $\underline{\mathbf{n}}$ zione e^{X} con centro $x_{_{0}}$ = 0: Per ogni $x\in R$ esiste $\ \xi$, nell'intervallo di estremi 0 e x, per cui

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{e^{\xi}}{3!} x^{3}$$
.

Il termine e^{ξ} x 3 /3! si annulla solo per x=0. Perciò x=0 è l' unica soluzione dell'equazione data.

(b) Posto f(x) = log x, risulta

$$f'(x) = \frac{1}{x}$$
; $f''(x) = -\frac{1}{x^2}$; $f^{in}(x) = \frac{2}{x^3}$

 $f^{\, !}(x) \, = \, \frac{1}{x} \quad ; \qquad f^{\, ! !}(x) = - \, \frac{1}{x^{\, 2}} \; ; \qquad f^{\, ! !}(x) \, = \, \frac{2}{x^{\, 3}} \quad .$ In particolare risulta f(1) = 0, $f^{\, !}(1) = 1$, $f^{\, ! !}(1) = -1$. In base alla formula di Taylor con il resto di Lagrange per la funzione log x con centro $x_o = 1$, esiste $\xi > 0$ per cui

$$\log x=(x-1)-\frac{1}{2}(x-1)^2+\frac{1}{3}\frac{(x-1)^3}{\xi^3}$$
.

$$\begin{split} \frac{\log x}{x-1} &= 1 - \frac{1}{2} (x-1) + \frac{1}{3} \frac{(x-1)^2}{\xi^3} = \frac{3}{2} - \frac{1}{2} x + \frac{1}{3} \frac{(x-1)^2}{\xi^3} = \\ &= \frac{3-x}{2} + \frac{1}{3} \frac{(x-1)^2}{\xi^3}. \end{split}$$

Dato che $(x\text{-}1)^{\,3}$ / $\xi^{\,3}$ $\,\neq$ 0 per ogni x \neq 1, l'equazione data non ha so

3.24 Verificare che l'equazione

$$e^{3x} + e^{2x} - 5e^{x} + 3 = 0$$

ammette soltanto la soluzione x = 0.

[Si verifica direttamente che x=0 è soluzione. Per mostrare che x=0 è l'unica soluzione poniamo e^x =t, da cui t²= e^{2x} , t³= e^{3x} . Con tali notazioni l'equazione diventa

$$f(t) = t^3 + t^2 - 5t + 3 = 0.$$

La derivata $f'(t) = 3t^2 + 2t - 5$ si annulla in corrispondenza di t ==-5/3 e t=1. La funzione f(t) è strettamente crescente negli inter valli $(-\infty, -5/3]$ e $[1, +\infty)$. Il punto t=-5/3 è di massimo ed il punto t=1 è di minimo relativo per f(t). Il valore di minimo in corrispondenza a t=1 è f(1) = 0. Il grafico di f(t) è rappresentato in figura 3.11. La funzione f(t) si annulla, oltre che per t=1,anche in un punto t_{o} < - 5/3 (eseguendo la divisione del polinomio f(t)per il polinomio t-1, si trova poi che t =-3); in corrispondenza le soluzio ni dell'equazione data verificano:

$$e^{x} = 1$$
 oppure $e^{x} = t_{o}$.

La prima equazione dà x = 0; la seconda equazione non ha soluzioni perchè t_{\circ} è negativo. Quindi x=0 resta l'unica soluzione dell'equa -

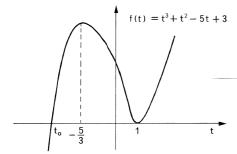


figura 3.11

3.25 Determinare il numero ed il segno delle soluzio ni dell'equazione trascendente

$$2^{4x} - 2^{3x+2} + 3 \cdot 2^{2x+1} - 2^{x+2} = 0$$
.

[E' opportuno porre 2^X=t, da cui

$$2^{4x} = t^{4}; \quad 2^{3x+2} = 2^{2} \cdot 2^{3x} = 4t^{3}; \quad 2^{2x+1} = 2t^{2}; \quad 2^{x+2} = 4t.$$

Con tali notazioni l'equazione diventa

$$f(t) = t^4 - 4t^3 + 6t^2 - 4t = 0$$
.

Si noti che f(t) si annulla per t=0. La derivata vale

$$f'(t) = 4t^3 - 12t^2 + 12t - 4 = 4(t^3 - 3t + 3t - 1) = 4(t - 1)^3$$
.

La funzione f(t) è strettamente crescente per $t \ge 1$ ed è strettamente decrescente per t \leq 1. Il punto t=1 è di minimo assoluto ed il va lore minimo è f(1) = 1-4+6-4=-1. Perciò l'equazione f(t)=0 ha due so luzioni \mathbf{t}_1 , \mathbf{t}_2 ; una nell'intervallo (- $^{\infty}$,1) (che, come abbiamo già visto, è t=0) e l'altra nell'intervallo (1,+ ∞). In corrispondenza occorre risolvere le due equazioni

$$2^{x} = t_{1} = 0$$
; $2^{x} = t_{2} > 1$.

La prima equazione non ha soluzioni, mentre la seconda ha per solu zione $x_2 = \log_2 t_2$; essendo $t_2 > 1$ risulta $x_2 > 0$.

Si noti che f(t) può essere rappresentata nella forma f(t) = = $(t-1)^4$ - 1, da cui si vede facilmente che t_1 = 0 e t_2 = 2. Perciò x₂ = log₂ 2 = 1 è l'unica soluzione dell'equazione data]

3.26 Risolvere l'equazione

$$e^{2x} - (x+4)e^{x} + 3(x+1) = 0.$$

[L'equazione ha due soluzioni : x = 0 e x = log 3. Il metodo per otte nere le soluzioni è indicato nella risposta dell'esercizio 2.92]

3.27 Verificare che le seguenti equazioni trascende<u>n</u> ti ammettono una sola soluzione nell'intervalio $(0,\pi/2)$:

(a)
$$tg x - 2x = 0$$
 (b) $tg x - \frac{2}{x} = 0$.

(b) tg x -
$$\frac{2}{x}$$
 = 0

[(a)Posto f(x) = tg x - 2x, la derivata vale

$$f'(x) = \frac{1}{\cos^2 x} - 2 = \frac{1 - 2 \cos^2 x}{\cos^2 x}$$

La derivata si annulla quando $\cos^2 x = 1/2$ e, dato che $\cos x > 0$ nel l'intervallo (0,71/2), ciò equivale a cos x = $\sqrt{2}$ /2, cioè x=71/4.I1 punto x= $\pi/4$ è di minimo per f(x) ed il valore minimo è f($\pi/4)$ = 1-- $\pi/2$ < 0. La funzione è strettamente decrescente in $\left[\ 0\,,\,\pi/4\ \right]$ ed è strettamente crescente in [$\pi/4$, $\pi/2$). Inoltre $f(x) \to +\infty$ per $x \to +\infty$ \rightarrow π /2 $^{-}$ e f(0)=0. Nell'intervallo [0, π /2) la funzione si annulla per x=0 ed in un altro punto dell'intervallo (π /4, π /2). Quindi nell'intervallo (0, π /2), l'equazione ha una sola soluzione. (b) Poniamo l'equazione nella forma f(x)=g(x), con

$$f(x) = tg x$$
; $g(x) = \frac{2}{x}$.

Nell'intervallo (0, π /2) la funzione f(x) è strettamente crescente e la funzione $g(\boldsymbol{x})$ è strettamente decrescente. Inoltre

$$\begin{cases} f(0) = 0 & ; & \begin{cases} \lim_{x \to \pi/2} f(x) = + \\ \lim_{x \to 0^{+}} g(x) = + \end{cases} & g(\pi/2) = 4/\pi \end{cases}$$

Quindi l'equazione f(x) = g(x) ha una ed una sola soluzione nell'intervallo (O, π /2)]

3.28 Consideriamo di nuovo le equazioni (a), (b) de<u>l</u> l'esercizio precedente e indichiamo con ξ la so luzione dell'equazione (a) e con n la soluzione dell'equazione (b) nell'intervallo (0,π/2). Dimostrare che $\xi > \eta$.

> Poniamo f(x) = tg x - 2x; g(x) - tgtamente crescente in (0, π /2) e la funzione f(x) (come verificato nell'esercizio precedente) è strettamente crescente in [$\pi/4,\ \pi/2).$

> Si noti che le funzioni f(x), g(x) assumono lo stesso valore in corrispondenza di x = 1. Tale valore è negativo; infatti:

$$f(1) = g(1) = tg(1) - 2 < tg\left(\frac{\pi}{3}\right) - 2 = \sqrt{3} - 2 < 0.$$

Dato che le funzioni $f(x),\;g(x)$ sono crescenti per $x\geq 1,$ le soluzio ni ξ^{τ} , η sono entrambe maggiori di 1. Essendo

tg
$$\xi = 2\xi > 2$$
 , tg $\eta = \frac{2}{\eta} < 2$,

ne segue che tg η < tg $\,\xi\,$, da cui η < $\,\xi\,$]

3.29 Dimostrare che la derivata f'(x) della funzione

$$f(x) = x sen^2 x$$

si annulla in uno ed un sol punto dell'interva $\underline{\mathbf{l}}$ lo aperto $(0,\pi)$.

[La funzione f(x) è derivabile su R. Dato che $f(0)=f(\pi)=0$, per il teorema di Rolle la derivata f'(x) si annulla almeno in un punto $de\underline{l}$ l'intervallo $(0,\pi)$. Per dimostrare l'unicità di tale punto studiamo 1'equazione:

 $f'(x) = sen^2 x+2x sen x cos x = sen x (sen x+2x cos x) = 0.$

Essendo sen $x \neq 0$ per ogni $x \in (0, \pi)$, otteniamo l'equazione equiva-

$$sen x + 2x cos x = 0$$
.

Osservando che x = π /2 non è soluzione dell' equazione (perchè $sen(\pi/2) = 1 \neq 0$), possiamo dividere entrambi i membri per cos x (che non è nullo) ottenendo la nuova equazione equivalente

$$t \alpha v + 2v = 0$$

La funzione $g(x) = tg x + 2x ha derivata <math>g'(x) = 1/\cos^2 x + 2 posit\underline{i}$ va; perciò g(x) è strettamente crescente negli intervalli (0, π /2) e $(\pi / 2, \pi).$

Dato che g(0) = 0, la funzione g(x) non si annulla nell'interval lo (0, W/Z). Inoltre, essendo

$$\lim_{\substack{\Pi^+\\ x \to \frac{\pi}{2}}} g(x) = -\infty , \qquad g(\Pi) = 2\Pi,$$

la funzione g(x) si annulla una ed una sola volta nell' intervallo

3.30 Determinare, nell'intervallo $(-\pi,\pi]$ il numero di soluzioni reali dell'equazione

$$\cos^2 x + 2 \operatorname{sen} x + \lambda = 0$$

al variare del parametro reale λ .

[La derivata della funzione $f(x) = \cos^2 x + 2 \operatorname{sen} x + \lambda \text{ vale}$

$$f'(x) = 2 \cos x (1-\sin x)$$

e, nell'intervallo (- π , π], si annulla per x= $\pi/2$ (che è un punto di massimo), $x = - \pi/2$ (che è un punto di minimo) e x=0 (che è un punto di flesso a tangente orizzontale). La funzione è strettamentecrescente nell'intervallo [- $\pi/2$, $\pi/2$] ed è strettamente decre scente in (- π , - π /2], [$\pi/2$, π]. I valori minimo e massimo di

min
$$f(x) = f\left(-\frac{\pi}{2}\right) = -2 + \lambda$$
; max $f(x) = f\left(\frac{\pi}{2}\right) = 2 + \lambda$.

Se min $f(x) < 0 < \max f(x)$, allora l'equazione f(x)=0 ha due soluzioni nell'intervallo $(-\pi,\pi]$; ciò corrisponde a -2+ $\lambda < 0 < 2+ \lambda$,cioè -2 $< \lambda < 2$. Se λ =2, oppure se λ =-2, l'equazione ha una sola soluzione reale. Infine se $\lambda < -2$, oppure se $\lambda > 2$, l'equazione f(x)= =0 non ha soluzioni]

3.31 Determinare, al variare del parametro reale λ , il numero di soluzioni reali dell'equazione

$$arctg x = \lambda x$$
.

[Una soluzione è data da x=0, qualunque sia $\lambda \in R$. La retta tangente per x_o =0 al grafico della funzione f(x) = arctg x ha equazione y = x (si veda la figura 3.12).

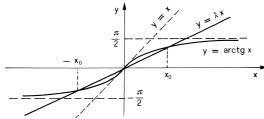


figura 3.12

La funzione arctg x è strettamente convessa nell'intervallo (- ∞ , 0] ed è strettamente concava in $[0,+\infty)$. Allora, se $0<\lambda<1$, la retta di equazione y = λx interseca il grafico di f(x) in due punti $\pm x_{o}$; invece, se $\lambda\geq1$, oppure se $\lambda\leq0$, la retta di equazione y= λx interseca il grafico della funzione solo per x=0. Riassumendo, l' equazione ha 3 soluzioni reali se $\lambda\in(0,1)$; ha solo la soluzione x=0 altrimenti]

3.32 Determinare il numero di soluzioni reali dell'<u>e</u> quazione

$$\frac{\text{arctg } x}{x} = \frac{1}{2}$$

[L'equazione ha due soluzioni. Si può studiare il grafico della funzione pari f(x)=arctg x/x, oppure si può procedere come nell'esercizio precedente]

3B. Radici reali dell'equazione di terzo grado

In questo paragrafo consideriamo le radici reali di un'equazione di terzo grado a coefficienti reali:

$$x^3 + a_2 x^2 + a_1 x + a_0 = 0$$
.

Ci proponiamo di dare delle condizioni sui coefficienti a_0, a_1, a_2 affinche l'equazione ammetta una, oppure due, oppure tre radici reali distinte. A tale scopo introduciamo le seguenti notazioni:

$$p = a_1 - \frac{a_2^2}{3}$$
; $q = a_0 - \frac{a_1 a_2}{3} + \frac{2 a_2^3}{27}$; $\Delta = \frac{q^2}{4} + \frac{p^3}{27}$.

Si noti che, se $a_2=0$, allora $p=a_1$, $q=a_o$.

 ${\tt Dimostreremo}\ {\tt che}\colon$

- 1) Se Δ > 0, 1'equazione ha una sola radice reale.
- 2) Se Δ = 0 e p = 0, l'equazione ammette come unica radice reale x = $a_2/3$.
- 3) Se Δ = 0 e p \neq 0, 1'equazione ha due radici reali distinte.
- 4) Se Δ < 0 l'equazione ha tre radici reali distinte.

Cominciamo con l'effettuare la sostituzione $x = t - a_2/3$. Il polinomio si trasforma in:

$$\left(t - \frac{a_2}{3}\right)^3 + a_2 \left(t - \frac{a_2}{3}\right)^2 + a_1 \left(t - \frac{a_2}{3}\right) + a_0 =$$

$$= \left(t^3 - at^2 + \frac{a_2^2}{3}t - \frac{a_2^3}{27}\right) + \left(a_2t^2 - \frac{2a_2^2}{3}t + \frac{a_2^3}{9}\right) +$$

$$+ \left(a_1t - \frac{a_1a_2}{3}\right) + a_0 = t^3 + \left(a_1 - \frac{a_2^2}{3}\right)t + \left(a_0 - \frac{a_1a_2}{3} + \frac{2a_2^3}{27}\right)$$

$$= t^3 + pt + q.$$

Ad ogni soluzione dell'equazione iniziale nella incognita x corrisponde, con la sostituzione $x=t-a_2/3$, una soluzione dell'equazione

$$t^3 + pt + q = 0$$

nell'incognita t, e viceversa. Per questo motivo nel seguito determineremo il numero degli zeri reali de $\underline{1}$ la funzione

$$f(t) = t^3 + pt + q.$$

Dato che $f(t)\to\pm\infty$ per $t\to\pm\infty,$ esiste sempre almeno una soluzione dell'equazione f(t) = 0. La derivata vale

$$f'(t) = 3t^2 + p$$

ed è sicuramente positiva per ogni $t\,\varepsilon\,R$ se p > 0.

Perciò, se p > 0, la funzione f(t) è strettamente crescente su R ed ammette una unica radice reale. Inoltre, se p > 0, risulta Δ = $q^2/4$ + $p^3/27$ >0 e quindi abbiamo una situazione corrispondente al caso 1).

Supponiamo nel seguito che $p \stackrel{<}{\leq} 0.$ In tal caso la derivata f'(t) si annulla nei punti

$$t_1 = -\frac{\sqrt{-p}}{3}$$
 , $t_2 = \frac{\sqrt{-p}}{3}$.

La funzione f(t) è crescente negli intervalli $(-\infty,t_1]$ e $[t_2,+\infty)$ ed è decrescente in $[t_1,t_2]$. Il punto t_1 è

di massimo relativo, mentre il punto \mathbf{t}_2 è di minimo (se p \neq 0). In corrispondenza la funzione f(t) assume i valori

$$f(t_1)=q-\frac{2}{3} p \sqrt{\frac{-p}{3}}$$
; $f(t_2)=q+\frac{2}{3} p \sqrt{\frac{-p}{3}}$

Se i valori $f(t_1)$, $f(t_2)$ sono entrambi positivi, oppure entrambi negativi, la funzione f(t) ha una sola radice reale; mentre, se $f(t_1)$ e $f(t_2)$ hanno segni \underline{d} scordi (e se $t_1 \neq t_2$), allora le radici reali sono tre (si veda la figura 3.13).

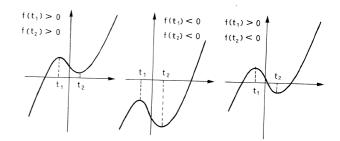


figura 3.13

Perciò le radici reali sono tre se il prodotto $f(t_1) \cdot f(t_2)$ è negativo. Tale prodotto vale

$$f(t_1) \cdot f(t_2) = q^2 - \left(\frac{2}{3} p \sqrt{\frac{-p}{3}}\right)^2 = q^2 + \frac{4}{27} p^3 = 4\Delta.$$

Quindi, se $\Delta<0$, l'equazione ha tre radici reali di stinte. Se invece $\Delta>0$, l'equazione ha una sola radice reale, perchè $f(t_1)\cdot f(t_2)>0$. Infine, se $\Delta=0$,

almeno uno dei valori $f(t_1)$, $f(t_2)$ è nullo, come in figura 3.14.

Se Δ =0 risulta t_1 = t_2 se e solo se p=0 (ed in tal caso t_1 = t_2 = $f(t_1)$ = $f(t_2)$ =0) e quindi x=- $a_2/3$. Se inve-

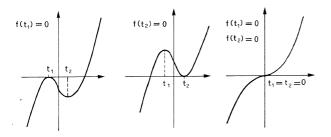


figura 3.14

ce $t_{_{1}} < t_{_{2}}$ (cioè se p \neq 0) allora l'equazione ha due radici reali distinte.

3C. L'algoritmo di Newton

In questo paragrafo prendiamo in considerazione uno dei metodi numerici più popolari e più efficienti per il calcolo approssimato delle soluzioni di una equazione: il metodo di Newton (detto anche l'algoritmo di Newton). Ricordiamo che esistono anche altri importanti algoritmi per il calcolo numerico approssimato di soluzioni di equazioni algebriche e trascen denti, quali ad esempio il metodo di bisezione ed il metodo delle secanti, che però non esaminiamo in questa sede.

L'algoritmo di Newton è un metodo iterativo che, nella forma più semplice, si può enunciare così:

TEOREMA. - Sia f(x) una funzione derivabile, con derivata continua, in un intervallo [a,b] e sia convessa in tale intervallo. Supponiamo che f(a) < 0, f(b) > 0 e che f'(x) > 0 per ogni xe[a,b]. Allora la successione x_n, definita per ricorrenza da

$$x_1 = b$$
, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$,

converge decrescendo all'unica soluzione $x_o \in [a,b]$ dell'equazione f(x) = 0.

Dimostrazione: Per il teorema dell'esistenza degli zeri esiste in [a,b] una soluzione x_o dell'equazione f(x)=0. Dato che f'(x)>0 per ogni , $x\in [a,b]$, la funzione è strettamente crescente e quindi l'equazione f(x)=0 ammette x_o come unica soluzione in [a,b].

Proviamo che $x_n \ge x_o$ per ogni n. Per n=1 la relazione è vera, infatti x_1 = b > x_o . Per n > 1 utilizziamo la convessità di f(x):

$$f(x) \ge f(x_n) + f'(x_n)(x-x_n)$$
 , $\forall x \in [a,b]$.

Ponendo $x=x_{n+1}$ e ricordando che $x_{n+1}-x_n$ = - $f(x_n)/f'(x_n)$, otteniamo

$$\begin{split} f(x_{n+1}) & \geq f(x_n) + f'(x_n)(x_{n+1}^{-1}x_n) = \\ & \\ & = f(x_n) + f'(x_n) \left[-f(x_n)/f'(x_n) \right] = 0. \end{split}$$

Perciò $f(x_{n+1}) \ge 0$; dato che la funzione f(x) è positiva in $(x_o, b$] ed è nega tiva in $[a,x_o]$, risulta $x_{n+1} \ge x_o$.

Verifichiamo che la successione x_n è decrescente: Dato che $x_n \geq x_o$ risulta $f(x_n) \geq 0$. Inoltre per ipotesi $f'(x_n) > 0$. Perciò:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \frac{\mathbf{f}(\mathbf{x}_n)}{\mathbf{f}^*(\mathbf{x}_n)} \leq \mathbf{x}_n \text{ ,} \qquad \forall n$$

Per il teorema sulle successioni monotòne, esiste il limite per $n\to +\infty$ di x_n . Indichiamo tale limite con $\tilde{x} \in [x_o, b]$; risulta

$$\bar{\mathbf{x}} = \lim_{n \to +\infty} \mathbf{x}_{n+1} = \lim_{n \to +\infty} \left(\mathbf{x}_n - \frac{\mathbf{f}(\mathbf{x}_n)}{\mathbf{f}^*(\mathbf{x}_n)} \right) = \bar{\mathbf{x}} - \frac{\mathbf{f}(\bar{\mathbf{x}})}{\mathbf{f}^*(\bar{\mathbf{x}})}$$

(abbiamo utilizzato la continuità di f(x) e di f'(x)). Ne segue che $f(\tilde{x})=0$. Da to che f(x) = 0 ha un'unica soluzione nell'intervallo [a,b], risulta $\tilde{x}=x$ Quindi \boldsymbol{x}_n converge ad \boldsymbol{x}_o per $n \to +\infty$.

Se f(x) non è convessa nell'intervallo [a,b], lo algoritmo di Newton può non essere convergente. Però, se x_1 è sufficientemente vicino alla soluzione cerc \underline{a} ta, allora, come indicato nel risultato che segue, il metodo risulta arcora convergente.

TEOREMA. - Sia f(x) una funzione derivabile due volte in [a,b]. Sia $x_o \in (a,b)$ una soluzione dell'equazione = 0. Supponiamo che esistano due numeri reali m,M tali che

$$0 < m \le |f'(x)|, M \ge |f''(x)|, \forall x \in [a,b].$$

$$\delta_{\circ}\text{=min }\{b\text{-}x_{\circ}\text{; }x_{\circ}\text{-}a\}\text{, }\delta\text{ = min }\left\{\frac{2m}{M}\text{ ; }\delta_{\circ}\right\}$$

(δ = δ $_{\circ}$ se M=0). Allora, se scegliamo \mathbf{X}_{1} in modo che $\left[\mathbf{X}_{1}\right]$

- $\rm x_{\circ}\,|<\,\delta$, la successione $\rm x_{\,n}$, definita per $\rm n\,\geq\,$ 1 da

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Dimostrazione: Utilizziamo la formula di Taylor con il resto di Lagrange per la funzione f(x) con centro nel punto x_n :

$$f(x) = f(x_n) + f'(x_n)(x-x_n) + \frac{f''(\xi)}{2} (x-x_n)^2$$
, $\forall x \in [a,b]$, essen

essendo ξ un punto opportuno dell'intervallo [a,b]. Poniamo $n=n_o$; de che $f(x_o)$ = 0, dividendo per $f'(x_n)$ (che per ipotesi non è zero) otteniamo

$$0 = \frac{f(x_n)}{f'(x_n)} + (x_o - x_n) + \frac{1}{2} \frac{f''(\xi)}{f'(x_n)} (x_o - x_n)^2$$
Essendo $x_{n+1} = x_n - f(x_n) / f'(x_n)$ risulta

$$x_{n+1} - x_o = \frac{1}{2} - \frac{f''(\xi)}{f'(x_n)} (x_o - x_n)^2$$
.

Da cui

(1)
$$\left| x_{n+1} - x_{o} \right| \leq \frac{1}{2} \frac{M}{m} (x_{n} - x_{o})^{2}$$
.

Verifichiamo ora, per induzione, che

Il primo termine x $_{1}\,$ è stato scelto in modo da soddisfare tale relazione. Supponiamo vera la (2) e procediamo utilizzando la (1):

$$|x_{n+1} - x_o| \le \frac{1}{2} \frac{M}{m} (x_n - x_o)^2 < \frac{1}{2} \frac{M}{m} \delta^2;$$

dato che δ \leq 2m/M, risulta

$$\left| \; \; x_{n+1}^{-} \; \; x_{\circ} \; \; \right| \; \; < \; \frac{1}{2} \; \; \frac{M}{m} \quad \delta^{\; 2} \; \; \leq \; \frac{1}{2} \; \, \frac{M}{m} \quad \delta \; \left(\; \frac{2m}{M} \; \right) \; \; = \; \delta \; \; .$$

Perciò la (2) è provata . In particolare la (2) assicura che \boldsymbol{x}_n $\varepsilon\,[\,a,b\,]$ $\,$ per ogni n.

Verifichiamo per induzione che

$$|x_{n+1} - x_o| \le \frac{2m}{M} \left(\frac{M |x_1 - x_o|}{2m} \right)^{2^n}$$

Per n=1 la (3) segue dalla (1). Supponendo verificata la (3) per n ≥ 1 e utilizzando di nuovo la (1) con n+1 al posto di n, otteniamo

Perciò la (3) è dimostrata. Infine tenendo presente che

$$|x_1 - x_0| < \delta \le \frac{2m}{M} \Rightarrow \frac{M}{2m} |x_1 - x_0| < 1$$

il secondo membro di (3) converge a zero per $n^{\to}+^{\infty}$. Ne segue che \mathbf{x}_n converge a \mathbf{x}_n per $n^{\to}+^{\infty}$.

Spesso il teorema precedente si applica nella fo \underline{r} ma seguente:

COROLLARIO. - Se $f\left(x\right)$ ha derivata seconda continua in un intorno di x_{\circ} e se

$$f(x_o) = 0, f'(x_o) \neq 0,$$

allora l'algoritmo di Newton è convergente pur di scegliere la approssimazione iniziale \mathbf{X}_1 sufficientemente vicina ad \mathbf{X}_0 .

 $\label{eq:definition} \textit{Dimostrazione:} \ \ \text{Dato che } f(x) \ \grave{e} \ \ \text{derivabile due volt\'e in un} \quad \text{intorno} \\ \ \ I \ di \ x_o, \ la \ \ \text{derivata prima} \ \grave{e} \ \ \text{continua in I. Essendo } f'(x_o) \ \not= 0, \ per \ il \ \ \text{teorestate}$

ma della permanenza del segno esiste un numero positivo δ alle che $|\mathbf{f}^+(\mathbf{x})| > |\mathbf{f}^+(\mathbf{x}_o)| / 2$ per ogni \mathbf{x} per cui $|\mathbf{x}-\mathbf{x}_o| \leq \delta$. Dato che $\mathbf{f}^+(\mathbf{x})$ è continua nell'intervallo $[\mathbf{x}_o - \delta_o, \mathbf{x}_o + \delta_o]$, esiste in tale intervallo il massimo M di $|\mathbf{f}^+(\mathbf{x})|$. Perciò, posto m = $|\mathbf{f}^+(\mathbf{x}_o)| / 2$, risulta

$$|f'(x)| \ge m$$
, $|f''(x)| \le M$, $\forall x \in [x_o - \delta_o, x_o + \delta_o]$.

Sono soddisfatte le ipotesi del teorema precedente; perciò l'algoritmo di Newton converge pur di scegliere \mathbf{x}_1 in modo che $\left\|\mathbf{x}_1-\mathbf{x}_o\right\|<\delta=\min\{2m/m;\delta_o\}$

Allo scopo di valutare le stime proposte in precedenza, discutiamo la convergenza della successione x_n (dell'algoritmo di Newton) alla soluzione $x_o=0$ del l'equazione sen x=0. Poniamo quindi

$$f(x) = sen x$$
, $x_o = 0$

e consideriamo la successione definita per ricorrenza da $% \left(1\right) =\left(1\right) \left(1\right) \left($

$$x_1 \neq 0$$
 assegnate, $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)} = x_n - tg x_n$.

Ci limitiamo a considerare $x_1 \in (-\pi/2, \pi/2)$.

La retta di equazione y=x è tangente al grafico della funzione y = tg x per x=0. In base alla concavità e convessità della funzione tangente, si verifica che:

se
$$x \in [0, \pi/2)$$
 \Longrightarrow tg $x > x$;
se $x \in (-\pi/2, 0]$ \Longrightarrow tg $x < x$.

Ne segue che se $x_n \in (0,\pi/2)$ allora $x_{n+1} = x_n$ -tg $x_n < 0$ è viceversa, se $x_n \in (-\pi/2,0)$ allora $x_{n+1} > 0$. Quindi,se $x_n \to 0$ per $n \to +\infty$, allora x_n si avvicina a zero oscil -lando.

Data la simmetria del problema, basta considera-

re $\textbf{x}_1 \in (\textbf{0}, \pi/2).$ In base ai teoremi precedenti la successione \textbf{x}_n risulta convergente a $\textbf{x}_o = 0$ pur di scegliere

$$x_1 = |x_1 - x_0| < \frac{2m}{M} ,$$

dove

$$m = min \{ |f'(x)| : x \in [-x_1, x_1] \}$$
,

$$M = \max \{ |f''(x)| : x \in [-x_1, x_1] \}.$$

$$x_1 \in \left(0, \frac{\pi}{2}\right)$$
 , $x_1 < \frac{2m}{M} = 2 \frac{\cos x_1}{\sin x_1}$,

cioè tg $x_1 < 2/x_1$. In figura 3.15 sono rappresentati in uno stesso sistema di riferimento i grafici delle funzioni y = tg x e y=2/x per x $\epsilon(0,\pi/2)$. Si verifica facilmente che la condizione tg $x_1 < 2/x_1$ è equivalente a dire che $x_1\epsilon(0,\eta)$ con η soluzione in $(0,\pi/2)$ dell'equazione tg x = 2/x (si veda anche l'esercizio 3.27 (b)).

Riassumendo, in base alle stime del teorema, l'algoritmo di Newton è convergente pur di scegliere $x_1 \in \epsilon(0,\eta)$, con $\eta \in (0,\pi/2)$ soluzione dell'equazione tg x=2/x.

Analizziamo ora direttamente la convergenza della successione \mathbf{x}_n definita con il metodo di Newton , senza ricorrere alle stime enunciate in generale precedentemente.

Abbiamo già mostrato che la successione \boldsymbol{x}_n , se converge a zero, è a termini di segno alterno. Cons<u>i</u>

deriamo la successione

$$y_n = |x_n|$$

e vediamo quando y $_{n}$ è monotòna decrescente. Se x $_{n} > 0$

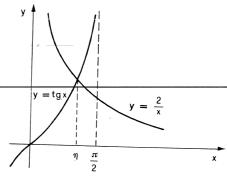


figura 3.1

risulta $x_{n+1} < 0$ e quindi

$$y_{n+1} = |x_{n+1}| = -x_{n+1} = tg x_n - x_n$$

Risulta $y_{n+1} < y_n = |x_n| = x_n$ se e solo se tg $x_n - x_n < x_n$, cioè se e solo se

tg
$$x_n < 2x_n$$
.

Ciò equivale a dire (si veda anche l'esercizio 3.27 (a)) che $y_{n+1} < y_n$ se e solo se $x_n \in (0,\xi)$, dove $\xi \in (0,\pi/2)$ è soluzione dell'equazione tg x=2x. Si verifica anche, per induzione, che se $x_1 \in (0,\xi)$, allora $y_n=x_n \in (0,\xi)$ e $y_n \in ($

converge decrescendo a zero e quindi anche $\mathbf{x}_{\,n}$ conve $\underline{\mathbf{r}}$ ge a zero.

Si noti che, con l'analisi diretta, abbiamo trovato una stima ottimale: Nell'ipotesi $x_1 \in (0,\pi/2)$ la successione x_n converge a zero se $x_1 \in (0,\xi)$, con ξ so luzione dell'equazione tg x=2x nell'intervallo $(0,\pi/2)$.

Deve quindi risultare 0 < η < ξ < $\pi/2$ (infatti, che proprio questo è ciò che accade, è provato nello esercizio 3.28). A titolo indicativo riportiamo le se guenti espressioni decimali approssimate:

$$\eta = 1.07...$$
; $\xi = 1.16...$; $\frac{\pi}{2} = 1.57...$.

Per finire, notiamo che la successione $\mathbf{x}_{\mathbf{n}}$ si può rappresentare nella forma

$$x_1 \in \left(0, \frac{\pi}{2}\right)$$
, $x_{n+1} = g(x_n)$ con $g(x)=x-tg$ x.

Con i metodi del paragrafo 12C della parte prima si verifica che la funzione g(x) è una contrazione in ogni intervallo del tipo [-8,8], con 0 < 6 < $\pi/4$. In tal caso la convergenza a zero della successione x_n segue dal teorema delle contrazioni.

3D. Valutazione numerica delle soluzioni

Esistono diversi metodi numerici per risolvere in modo approssimato un'equazione algebrica o trascendente. Il metodo di Newton, considerato nel paragrafo precedente, è un esempio. Importanti sono anche il metodo di bisezione ed il metodo delle secanti.

Negli esercizi che seguono riprendiamo alcuni esempi già proposti nel paragrafo 3A dal punto di vista dell'esistenza delle soluzioni e risolti facendo uso del teorema dell'esistenza degli zeri. In questa sede invece proponiamo la determinazione di un'espres sione decimale approssimata delle soluzioni reali per mezzo di algoritmi numerici e, naturalmente, utilizzando un computer.

Nelle risposte abbiamo riportato sinteticamente l'espressione decimale delle soluzioni troncata a 6 cifre.

$$3.33 x^3 + 2x^2 + 10x - 20 = 0$$

[L'equazione ammette la radice reale $\mathbf{x_o}$ = 1.368808... (si veda l'ese<u>r</u> cizio 3.1)]

$$3.34 \quad 1 \quad - \quad \frac{x^2}{2} \quad + \quad \frac{x^4}{24} = 0$$

[L'equazione ha quattro radici reali: $\pm \sqrt{6-2\sqrt{3}}$ = $\pm 1.592450....$, $\pm \sqrt{6+2\sqrt{3}}$ = $\pm 3.076378...$ (si veda l'esercizio 3.2)]

$$3.35 \quad x^9 (x-4)^9 = 1$$

[L'equazione si può scrivere nella forma equivalente x(x-4) = 1 (si veda anche l'esercizio 3.3 (a)) ed ha per soluzioni $x_1 = 2 - \sqrt{5} = -0.236067...$ e $x_2 = 2 + \sqrt{5} = 4.236067...$

$$3.36 \quad x^{10}(x-2)^{10} = 1$$

[L'equazione ha tre soluzioni: $x_0=1$, $x_1=1-\sqrt{2}=-0.414213...$, $x_2=1+\sqrt{2}=2.414213...$]

3.37 (a)
$$x^4 + x^2 = x + 1$$

(b)
$$x^4 + x^2 = 1 - x$$

[Si veda l'esercizio 3.6. (a) x $_1$ =- 0.569840..., x $_2$ =1; (b) x $_1$ =-1 , x $_2$ = 0.569840...]

3.38 (a)
$$x^4 + x^3 - 1 = 0$$
 (b) $x^4 - 2x^3 - 1 = 0$

[Si veda l'esercizio 3.7. (a) $x_1 = -1.380277..., x_2 = 0.819172....;$ (b) $x_1 = -0.716672..., x_2 = 2.106919...$]

$$3.39 \sqrt{x} + \frac{1}{x-3} = 0$$

[L'equazione ha due radici reali (si vedano 1'esercizio 3.9 e la figu ra 3.2): $x_1 = 0.120614..., x_2 = 2.347296...$

3.40(a)
$$\frac{1}{x} + \log x = 2$$
 (b) $\frac{1}{x} + \log x = 4$

(b)
$$\frac{1}{x} + \log x = 4$$

[Si veda l'esercizio 3.10. (a) x₁ =0.317844..., x₂ = 6.305395......; (b) x₁=0.173942..., x₂=53.588761...]

$$3.41 \frac{1}{x} + \log |x| = 2$$

Oltre alle due soluzioni della parte (a) dell'esercizio precedente la equazione ha anche la soluzione negativa -8.331372...]

3.42 log
$$|x| - \frac{x^2 - 4x}{1 - x^2} = 0$$

[$x_1 = 0.297993...$, $x_2 = 2.352016...$ (si vedano l'esercizio 3.12 e la figura 3.3)

$$3.43$$
 (a) $x \log^2 x = 1$

(b)
$$x \log^2 x = \frac{1}{2}$$

[(a) In base ai risultati dell'esercizio 3.13, dato che λ =1 > 4/e 2 , 1'equazione ha una soluzione : 2.020747...; (b) Dato che λ = 1/2 < $<4/e^2$, 1'equazione ha tre soluzioni: x_1 = 0.072958...., x_2 = = 0.225832..., x₃ = 1.715724...]

$$3.44 x^2 - 2x \log x - 2 = 0$$

[L'equazione ammette una sola radice reale (si veda 1'esercizio 3.16) espressa da 2.750883...]

$$3.45 e^{x} = \frac{1-x}{x}$$

 $\left[x_0 = 0.401058... \text{ (si vedano l'esercizio 3.17(b) e la figura 3.6)}\right]$

$$3.46 e^{-x} = (x-1)^2$$

[Come indicato nell'esercizio 3.20 (b), l'equazione ha due soluzioni reali. Esse sono espresse da x $_1$ = 0 e x $_2$ = 1.477670...]

$$3.47$$
 (a) $2^{-x} = |x|$

(b)
$$3^{x} = |x|$$

[(a) Come risulta dagli esercizi 3.21, 3.22. l'equazione ha una sola soluzione, espressa da 0.641185...; (b) dato che 3= λ >e $^{1/e}$, dall'analisi dell'esercizio 3.22 e dalla figura 3.10 risulta che l'equazi<u>o</u> ne ha una sola soluzione (negativa), che è espressa da -0.547808...]

3.48 tg x - 2x = 0 con
$$x \in (0, \pi/2)$$

[ξ =1.165561... (si vedano gli esercizi 3.27(a) e 3.28)]

3.49 tg x -
$$\frac{2}{x}$$
 = 0 con $x \in \left(0, \frac{\pi}{2}\right)$

[n = 1.076873... (si vedano gli esercizi 3.27(b) e 3.28)]

3.50 (a)
$$\cos^2 x + 2 \sin x + 1 = 0 \cos x \in (-\pi, \pi]$$

(b)
$$\cos^2 x + 2 \sin x - 1 = 0 \cos x \in (-\pi, \pi]$$

[In base all'analisi fatta nell'esercizio 3.30, entrambe le equazioni hanno due soluzioni.

(a)
$$x_1 = -2.320265...$$
, $x_2 = -0.821327...$;

(b)
$$x_1 = 0$$
, $x_2 = \pi = 3.141592...$

3.51 arctg x =
$$\frac{x}{2}$$

[Come mostrato nell'esercizio 3.31, oltre a x=0 l'equazione ha $\,$ altre due soluzioni, rappresentate da \pm 2.331122...]

Capitolo 4

INTEGRALI INDEFINITI

4A. Integrali indefiniti immediati

Sia f(x) una funzione definita nell'intervallo I di R. Una funzione F(x), derivabile in I, si dice primitiva di f(x) se F(x) = f(x), per ogni $x \in I$. Se F(x) è una primitiva di f(x), allora, per o-

Se F(x) è una primitiva di f(x), allora, per ogni $c \in \mathbb{R}$, anche G(x) = F(x) + c è una primitiva di f(x) in quanto G'(x) = F'(x).

Viceversa, se G(x) è una primitiva di f(x), diversa dal la primitiva F(x), allora esiste una costante c tale che G(x)= = F(x) + c.

Infatti, se F(x) e G(x) sono due primitive di f(x), posto H(x) = G(x)-F(x), risulta:

$$H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0$$
 $\forall x \in I$

e dunque H(x) è costante.

Il risultato precedente si esprime anche dicendo che: la differenza di due primitive di una stessa funzione è costante.

Da questo risultato segue che, se una funzione f(x) ammette una primitiva F(x), allora l'insieme di tutte le primitive di f(x) è costituito dalle funzioni del tipo

$$F(x) + c$$

con c costante arbitraria.

Tale insieme si chiama integrale indefinito di f(x) e si indica con il simbolo

$$\int f(x)dx$$
.

Perciò possiamo affermare che

$$\int f(x)dx = F(x) + c$$

ove F(x) è una primitiva di f(x) e c è una $% \left(x\right) =\left(x\right) +\left(x\right) +\left($

Ad esempio, risulta

$$\int x^2 dx = \frac{x^3}{3} + c$$

in quanto la funzione $F(x) = \frac{x^3}{3}$ è una primitiva della funzione $f(x) = x^2$.

Si dimostra che: ogni funzione continua in un interva<u>l</u> lo ammette sempre primitiva. Si verifica subito, inoltre,che

$$\int [f(x)+g(x)]dx = \int f(x)dx + \int g(x)dx$$

e che, per ogni k∈R, è

$$\int kf(x)dx = k \int f(x)dx .$$

Riportiamo di seguito alcuni integrali indefiniti $i\underline{m}$ mediati:

(1)
$$\int x^b dx = \frac{x^{b+1}}{b+1} + c$$
 $b \neq -1$

(2)
$$\int \frac{1}{x} dx = \log |x| + c \frac{S(x)}{S(x)} \log |x| = \frac{1}{2c}$$

(3)
$$\int e^x dx = e^x + c$$
 (4) $\int a^x dx = \frac{a^x}{\log a} + c$

(5)
$$\int \operatorname{sen} x \, dx = -\cos x + c$$
 (6) $\int \cos x \, dx = \sin x + c$

(7)
$$\int \frac{1}{\cos^2 x} dx = tg x+c \qquad (8) \int \frac{1}{\sin^2 x} dx = -\cot g x+c$$

(9)
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$
 (10) $\int \frac{1}{1+x^2} dx = \arctan x + c$

$$\sqrt{2}$$
 (11) $\int \sin h x dx = \cos h x + c$ (12) $\int \cos h x dx = \sin hx + c$

Le formule precedenti possono essere generalizzate, utilizzando la regola di derivazione delle funzioni composte. Si ottengono così le seguenti formule:

(1')
$$\int [f(x)]^b f'(x) dx = \frac{[f(x)]^{b+1}}{b+1} + c$$
 $(b \neq -1)$

(2')
$$\int \frac{f'(x)}{f(x)} dx = \log |f(x)| + c$$

(3')
$$\int e^{f(x)} f'(x) dx = e^{f(x)} + c$$

(2')
$$\int \frac{f(x)}{f(x)} dx = \log |f(x)| + c$$
(3')
$$\int e^{f(x)} f'(x) dx = e^{f(x)} + c$$
(4')
$$\int a^{f(x)} f'(x) dx = \frac{a^{f(x)}}{\log a} + c \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{f(x)} dx = c \cos f(x) + c$$

$$(5') \int [\operatorname{sen} f(x)] f'(x) dx = -\cos f(x) + c$$

(6')
$$\int [\cos f(x)]f'(x)dx = \sin f(x) + c$$

(7')
$$\int \frac{f'(x)}{\cos^2 f(x)} dx = tg f(x) + c$$

(8')
$$\int \frac{f'(x)}{\sin^2 f(x)} dx = -\cot g f(x) + c$$

(9')
$$\int \frac{f'(x)}{\sqrt{1-f^2(x)}} dx = \arcsin f(x) + c$$

$$(10')$$
 $\int \frac{f'(x)}{1+f^2(x)} dx = arctg f(x) + c$

$$(11')$$
 [sen h f(x)] f'(x)dx = cos h f(x) + c

(12')
$$\int [\cos h f(x)] f'(x)dx = \sin h f(x) + c.$$
 \sqrt{g}

Verifichiamo, ad esempio, la (1'). Essendo

$$D \frac{[f(x)]^{b+1}}{b+1} = (b+1) \frac{[f(x)]^{b}}{b+1} f'(x) = [f(x)]^{b} f'(x)$$

ne segue la (1'). Inoltre, ricordando che:

D sett sen h x =
$$\frac{1}{\sqrt{1+x^2}}$$
; D sett cos h x= $\frac{1}{\sqrt{x^2-1}}$;

D sett tg h x =
$$\frac{1}{1-x^2}$$

si hanno le notevoli relazioni:

(13)
$$\int \frac{1}{\sqrt{1+x^2}} dx = \text{sett sen } h \ x + c = \log(x + \sqrt{1+x^2}) + c$$

(14)
$$\int \frac{1}{\sqrt{x^2-1}} dx = \text{sett cos h } x + c = \log(x + \sqrt{x^2-1}) + c$$

(15)
$$\int \frac{1}{1-x^2} dx = \text{sett tgh } x + c = \frac{1}{2} \log \frac{1+x}{1-x} + c$$

4.1 Verificare con qualche esempio che non sussiste l'uguaglianza

$$\int f(x)g(x)dx = \int f(x)dx \cdot \int g(x)dx.$$

$$\left[\text{Basta scegliere } f(x) = g(x) = x \right]^{\frac{\lambda}{2}} \xrightarrow{\frac{\lambda^{2}}{2}} \cdot \underset{\leftarrow}{\sum^{2}} \cdot \underbrace{\sum^{2}}_{} \cdot \underbrace{$$

4.2 Sia F(x) una funzione continua nell'intervallo I di R e sia F'(x) = 0 per ogni $x \in I - I_o$, con I_o sot toinsieme finito di I. Dimostrare che F è costan te in I.

[Siano a,b \in I con a < b e siano x $_1 <$ x $_2 <$ < x $_n$ i punti di (a,b) in cui non è verificata la relazione F'(x) = 0. Evidentemente in ciascuno degli intervalli $[a,x_1]$, $[x_1,x_2]$,..., $[x_n,b]$ la funzione 180

F(x) è costante e perciò si ha

$$F(a)=F(x_1) = ... = F(x_n) = F(b).$$

Per l'arbitrarietà di a e b si ha l'asserto]

4.3 Consideriamo la funzione $f(x) = (x+1)^2/x$ per x>0Si verifica facilmente che la derivata vale

$$f'(x) = (x^2-1)/x^2=1-1/x^2$$
.

Altrettanto facilmente si calcola una $\mbox{primitiva}$ g(x) di f'(x), che vale

$$g(x) = x+(1/x) = (x^2+1)/x$$
.

Per quale ragione g(x) è differente dalla funzione f(x)?

[La funzione g(x) è effettivamente differente dalla funzione f(x), ma la differenza è una costante:

$$f(x)-g(x) = \frac{(x+1)^2}{x} - \frac{x^2+1}{x} = \frac{2x}{x} = 2$$

- (4B.) Integrazione per semplici trasformazioni dell'integrando
- √4.4 Calcolare i seguenti integrali:

[Utilizzando (2') si ha:

$$\int \cot g \ x \ dx = \int \frac{\cos x}{\sin x} \ dx = \int \frac{D \sin x}{\sin x} \ dx = \log |\sin x| + c$$

Utilizzando (5') e (6') si ha, rispettivamente:

$$\int \operatorname{sen} \ \operatorname{ax} \ \operatorname{dx} = \frac{1}{a} \int \operatorname{sen} \ \operatorname{ax} \cdot \operatorname{D}(\operatorname{ax}) \operatorname{dx} = -\frac{1}{a} \cos \operatorname{ax} + \operatorname{c}$$

$$\int \cos \ \operatorname{ax} \ \operatorname{dx} = \frac{1}{a} \int \cos \ \operatorname{ax} \cdot \operatorname{D}(\operatorname{ax}) \operatorname{dx} = \frac{1}{a} \sin \ \operatorname{ax} + \operatorname{c}$$

Utilizzando (1) e (1'), si ha, rispettivamente:

$$\int \sqrt{x} dx = \int x^{1/2} dx = \frac{2}{3} x^{3/2} + c = \frac{2}{3} \sqrt{x^3} + c$$

$$\int \frac{1}{\sqrt{x+a}} dx = \int (x+a)^{-1/2} dx = 2(x+a)^{1/2} = 2 \sqrt{x+a} + c$$

Utilizzando (1'), si ha

$$\int \frac{x}{\sqrt{a+x^2}} dx = \frac{1}{2} \int (a+x^2)^{-1/2} 2x dx = \frac{1}{2} \int (a+x^2)^{-1/2} \cdot D(a+x^2) dx =$$

$$= (a+x^2)^{1/2} + c = \sqrt{a+x^2} + c$$

$$\int \frac{x}{\sqrt{a-x^2}} dx = -\frac{1}{2} \int (a-x^2)^{-1/2} \cdot (-2x) dx = -\frac{1}{2} \int (a-x^2)^{-1/2} D(a-x^2) dx =$$

=-
$$(a-x^2)^{1/2}$$
 + c =- $\sqrt{a-x^2}$ + c]

4.5 Calcolare i seguenti integrali, con a > 0

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx \; ; \quad \int \frac{1}{a^2 + x^2} \; dx \; ; \quad \int \frac{1}{\sqrt{a^2 + x^2}} \; dx \; ;$$

$$\int \, \frac{1}{\sqrt{x^2 - a^2}} \, \, dx \ ; \qquad \int \, \frac{1}{a^2 - x^2} \, \, dx$$

[Utilizzando (9') e (10'), si ha, rispettivamente:

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \int \frac{1}{a\sqrt{1 - \left(\frac{x}{a}\right)^2}} dx = \int \frac{1}{\sqrt{1 - \left(\frac{x}{a}\right)^2}} D\left(\frac{x}{a}\right) dx =$$

$$= \arcsin \frac{x}{a} + c$$

$$\int \frac{1}{a^2 + x^2} dx = \int \frac{1}{a^2 \left[1 + \left(\frac{x}{a}\right)^2\right]} dx = \frac{1}{a} \int \frac{1}{1 + \left(\frac{x}{a}\right)^2} D\left(\frac{x}{a}\right) dx =$$

$$= \frac{1}{a} \arctan \frac{x}{a} + c$$

Utilizzando (13), (14) e (15), si ha, rispettivamente

$$\int \frac{1}{\sqrt{a^2 + x^2}} dx = \int \frac{1}{a\sqrt{1 + \left(\frac{x}{a}\right)^2}} dx = \int \frac{1}{\sqrt{1 + \left(\frac{x}{a}\right)^2}} D\left(\frac{x}{a}\right) dx =$$

$$= \text{sett sen } h \frac{x}{a} + c$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \int \frac{1}{a\sqrt{\left(\frac{x}{a}\right)^2 - 1}} dx = \int \frac{1}{\sqrt{\left(\frac{x}{a}\right)^2 - 1}} D\left(\frac{x}{a}\right) dx =$$

$$= \text{sett cos } h \frac{x}{a} + c$$

$$\int \frac{1}{a^2 - x^2} dx = \int \frac{1}{a^2 \left[1 - \left(\frac{x}{a}\right)^2\right]} dx = \frac{1}{a} \int \frac{1}{1 - \left(\frac{x}{a}\right)^2} D\left(\frac{x}{a}\right) dx =$$

$$= \frac{1}{a} \text{ sett tg } h \frac{x}{a} + c$$

Calcelare i seguenti integrali e verificare che si « tiene il risultate indicate:

$$4.6 \int \frac{1}{(3+5x)^{-6}} dx = \left(\frac{1}{5} \int (3+5x)^{-6} D(5x) dx\right)$$

$$= \frac{1}{5} \frac{(3+5x)^{-5}}{-5} + c = -\frac{1}{25(3+5x)^{5}} + c$$

$$\times 4.7 \int \sqrt{x+2} dx = \int (x+2)^{1/2} dx = \frac{(x+2)^{3/2}}{3/2} + c$$

$$\times 4.8 \int \frac{1}{\sqrt[4]{2x+1}} dx = \frac{1}{2} \int (2x+1)^{-1/4} D(2x) dx = \frac{1}{2} \frac{(2x+1)^{-3/4}}{3/4} + c$$

$$= \frac{2}{5} \cdot \sqrt[4]{(2x+1)^{-3}} + c$$

$$= -\frac{1}{4} \int (3-2x^{2})^{-1/2} D(3-2x^{2}) dx = -\frac{1}{4} \int$$

 $= -\frac{1}{6} \int (2-3x^2)^{-1/2} D(2-3x^2) dx =$

 $\frac{1}{x\sqrt{x^2-1}} dx = \int \frac{1}{x^2 \sqrt{1-\left(\frac{1}{x}\right)^2}} dx = \int \frac{1}{x^2 \sqrt{1-\left(\frac{1}{x}\right)^2}} dx$

 $= -\frac{1}{6} \frac{(2-3x^2)}{1/2}^{1/2} + c = -\frac{1}{3} \sqrt{2-3x^2} + c$

 $= -\int \frac{1}{\sqrt{1-\left(\frac{1}{x}\right)^2}} \cdot D\left(\frac{1}{x}\right) dx = -\arcsin \frac{1}{x} + c$

 $\int 4:13 \int \frac{\arcsin^2 x}{\sqrt{1-x^2}} dx = \int \arcsin^2 x \cdot D(\arcsin x) dx =$ $= \frac{1}{3} \arcsin^3 x + c$ $\times 4.14 \int \frac{1}{(\arcsin x)\sqrt{1-x^2}} dx = \int \frac{D \ arcsen \ x}{arcsen \ x} dx =$ $\frac{1}{\sqrt{(1+x^2)\operatorname{arctg} x}} dx = \int \frac{\operatorname{Darctg} x}{\operatorname{arctg} x} dx =$ $\sqrt[4]{x}$ $4.17 \int \frac{\log x}{x} dx = \int \log x \cdot D \log x dx = \frac{1}{2} \log^2 x + c$ $\sqrt{\frac{10g \ x}{x}} dx = \int (\log x)^n \ D \log x dx = \frac{(\log x)^{n+1}}{n+1} + c$ $\checkmark \times 4.19 \int \frac{1}{x(\log x)^n} dx = \int (\log x)^{-n} D\log x dx =$ $= \frac{(\log x)^{1-n}}{1-n} + c$

$$4.21 \int \frac{1}{\sin(x+a)} dx = \frac{3}{2} \int e^{x^2} D x^2 dx = \frac{3}{2} e^{x^2} + c$$

$$4.21 \int \frac{1}{\sin(x+a)} dx = \int \frac{1}{2 \sin \frac{x+a}{2} \cos \frac{x+a}{2}} dx = \int \frac{1}{tg \frac{x+a}{2} \cdot 2 \cos^2 \frac{x+a}{2}} dx = \int \frac{D tg \frac{x+a}{2}}{tg \frac{x+a}{2}} dx = \log \left| tg \frac{x+a}{2} \right| + c$$
[Un altro metodo è proposto nell'esercizio 4.114]

4.23 Utilizzando le formule di bisezione:

$$\cos^2 \frac{\alpha}{2} = \frac{1+\cos \alpha}{2}$$
, $\sin^2 \frac{\alpha}{2} = \frac{1-\cos \alpha}{2}$

$$\int \frac{1}{1 + \cos(x+a)} dx ; \int \frac{1}{1 - \cos(x+a)} dx$$

$$\int \frac{1}{1 + \cos(x + a)} dx = \int \frac{1}{2 \cos^2 \frac{x + a}{2}} dx = \int \frac{D\left(\frac{x + a}{2}\right)}{\cos^2 \frac{x + a}{2}} dx =$$

$$= tg \frac{x + a}{2} + c$$

$$\int \frac{1}{1 - \cos(x + a)} dx = \int \frac{1}{2 \sin^2 \frac{x + a}{2}} dx = \int \frac{D\left(\frac{x + a}{2}\right)}{\sin^2 \frac{x + a}{2}} dx =$$

$$= - \cot g \frac{x + a}{2} + c \quad] \qquad \left\{ \begin{array}{c} \sqrt{1 + a} \\ \sqrt{1 + a} \end{array} \right.$$

4.24 Utilizzando l'esercizio precedente,

$$\int \frac{1}{1+\sin x} dx \quad ; \qquad \int \frac{1}{1-\sin x} dx$$

$$\int \frac{1}{1+\sin x} dx = \int \frac{1}{1-\cos(x^{+}\frac{\pi}{2})} dx = -\cot \left(\frac{x}{2} + \frac{\pi}{4}\right) + \cot \left(\frac{x}{2} + \frac{\pi}{4}\right) + \cot \left(\frac{x}{2} + \frac{\pi}{4}\right)$$

$$\int \frac{1}{1-\text{sen } x} \ dx = \int \frac{1}{1+\cos(x+\frac{\pi}{2})} \ dx = \text{tg} \left(\frac{x}{2} + \frac{\pi}{4}\right) + c$$

4.25 Calcolare gli integrali dell'esercizio precedente, moltiplicando il numeratore ed il denominatore dell'integrando per 1 ± sen x.

[Ad esempio, per il primo integrale si ottier

$$\int \frac{1}{1 + \sin x} dx = \int \frac{1 - \sin x}{1 - \sin^2 x} dx = \int \frac{1 - \sin x}{\cos^2 x} dx = \int \frac{1}{\cos^2 x} dx - \int \frac{\sin x}{\cos^2 x} dx = tg x - \frac{1}{\cos x} + c$$

Verificare che $(n \in N)$:

$$4.26 \int \operatorname{sen}^{n} x \cos x \, dx = \int \operatorname{sen}^{n} x \cdot \operatorname{Dsen} x \, dx = \frac{\operatorname{sen}^{n+1} x}{n+1} + c$$

$$4.27 \int \operatorname{cos}^{n} x \operatorname{sen} x \, dx = -\int \operatorname{cos}^{n} x \cdot \operatorname{Dcos} x \, dx = -\frac{\operatorname{cos}^{n+1} x}{n+1} + c$$

$$4.28 \int \frac{1}{\operatorname{sen} x \cos x} \, dx = \int \frac{1}{\operatorname{tg} x \cos^{2} x} \, dx =$$

$$= \int \frac{\operatorname{D} \operatorname{tg} x}{\operatorname{tg} x} \, dx = \log |\operatorname{tg} x| + c$$

$$4.29 \int \frac{1}{\operatorname{sen}^{2} x \cos^{2} x} \, dx = \int \frac{1}{|(\operatorname{sen} 2x)/2|^{2}} \, dx =$$

$$= 2 \int \frac{\operatorname{D}(2x)}{\operatorname{sen}^{2} 2x} \, dx = 2 \operatorname{cotg} 2x + c$$

$$4.30 \int \frac{x^{3}}{\sqrt{1-x^{4}}} \, dx = -\frac{1}{4} \int \frac{-4x^{3}}{\sqrt{1-(x^{4})^{2}}} \, dx =$$

$$= -\frac{1}{4} \int (1-x^{4})^{-1/2} \operatorname{D}(1-x^{4}) \, dx = -\frac{1}{2} \sqrt{1-x^{4}} + c$$

$$4.31 \int \frac{x^{3}}{\sqrt{1-x^{8}}} \, dx = \frac{1}{4} \int \frac{4x^{3}}{\sqrt{1-(x^{4})^{2}}} \, dx = \frac{1}{4} \int \frac{\operatorname{D}x^{4}}{\sqrt{1-(x^{4})^{2}}} \, dx =$$

$$= \frac{1}{4} \operatorname{arcsen} (x^{4}) + c$$

$$4.32 \int \frac{x^{n-1}}{\sqrt{1-x^{n}}} \, dx = -\frac{1}{n} \int \frac{-n}{\sqrt{1-x^{n}}} \, dx =$$

$$= -\frac{1}{n} \int (1-x^{n})^{-1/2} \operatorname{D}(1-x^{n}) \, dx = -\frac{2}{n} \sqrt{1-x^{n}}$$

$$4.33 \int \frac{x^{n-1}}{\sqrt{1-x^{2n}}} \, dx = \frac{1}{n} \int \frac{\operatorname{nx}^{n-1}}{\sqrt{1-(x^{n})^{2}}} \, dx = \frac{1}{n} \int \frac{\operatorname{Dx}^{n}}{\sqrt{1-(x^{n})^{2}}} \, dx =$$

$$=\frac{1}{n} \operatorname{arcsen} (x^n).$$

40. Integrazione per decomposizione in somma

Verificare che:

4.38
$$\int_{a}^{b} \frac{hx+k}{mx+n} dx = \frac{1}{m} \int_{a}^{b} \frac{hmx+km-hn+hn}{mx+n} dx =$$

$$= \frac{1}{m} \int \frac{h(mx+n) + km - hn}{mx+n} dx =$$

$$= \frac{h}{m} \int 1 dx + \frac{km - hn}{m^2} \int \frac{m}{mx+n} dx =$$

$$= \frac{h}{m} x + \frac{km - hn}{m^2} \log |mx+n| + c$$

$$4.39 \int \frac{1}{3x^2 + 2} dx = \frac{1}{2} \int \frac{1}{\frac{3}{2} x^2 + 1} dx = \frac{1}{2} \int \frac{1}{(\sqrt{\frac{3}{2}} x)^2 + 1} dx =$$

$$= \frac{1}{2} \sqrt{\frac{2}{3}} \int \frac{\sqrt{\frac{3}{2}}}{(\sqrt{\frac{3}{2}} x)^2 + 1} dx =$$

$$= \frac{1}{\sqrt{6}} \arctan \sqrt{\frac{3}{2}} x + c$$

$$4.40 \int \frac{1}{mx^2 + n} dx = \frac{1}{n} \int \frac{1}{\frac{m}{n} x^2 + 1} dx =$$

$$= \frac{1}{n} \sqrt{\frac{n}{m}} \int \frac{\sqrt{\frac{m}{n}}}{(\sqrt{\frac{m}{n} x})^2 + 1} dx =$$

$$\frac{1}{\sqrt{nm}} \operatorname{arctg} \sqrt{\frac{m}{n}} x + c$$

$$4.41 \int \frac{hx + k}{mx^2 + n} dx = h \int \frac{x}{mx^2 + n} dx + k \int \frac{1}{mx^2 + n} dx =$$

$$= \frac{h}{2m} \int \frac{2mx}{mx^2 + n} dx + k \int \frac{1}{mx^2 + n} dx =$$

$$= \frac{h}{2m} \log |mx^2 + n| + \frac{k}{\sqrt{nm}} \operatorname{arctg} \sqrt{\frac{m}{n}} x + c$$

$$4.42 \int \frac{1 - x^4 + x}{1 + x^2} dx = \int \frac{1 - x^4}{1 + x^2} dx + \int \frac{x}{1 + x^2} dx =$$

$$= \int (1 - x^2) dx + \frac{1}{2} \int \frac{2x}{1 + x^2} dx =$$

$$= x - \frac{x^3}{3} + \frac{1}{2} \log (1 + x^2) + c$$

$$4.43 \int \frac{1}{x(1+x)} dx = \int \frac{1+x-x}{x(1+x)} dx = \int \frac{1}{x} dx +$$

$$- \int \frac{1}{1+x} dx = \log |x| - \log |1+x| + c$$

$$4.44 \int \frac{1}{x(1+x^2)} dx = \int \frac{1+x^2-x^2}{x(1+x^2)} dx = \int \frac{1}{x} dx - \frac{1}{2} \int \frac{2x}{1+x^2} dx =$$

$$= \log |x| - \frac{1}{2} \log (1+x^2) + c =$$

$$= \log \frac{|x|}{\sqrt{1+x^2}} + c$$

4.45 Calcolare l'integrale

$$\int \frac{1}{x^2 + px + q} \, dx$$

nell'ipotesi $\Delta=p^2-4q<0$. In tal caso il trinomio a denominatore si può esprimere come somma di quadrati:

$$x^{2}+px+q=x^{2}+2\frac{p}{2}x+\frac{p^{2}}{4}+q-\frac{p^{2}}{4}=(x+\frac{p}{2})^{2}+\frac{4q-p^{2}}{4}$$

Perciò risulta

$$\int \frac{1}{x^2 + px + q} dx = 2 \int \frac{2}{(2x + p)^2 + (4q - p^2)} dx =$$

$$= 2 \int \frac{2}{(4q - p^2) \left[1 + \frac{(2x + p)^2}{4q - p^2}\right]} dx =$$

$$= \frac{2}{\sqrt{4q - p^2}} \int \frac{D\left(\frac{2x + p}{\sqrt{4q - p^2}}\right)}{1 + \left(\frac{2x + p}{\sqrt{4q - p^2}}\right)^2} dx =$$

$$= \frac{2}{\sqrt{-\Delta}} \operatorname{arctg} \frac{2x+p}{\sqrt{-\Delta}} + c$$

Verificare che

$$4.46 \int \frac{1}{x^{2}+2x+2} dx = \int \frac{1}{(x+1)^{2}+1} dx = \arctan(x+1)+c$$

$$4.47 \int \frac{1}{x^{2}+x+2} dx = \frac{2}{\sqrt{7}} \arctan \frac{2x+1}{\sqrt{7}} + c$$

$$4.48 \int \frac{1}{x^{2}+2x+3} dx = \frac{1}{\sqrt{2}} \arctan \frac{x+1}{\sqrt{2}} + c$$

4.49 Calcolare l'integrale

$$\int \frac{hx+k}{x^2+px+q} dx$$

nell'ipotesi $\Delta = p^2-4q < 0$. Si ha

$$\int \frac{hx+k}{x^2+px+q} dx = h \int \frac{x+\frac{k}{h}}{x^2+px+q} dx =$$

$$= \frac{h}{2} \int \frac{(2x+p)^{-}p + \frac{2k}{h}}{x^{2} + px + q} dx =$$

$$= \frac{h}{2} \int \frac{2x+p}{x^{2} + px + q} dx + \frac{2k-hp}{2} \int \frac{1}{x^{2} + px + q} dx$$

Tenendo conto dell'esercizio 4.45, si ha perciò:

$$\int \frac{hx+k}{x^2+px+q} \ dx = \frac{h}{2} \log |x^2+px+q| + \frac{2k-hp}{\sqrt{-\Delta}} \ \text{arctg} \ \frac{2x+p}{\sqrt{-\Delta}} + c$$

Verificare che:

$$4.\sqrt{1} \frac{3x+2}{x^2+x+1} dx = \frac{3}{2} \int \frac{2x+4/3}{x^2+x+1} dx = \frac{3}{2} \int \frac{2x+1+1/3}{x^2+x+1} dx =$$

$$= \frac{3}{2} \int \frac{2x+1}{x^2+x+1} dx + \frac{1}{2} \int \frac{1}{x^2+x+1} dx$$

$$= \frac{3}{2} \log|x^2+x+1| + \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{2x+1}{\sqrt{3}} + c$$

[Si noti che, essendo $x^2 + x + 1 > 0$, $\forall x \in \mathbb{R}$, $\sin \text{ alog } | x + x + 1 | 1$] $= \log (x^2 + x + 1)]$ $= \frac{1}{2} \int \frac{2x + 2 + 4}{x^2 + 2x + 2} dx = \frac{1}{2} \int \frac{2x + 2 + 4}{x^2 + 2x + 2} dx + 2 \int \frac{1}{x^2 + 2x + 2} dx$ $= \frac{1}{2} \log (x^2 + 2x + 2) + 2 \operatorname{arctg} (x + 1) + c$

4.52 Calcolare l'integrale

$$\int \frac{1}{x^2 + px + q} dx$$

nell'ipotesi $\Delta=p^2-4q>0.$ In tal caso il trinomio a denominatore può essere espresso come $\mathrm{di}\underline{f}$ ferenza di quadrati:

$$x^2+px+q=x^2+2$$
 $\frac{p}{2}$ x + $\frac{p^2}{4}$ + q - $\frac{p^2}{4}$ = $\left(x+\frac{p}{2}\right)^2$ - $\frac{p^2-4q}{4}$ perciò risulta

$$\int \frac{1}{x^2 + px + q} dx = 2 \int \frac{2}{(2x + p)^2 - (p^2 - 4q)} dx =$$

$$= -\frac{2}{\sqrt{p^2 - 4q}} \int \frac{D}{1 - \left(\frac{2x + p}{\sqrt{p^2 - 4q}}\right)^2} dx =$$

$$= -\frac{2}{\sqrt{\Delta}} \text{ setttg } h \frac{2h + p}{\sqrt{\Delta}} + c$$

[Un altro metodo è esposto nel paragrafo 4E]

4.53 Calcolare l'integrale

$$\int \frac{1}{x^2 - 5x + 6} dx = \int \frac{1}{\left(x + \frac{5}{2}\right)^2 - \frac{1}{4}} dx = 2 \int \frac{2}{(2x + 5)^2 - 1} dx =$$

$$= -2 \int \frac{D(2x + 5)}{1 - (2x + 5)^2} dx = -2 \text{ sett tg } h(2x + 5) + c$$

4.54 Calcolare l'integrale

$$\int \frac{hx+k}{x^2+px+q} dx$$

nell'ipotesi $\Delta = p^2 - 4q > 0$. Si ha

$$\int \frac{hx+k}{x^2+px+q} dx = h \int \frac{x+\frac{k}{h}}{x^2+px+q} dx = \frac{h}{2} \int \frac{(2x+p)-p+\frac{2k}{h}}{x^2+px+q} dx =$$

$$= \frac{h}{2} \int \frac{2x+p}{x^2+px+q} \ dx + \frac{2k-hp}{2} \int \frac{1}{x^2+px+q} \ dx$$

Tenendo conto dell'esercizio 4.52 si ha perciò

$$\frac{-(2)}{\sqrt{2}} - \int \frac{hx+k}{x^2+px+q} dx = \frac{h}{2} \log |x^2+px+q| + \frac{hp-2k}{\sqrt{\Delta}} \operatorname{sett tg } h \frac{2x+p}{\sqrt{\Delta}} + c$$

.55 Calcolare l'integrale

$$\int \frac{3x+1}{x^2-4x+3} dx = \frac{3}{2} \int \frac{(2x-4)+\frac{2}{3}+4}{x^2-4x+3} dx =$$

$$= \frac{3}{2} \int \frac{2x-4}{x^2-4x+3} dx+7 \int \frac{1}{x^2-4x+3} dx$$

D'altra parte, essendo $\Delta=4$ > 0, si ha

$$\int \frac{1}{x^2 - 4x + 3} dx = \int \frac{1}{(x - 2)^2 - 1} dx = -\text{sett tg h } (x - 2) + c$$

perciò

$$\int \frac{3x+1}{x^2-4x+3} dx = \frac{3}{2} \log |x^2-4x+3|-7 \text{ sett tg } h(x-2)+c$$

4.56 Calcolare l'integrale

$$\int \frac{hx+k}{x^2+px+q} dx$$

nell'ipotesi $\Delta = p^2 - 4q = 0$. Si ha $x^2 + px + q = \left(x + \frac{p}{2}\right)^2$

nerciò

$$\int \frac{hx+k}{x^2+px+q} dx = \int \frac{hx+k}{\left(x+\frac{p}{2}\right)^2} dx =$$

$$= h \int \frac{x}{\left(x+\frac{p}{2}\right)^2} dx + k \int \frac{1}{\left(x+\frac{p}{2}\right)^2} dx =$$

$$= \frac{h}{2} \int \frac{2\left(x+\frac{p}{2}\right) - p}{\left(x+\frac{p}{2}\right)^2} dx + k \int \frac{1}{\left(x+\frac{p}{2}\right)^2} dx =$$

$$= \frac{h}{2} \int \frac{2\left(x+\frac{p}{2}\right) - p}{\left(x+\frac{p}{2}\right)^2} dx + (k-\frac{hp}{2}) \int \frac{1}{\left(x+\frac{p}{2}\right)^2} dx =$$

4.57 Calcolare l'integrale

$$\int \frac{2x+1}{9x^2-6x+1} dx = \frac{1}{9} \int \frac{2x+1}{x^2-\frac{2}{3}x+\frac{1}{9}} dx =$$

$$= \frac{1}{9} \int \frac{2x+1}{\left(x-\frac{1}{3}\right)^2} dx = \frac{1}{9} \int \frac{2\left(x-\frac{1}{3}\right)+\left(\frac{5}{3}\right)}{\left(x-\frac{1}{3}\right)^2} dx =$$

 $= \frac{h}{2} \log \left(x + \frac{p}{2}\right)^2 + \left(k - \frac{hp}{2}\right) \frac{-1}{x + \frac{p}{2}} + c$

196

$$= \frac{1}{9} \int \frac{D\left(x - \frac{1}{3}\right)^{2}}{\left(x - \frac{1}{3}\right)^{2}} dx + \frac{5}{27} \int \frac{1}{\left(x - \frac{1}{3}\right)^{2}} dx =$$

$$= \frac{1}{9} \log\left(x - \frac{1}{3}\right)^{2} - \frac{5}{9} \frac{1}{3x - 1} + c$$

For

4.58 Calcolare gli integrali (a ≠ 0)

$$\int sen^2 a x dx ; \int cos^2 a x dx$$

[Essendo, per le formule di bisezione:

$$\sin^2 ax = \frac{1-\cos 2a \ x}{2} = \frac{1}{2} - \frac{1}{4a} \cos 2ax \ D(2ax)$$

$$\cos^2 a \ x = \frac{1 + \cos 2ax}{2} = \frac{1}{2} + \frac{1}{4a} \cos 2ax \ D(2ax)$$

si ha

$$\int \operatorname{sen}^{2} \operatorname{ax} \, dx = \frac{x}{2} - \frac{\operatorname{sen}^{2} \operatorname{ax}}{4a} + c$$

$$\int \cos^2 ax \ dx = \frac{x}{2} + \frac{\sin 2ax}{4a} + c$$

4.59 Calcolare l'integrale (a ≠ 0)

[Essendo, per la formula di duplicazione del seno:

sen ax cos ax =
$$\frac{1}{2}$$
 sen 2ax = $\frac{1}{4a}$ sen 2ax · D(2ax),

$$\int \operatorname{sen} \operatorname{ax} \operatorname{cos} \operatorname{ax} \operatorname{dx} = -\frac{\cos 2\operatorname{ax}}{4\operatorname{a}} + \operatorname{c}]$$

4.60 Calcolare gli integrali (a \neq b e a \neq -b).

Sen ax cos bx dx; \int cos ax cos bx dx; \int sen ax sen bx dx.

[Tenendo presente le formule di prostaferesi (vedi la parte prima, paragrafo 2B) si ha

2 sen ax cos bx = sen(a+b)x + sen(a-b)x

2 cos ax cos bx = cos(a+b)x + cos(a-b)x

-2 sen ax cos bx = cos(a+b)x - cos(a-b)x

e perciò

$$\int \text{sen ax cos bx dx} = \frac{1}{2} \int \text{sen(a+b)x dx} + \frac{1}{2} \int \text{sen(a-b)x dx} =$$

$$= -\frac{\cos (a+b)x}{2 (a+b)} - \frac{\cos (a-b)x}{2 (a-b)} + c$$

$$\int \cos ax \cos bx \, dx = \frac{1}{2} \int \cos(a+b)x \, dx + \frac{1}{2} \int \cos(a-b)x \, dx =$$

$$= \frac{\sin(a+b)x}{2(a+b)} + \frac{\sin(a-b)x}{2(a-b)} + c$$

$$\int sen \ ax \ cos \ bx \ dx = -\frac{1}{2} \quad \int cos(a+b)x \ dx + \frac{1}{2} \quad \int cos(a-b)x \ dx =$$

$$= \frac{\text{sen}(a+b)x}{2(a+b)} + \frac{\text{sen}(a-b)x}{2(a-b)} + c$$

Verificare che

4.61
$$\int \sin 3x \cos 2x \, dx = \int \frac{\sin 5x + \sin x}{2} \, dx =$$

$$= -\frac{1}{10} \cos 5x - \frac{1}{2} \cos x + c$$

$$4.62 \int \cos 3x \cos 2x \, dx = \int \frac{\cos 5x + \cos x}{2} \, dx =$$

$$= \frac{1}{10} \sin 5x + \frac{1}{2} \sin x + c$$

$$= \frac{4.63}{10} \int \sin 3x \sin 2x \, dx = \int \frac{\cos x - \cos 5x}{2} \, dx =$$

$$= \frac{1}{2} \sin x - \frac{1}{10} \sin 5x + c.$$

$$\frac{4 \cdot 64}{\sin^2 x \cos^2 x} \frac{1}{\sin^2 x \cos^2 x} \frac{1}{\cos^2 x \cos^2 x} \frac{1}{\cos^2 x} \frac{1}{\cos^2 x} dx =$$

$$= \int \frac{1}{\cos^2 x} dx + \int \frac{1}{\sin^2 x} dx =$$

$$= tgx - cotgx + c$$

4.65
$$\int \sin^3 x \, dx = \int \sin^2 x \, \sin x \, dx = \int (1 - \cos^2 x) \sin x \, dx =$$

$$= \int \sin x \, dx + \int \cos^2 x (-\sin x) \, dx =$$

$$= -\cos x + \frac{\cos^3 x}{3} + c$$

$$4.66 \int \cot g^{2}x \, dx = \int \frac{\cos^{2}x}{\sin^{2}x} \, dx = \int \frac{1-\sin^{2}x}{\sin^{2}x} \, dx =$$

$$= \int \frac{1}{\sin^{2}x} \, dx - \int 1 \, dx = -(\cot g + x) + c$$

4D. Integrazione per parti

Se f(x)e g(x) sono due funzioni continue con leloro derivate prime nell'intervallo I allora vale la formula di integrazione per parti

(1)
$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

Nella formula (1) il fattore f(x) del prodotto f(x)g'(x) si chiama fattore finito, mentre il fattore g'(x) si chiama fattore differenziale.

#4.67 Utilizzando il metodo di integrazione per parti,

(a)
$$\int x \sin x dx$$

(b)
$$\int x \cos x \, dx$$

(c)
$$\int x e^x dx$$

(d)
$$\int x \log |x| dx$$

[(a) Assumendo x come fattore finito e sen x come fattore differenziale, si ha

$$\int x \operatorname{sen} x \, dx = \int x \, D(-\cos x) dx = -x \cos x - \int 1(-\cos x) \, dx = 0$$

=-x cos x +
$$\int \cos x \, dx$$
=-x cos x+sen x + c

(b) Assumendo \boldsymbol{x} come fattore finito e cos \boldsymbol{x} come fattore differenziale, si ha

$$\int x \cos x \ dx = \int x \ Dsen \ x \ dx = x \ sen \ x - \int 1 \cdot sen \ x \ dx = x \ sen \ x + cos \ x \ + \ c$$

(c) Assumendo x come fattore finito ed e $\overset{x}{\text{e}}$ come fattore differenziale, si ha

$$\int x e^{x} dx = x e^{x} - \int e^{x} dx = e^{x}(x-1) + c$$

(d) Assumendo x come fattore differenziale, si ha

$$\int x \log |x| dx = \int \log |x| \cdot D\left(\frac{x^2}{2}\right) dx = \frac{x^2 \log |x|}{2} - \frac{1}{2} \int x dx =$$

$$= \frac{x^2}{2} \left(\log |x| - \frac{1}{2}\right) + c \right]$$

- 4.68 Calcolare i seguenti integrali:
 - (a) $\int arcsenx dx$
- (b) ∫arccos x dx
- (c) $\int arctg x dx$ (d) $\int log |x| dx$
- [(a) Assumendo arcsen x come fattore finito ed 1 come fattore diffe-

$$\int \operatorname{arcsen} x \, dx = \int \operatorname{arcsen} x \cdot Dx \, dx = x \operatorname{arcsen} x - \int \frac{x}{\sqrt{1-x^2}} \, dx =$$

= x arcsen x +
$$\sqrt{1-x^2}$$
 + c

(b) Assumendo arccos \boldsymbol{x} come fattore finito ed 1 come fattore diffe-

$$\int \arccos x \, dx = x \arccos x + \int \frac{x}{\sqrt{1-x^2}} \, dx = x \arccos x - \sqrt{1-x^2} + c$$

(c) Assumendo arctg \boldsymbol{x} come fattore finito ed 1 come fattore diffe -

$$\int \operatorname{arctgx} dx = x \operatorname{arctg} x - \int \frac{x}{1+x^2} dx = x \operatorname{arctg} x - \log \sqrt{1+x^2} + c$$

(d) Assumendo log |x | come fattore finito, si ha

$$\int \log |x| dx = x \log |x| - \int dx = x(\log |x| -1) + c$$

4.69 Calcolare i seguenti integrali

(a)
$$\int x^2 \sin x \, dx$$

(b)
$$\int x^2 \cos x \, dx$$

(c)
$$\int x^2 e^x dx$$

(d)
$$\int x^2 \log x \, dx$$

[(a) Assumendo x^2 come fattore finito, si ha

$$\int x^2 \sin x \, dx = \int x^2 \, D(-\cos x) dx = -x^2 \cos x + 2 \, \int x \cos x \, dx$$

Integrando di nuovo per parti, scegliendo x come fattore finito, si

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x - 2 \int \sin x \, dx =$$

$$= (2-x^2) \cos x + 2x \sin x + c$$

(b) Si tratta in modo simile ad (a) e si trova:

$$\int x^{2} \cos x \, dx = (x^{2} - 2) \sin x + 2x \cos x + c$$

(c) Scegliendo x 2 come fattore finito, si ha

$$\int x^2 e^x dx = x^2 e^{x} - 2 \int x e^x dx.$$

Scegliendo, nell'integrale a secondo membro, x come fattore finito ,

$$\int x^{2} e^{X} dx = x^{2} e^{X} - 2 \left[x e^{X} - \int e^{X} dx \right] = (x^{2} - 2x + 2) e^{X} + c$$

$$\int x^{2} \log x \, dx = \int \log x \, D \frac{x^{3}}{3} \, dx = \frac{x^{3} \log x}{3} - \int \frac{x^{2}}{3} \, dx =$$

$$= \frac{x^{3} \log x}{3} - \frac{x^{3}}{9} + c \quad]$$

Verificare che

$$\int_{0}^{\infty} 4.70 \int \log^{2}x \, dx = \int \log^{2}x \cdot Dx \, dx = x \log^{2}x - 2 \int \log x \, dx$$

$$= x \log^{2}x - 2x \log x + 2x + c$$

$$\frac{1}{4.71} \int \sin^2 x \, dx = \int \sin x \cdot \overline{D(-\cos x)} dx =$$

$$=-\operatorname{sen} x \cos x + \int \cos^2 x \, dx$$

$$=-\operatorname{sen} x \cos x + \int (1-\operatorname{sen}^2 x) dx =$$

=- sen x cos x +
$$\int dx$$
 - $\int sen^2 x dx$

$$\int \operatorname{sen}^2 x \, dx = (x - \operatorname{sen} x \cos x)/2 + c$$

$$\begin{cases}
4.72 & \text{fx sen}^2 x \text{ dx} = \text{fx sen } x \text{ D}(-\cos x) dx =
\end{cases}$$

=-x sen x cos x+
$$\int$$
(sen x+x cos x)cos x dx=
=-x sen x cos x+ \int sen x cos x dx +
+ \int x(1-sen²x) dx

$$\int x \, \sin^2 x \, dx = -\frac{1}{2} x \, \sin x \, \cos x + \frac{1}{4} (x^2 + \sin^2 x) + c$$

$$\sqrt[4]{.73} \int x \, \cos^2 x \, dx = \frac{1}{2} x \, \sin x \, \cos x + \frac{1}{4} (x^2 + \cos^2 x) + c$$

$$4.74 \int x e^{2x} dx = \frac{1}{2} \int x De^{2x} dx = \frac{1}{2} xe^{2x} - \frac{1}{4} e^{2x} + c$$

$$4.75 \int \frac{x}{\sin^2 x} dx = \int x D(-\cot x) dx = -x \cot x + c$$

$$+ \log |\sin x| + c$$

$$4.76 \int \frac{x}{\cos^2 x} dx = \int x D tg x dx = xtg x + \log |\cos x| + c$$

$$\frac{1 - \cos^2 x}{4.77} \int x \, tg^2 x \, dx = \int x \, \frac{1 - \cos^2 x}{\cos^2 x} \, dx = \int \frac{x}{\cos^2 x} \, dx - \int x \, dx$$

da cui, per l'esercizio precedente:

$$\int x \ tg^2x \ dx = xtg \ x + log \ |cos \ x| - x^2/2 + c$$

4.78 Posto per $n \in \mathbb{N}$, $\alpha \in \mathbb{R} - \{0\}$

$$I_n = \int x^n e^{\alpha x} dx$$
,

verificare che, per n > 1, si ha:

$$I_n = \frac{1}{\alpha} \hat{x}^n e^{\alpha x} - \frac{n}{\alpha} I_{n-1} .$$

4.79 Posto per $n \in \mathbb{N}$, $\alpha \in \mathbb{R}$ - {0}

$$I_n = \int x^n \ \text{sen} \ \alpha x \ dx \qquad \quad J_n = \int x^n \ \text{cos} \ \alpha x \ dx \,,$$

verificare, mediante integrazione per parti, che per n $\,>\,$ 1, si ha:

$$I_n = -\frac{1}{\alpha} x^n \cos \alpha x + \frac{n}{\alpha} J_{n-1}$$

Le formule scritte nei due esercizi precedenti, dette formule di riduzione, applicate ripetutamente, consentono il calcolo di I_n o J_n non appena siano noti I_1 e J_1 . Un'ulteriore formula di riduzione viene proposta nell'esercizio seguente

4.80 Posto per n∈N

$$I_n = \int \frac{1}{(1+x^2)^n} dx$$

verificare che per ogni n > 1, si ha

$$I_n = \frac{1}{2(n-1)} \left[(2n-3) I_{n-1} + \frac{x}{(1+x^2)^{n-1}} \right]$$

$$\begin{split} & [\text{ Si ha} \\ & I_{n-1} = \int \frac{1}{(1+x^2)^{n-1}} \; (Dx) dx = \frac{x}{(1+x^2)^{n-1}} \; - \int xD \, \frac{1}{(1+x^2)^{n-1}} \; dx = \\ & = \frac{x}{(1+x^2)^{n-1}} + 2(n-1) \; \int \frac{x^2}{(1+x^2)^n} \; dx = \\ & = \frac{x}{(1+x^2)^{n-1}} + 2(n-1) \; \int \frac{1+x^2-1}{(1+x^2)^n} \; dx = \\ & = \frac{x}{(1+x^2)^{n-1}} + 2(n-1) \; \int \frac{dx}{(1+x^2)^{n-1}} - 2(n-1) \; \int \frac{dx}{(1+x^2)^n} \end{aligned}$$

da cui segue facilmente l'asserto]

Verificare che

$$4.81 \int \frac{1}{(1+x^2)^2} dx = \frac{x}{2(1+x^2)} + \frac{1}{2} \arctan x + c$$

4.82 $\int \frac{1}{(1+x^2)^3} dx = \frac{(5+3x^2)x}{8(1+x^2)^2} + \frac{3}{8} \operatorname{arctg} x + c$ 4/3 Calcolare l'integrale $\int x^3 \sin x \, dx = \int x^3 \, D(-\cos x) \, dx =$ $=-x^3\cos x+3\int x^2\cos x dx=$ $=-x^3\cos x+3\int x^2D \sin x dx =$ $=-x^3\cos x+3x^2\sin x-6$ x sen x dx ricordando che $\int x \sin x dx = -x \cos x + \sin x + c$ (esercizio 4.67), si ha $\int x^3 \sin x \, dx = (6x-x^3)\cos x + 3(x^2-2)\sin x + c'$. 4. Calcolare l'integrale $\int \frac{\log (1+x)}{x^2} dx$ [Assumendo log (1+x) come fattore finito, si trova

$$\int \frac{\log(1+x)}{x^2} dx = -\frac{1}{x} \log(1+x) + \log \frac{|x|}{x+1} + c$$

4.85 Calcolare l'integrale

$$\int \log x \ (\text{sen } x + x \cos x) dx$$

[Si può decomporre in somma e poi integrare per parti o, più semplice mente, si può procedere osservando che la derivata della funzione x sen x è (sen x + x cos x). In tal modo si trova

$$log x (sen x+x cos x)dx = x sen x log x+cos x + c$$

Calcolare l'integrale: $\begin{cases} \log x & (xe^{x} + e^{x}) & dx. \end{cases}$

[Vale la stessa osservazione dell'esercizio precedente. Poichè la derivata di xe^X vale xe^X+e^X , integrando per parti l'espressione inizia le. si trova

$$\int \log x (xe^{X_{+}} e^{X}) dx = xe^{X} \log x - e^{X} + c$$

4.87 Calcolare l'integrale

$$\int \log (1+x^3)^{x^2} dx.$$

$$\left[\begin{array}{cc} \frac{x^3+1}{3} & \log(1+x^3) - \frac{x}{3}^3 + c \end{array}\right]$$

4.88 Calcolare gli integrali

(a)
$$\int x \sin x \cos^2 x \, dx$$
; (b) $\int x \frac{tg x}{\cos^2 x} \, dx$

[(a)
$$-\frac{1}{3} \times \cos^3 x + \frac{1}{3} \sin x - \frac{1}{9} \sin^3 x + \cos^3 x$$

(b)
$$(x tg^2 x' - tg x + x)/2 + c$$

4.89 Calcolare l'integrale

$$\int \cos x \log^2(\sin x) dx$$

[sen x \log^2 (sen x)-2 sen x $\log(\text{sen x})$ +2 sen x + c]

4.90 Calcolare gli integrali

(a)
$$\int \frac{\log |x|}{(x+1)^2} dx$$

(b)
$$\int \frac{\log |x-2|}{x^2} dx$$

$$\left[(a) = \frac{-\log |x|}{x+1} + \int \frac{1}{x(x+1)} dx = \frac{-\log |x|}{x+1} + \log \left| \frac{x}{x+1} \right| + c;$$

(b) =
$$-\frac{\log \left| x-2 \right|}{x} + \frac{1}{2} \log \left| \frac{x-2}{x} \right| + c$$

4.91 Calcolare l'integrale

$$\int \frac{x}{\cos^2 5x} dx$$
[Essendo
$$\int \frac{1}{\cos^2 5x} dx = \frac{1}{5} tg 5x + c, si ha:$$

$$\int \frac{x}{\cos^2 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\sin 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5} \int \frac{\cos 5x}{\cos 5x} dx = \frac{1}{5} x tg 5x - \frac{1}{5}$$

$$= \frac{1}{5} \times \text{tg 5x} + \frac{1}{25} \log \left[\cos 5x + c\right]$$

4.92 Calcolare gli integrali

(a)
$$\int x \log \left(1 + \frac{2}{x}\right) dx$$
 (b) $\int x^{-2} \log \left(1 + \frac{1}{x}\right) dx$
[(a) $\frac{x^2}{2} \log \left(1 + \frac{2}{x}\right) + x - 2 \log |2 + x| + c;$

(b)
$$-\frac{1}{y} \log \left(1 + \frac{1}{y}\right) + \frac{1}{y} - \log \left(1 + \frac{1}{y}\right) + c$$

4.93 Calcolare gli integrali

(a)
$$\int x^3 \operatorname{sen}(x^2) dx$$
 (b) $\int x^3 e^{x^2} dx$

[(a) [
$$sen(x^2) - x^2 cos(x^2)$$
]/2 + c; (b) ($x^2 - 1$) $e^{x^2}/2 + c$]

4.94 Calcolare gli integrali

(a)
$$\int \frac{\log (\log x)}{x} dx$$
 (b)
$$\int \sqrt{1-x^2} dx$$

[(a) = log x [log(log x)-l]+c; (b) =
$$\frac{1}{2}$$
 arcsen x + x $\sqrt{1-x^2}$ + c]

4 5 Calcolare l'integrale

[Scegliendo x come fattore differenziale, si ha

$$\int x \arctan g^2 x \, dx = \frac{x^2}{2} \arctan g^2 x - \int \frac{x^2 \arctan g x}{1+x^2} \, dx =$$

$$= \frac{x^2}{2} \arctan g^2 x - \int \frac{x^2 \arctan g x + \arctan g x - \arctan g x}{1+x^2} \, dx$$

$$= \frac{x^2}{2} \arctan g^2 x - \int \arctan g x \, dx + \int \frac{\arctan g x}{1+x^2} \, dx$$

Essendo (esercizio 4.68)

$$\int \arctan x \, dx = x \arctan x - \log \sqrt{\frac{1+x^2}{1+x^2}} + c$$

$$\int \frac{\arctan x}{1+x^2} \, dx = \frac{1}{2} \arctan x^2 x + c'$$
si ha
$$\int x \arctan x^2 x \, dx = \frac{1}{2} x^2 \arctan x^2 x - x \arctan x + \log \sqrt{\frac{1+x^2}{1+x^2}} + \frac{1}{2} \arctan x^2 x + c''$$

4E. Integrazione delle funzioni raziona-

Si chiama funzione razionale una funzione che il rapporto tra due polinomi P(x), Q(x), cioè funzione del tipo

$$(1) \ \frac{P(x)}{Q(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x + a_{\bullet}}{b_n x^n + b_{n-1} x^{n-1} + \ldots + b_1 x + b_{\bullet}} \ ; \qquad m, n \in \mathbb{N} \, .$$

Se è m \geq n, cioè se il grado del numeratore maggiore o uguale al grado del denominatore, si eseguire la divisione di P(x) per Q(x). Detti S(x) e R(x) rispettivamente il quoziente ed il resto di ta-↑ le divisione si ha

$$\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$$

con grado di R(x) < grado di Q(x). Volendo calcolare l'integrale indefinito di P(x)/Q(x), si ha perciò la

(2)
$$\int \frac{P(x)}{Q(x)} dx = \int S(x) dx + \int \frac{R(x)}{Q(x)} dx.$$

Poichè S(x) è un polinomio, il suo integrale indefinito è immediato. Dalla (2) segue allora che l'integrale indefinito di P(x)/Q(x) viene ricondotto a que $\underline{1}$ lo di R(x)/Q(x), che è una funzione razionale, in cui il grado del polinomio a numeratore è minore del gra do del polinomio a denominatore.

Passiamo dunque a studiare l'integrazione indefi

nita delle funzioni razionali del tipo R(x)/Q(x) con grado di R(x) < grado di Q(x).

In primo luogo consideriamo il caso più semplice che Q(x) sia un polinomio di secondo grado (se Q(x)è di 1º grado, l'integrale è immediato) supponendo, com 'è lecito, che il coefficiente di x^2 sia 1 e cioè che sia

$$R(x) = hx + k$$
, $Q(x) = x^2 + px + q$.

In tal caso l'integrale da calcolare è

(2)
$$\int \frac{hx+k}{x^2+px+q} dx$$

che è stato già trattato nel paragrafo 4C, mediante semplici trasformazioni dell'integrando.

Facciamo vedere che, se il discriminante $\Delta=p^2-4q$ è positivo o nullo, possiamo risolvere l' integrale (2) anche per altra via.

Precisamente, se $\Delta > 0$, dette α_1 e α_2 le radici reali e distinte del polinomio Q(x), si ha la scompo sizione

$$x^2 + px + q = (x - \alpha_1)(x - \alpha_2)$$

ed è possibile determinare due costanti ${\rm A_1}$ ed ${\rm A_2}$ tali che risulti

(3)
$$\frac{hx+k}{x^2+px+q} = \frac{A_1}{x-\alpha_1} + \frac{A_2}{x-\alpha_2}$$

per ogni xєR – $\{\alpha_1,\alpha_2\}$. Allo scopo di determinare A_1 e A_2 , scriviamo la (3) sotto la forma

$$\frac{hx + k}{x^2 + px + q} \ = \ \frac{\left(A_1 + A_2\right)x - \left(A_1\alpha_2 + A_2\alpha_1\right)}{x^2 + px + q}$$

da cui segue

$$hx+k = (A_1+A_2)x - (A_1\alpha_2+A_2\alpha_1)$$

e, per il principio di identità dei polinomi:

$$\begin{cases} A_1 + A_2 = h \\ A_1 \alpha_2 + A_2 \alpha_1 = -k \end{cases}$$

ossia

$$A_1 = \frac{h\alpha_1 + k}{\alpha_1 - \alpha_2}, \qquad A_2 = \frac{h\alpha_2 + k}{\alpha_2 - \alpha_1}$$

Una volta determinate A_1 e A_2 , dalla (3) segue

(4)
$$\int \frac{hx+k}{x^2+px+q} dx = A_1 \int \frac{1}{x-\alpha_1} dx + A_2 \int \frac{1}{x-\alpha_2} dx =$$

$$= A_1 \log |x-\alpha_1| + A_2 \log |x-\alpha_2| + c$$

Si osservi che la (4) è conforme alla (2) del para grafo 4C, ricordando che sett tg hx = $\frac{1}{2} \log \frac{1+x}{1-x}$

Se poi è $\Delta = p^2-4q = 0$ si dimostra, in modo analogo al precedente, che sussiste l'uguaglianza

(5)
$$\frac{hx+k}{x^2+px+q} = \frac{A}{x-\alpha} + \frac{B}{(x-\alpha)^2}, \quad \forall x \neq \alpha$$

ove α è la radice doppia di Q(x). Essendo α =-b/2, si ricavano i valori A = h, B=h α +k. Dalla (5) segue facilmente

$$\int \frac{hx+k}{x^2+px+q} dx = h \log |x-\alpha| - \frac{h\alpha+k}{x-\alpha} + c$$

e tale uguaglianza è conforme alla (3) del paragra-

4.96 Calcolare gli integrali

(a)
$$\int \frac{x+3}{x^2-6x}$$
 (b) $\int \frac{3x+1}{x^2-6x+5} dx$

(c)
$$\int \frac{3x-1}{x^2-x-6} dx$$
 (d) $\int \frac{x^4-10x^3+20x^2+11x-20}{x^2-10x+21} dx$

(e)
$$\int \frac{x}{(x-3)^2} dx$$
 (f) $\int \frac{x^4-4x^3+3x^2+5x-4}{x^2-4x+4} dx$

[(a) Determiniamo le costanti A_1 e A_2 tali che

$$\frac{x+3}{x^2-6x} = \frac{A_1}{x} + \frac{A_2}{x-6}$$

cioè tali che, per ogni x :

$$x+3 = A_1(x-6) + A_2 x = (A_1 + A_2)x - 6A_1$$
.

Si ha il sistema $A_1 + A_2 = 1$, $A_1 = -1/2$, da cui $A_2 = 3/2$. Perciò

$$\int \frac{x+3}{x^2-6x} dx = -\frac{1}{2} \int \frac{1}{x} dx + \frac{3}{2} \int \frac{1}{x-6} dx =$$

$$= -\frac{1}{2} \log |x| + \frac{3}{2} \log |x-6| + c.$$

- (b) = $-\log |x-1| + 4\log |x-5| + c$
- (c) = $\frac{7}{5} \log |x+2| + \frac{8}{5} \log |x-3| + c$
- (d) Eseguiamo la divisione del numeratore per il denominatore secondo

per cui

$$\int \frac{x^4 - 10x^3 + 20x^2 + 11x - 20}{x^2 - 10x + 21} dx = \int (x^2 - 1)dx + \int \frac{x+1}{x^2 - 10x + 21} dx$$

Eseguendo i calcoli, si trova $\frac{x^3}{3}$ - x - log | x-3 | +2 log |x-7 | + c

(e) = $\log |x-3| + 3/(3-x) + c$.

(f) =
$$\frac{x^3}{3}$$
 - x + log | x-2 | - 2/(x-2) + c]

Supponiamo ora che Q(x) sia un polinomio di grado n arbitrario e, come è sempre lecito, che il coe \underline{f} ficiente di x^n sia 1.

Cominciamo a considerare il seguente

1° caso: le radici di Q(x) sono tutte semplici.

Siano $\alpha_1, \alpha_2, \ldots, \alpha_r$ le radici reali e siano $\beta_1 \pm i \gamma_1$ $\beta_2 \pm i \gamma_2, \ldots, \beta_s \pm i \gamma_s \text{ le radici complesse (r+2s=n)} \qquad \text{di}$

 $\mathbb{Q}(\mathbf{x})$. Pertanto si ha la scomposizione

$$Q(x) = (x-\alpha_1)(x-\alpha_2)...(x-\alpha_r)(x^2+p_1x+q_1)...(x^2+p_sx+q_s),$$

$$x^2 + p_j x + q_j = (x - \beta_j - i \gamma_j) (x - \beta_j + i \gamma_j) = x^2 - 2 \beta_j x + (\beta_j^2 + \gamma_j^2)$$
,

cioè:

$$p_{i} = -2\beta_{j}$$
, $q_{j} = \beta_{j}^{2} + \gamma_{j}^{2}$, per $1 \le j \le s$

Si può dimostrare allora che per R(x)/Q(x) si ha la decomposizione in somma:

(6)
$$\frac{R(x)}{Q(x)} = \sum_{i=1}^{r} \frac{A_i}{x - \alpha_i} + \sum_{j=1}^{s} \frac{h_j x + k_j}{x^2 + p_j x + q_j}$$

con A_i , h_j , k_j costanti opportune, per cui l'integrale di R(x)/Q(x) è ricondotto al calcolo di integrali di funzioni razionali del tipo considerato in precedenza.

 2° caso: $\mathit{Q(x)}$ ha radici reali multiple, ma radici complesse semplici.

Siano α_1 , α_2 ,..., α_r le radici reali di molteplicità rispettivamente pari a m_1 , m_2 ,..., m_r e siano $\beta_1 \pm i \gamma_1$, $\beta_2 \pm i \gamma_2$,..., $\beta_s \pm i \gamma_s$ le radici complesse sempl<u>i</u> ci, in modo che risulta

$$m_1 + m_2 + \dots + m_r + 2s = n$$
.

In questo caso si dimostra che per R(x)/Q(x)vale la decomposizione in somma:

$$(7) \quad \frac{R(x)}{Q(x)} = \sum_{i=1}^{r} \left(\frac{A_{i,1}}{x - \alpha_{i}} + \frac{A_{i,2}}{(x - \alpha_{i})^{2}} + \dots + \frac{A_{i,m_{i}}}{(x - \alpha_{i})^{m_{i}}} \right) +$$

$$+ \sum_{j=1}^{s} \frac{h_{j}x + k_{j}}{x^{2} + p_{j}x + q_{j}}$$

con $A_{i,k}$, h_j , k_j costanti opportune, per cui l'integrale di R(x)/Q(x) è ricondotto al calcolo di integrali di funzioni razionali del tipo considerato in precedenza e a quello di integrali del tipo

$$\int \frac{A}{(x-\alpha)^m} dx = \frac{-A}{(m-1)} \cdot \frac{1}{(x-\alpha)^{m-1}} + c$$

Osserviamo che le costanti che intervengono nelle for mule (6), (7) si determinano, in modo analogo a come visto al principio del paragrafo, riducendo allo stes so denominatore il secondo membro, identificando i numeratori dei due membri ed applicando il principio di identità dei polinomi.

Si tratterà poi di risolvere un sistema $\,$ lineare di n equazioni in n incognite.

Il 3° caso, cioè quello in cui Q(x) può ammettere anche radici complesse multiple, verrà da noi tratta to nel paragrafo 4F, dopo aver studiato l'integrazione per sostituzione.

Come esempio, calcoliamo l'integrale

$$\int \frac{x^3 - 2x^2 - x + 3}{x^2 - 3x + 2} dx$$

Eseguiamo la divisione di (x³-2x²-x+3) per x²-3x+2 , secondo l'usuale schema:

Il quoziente S(x) ed il resto R(x) valgono: S(x)=x+1, R(x) = 1. Pertanto si ha la scomposizione

$$\frac{x^3 - 2x^2 - x + 3}{x^2 - 3x + 2} = x + 1 + \frac{1}{x^2 - 3x + 2}$$

Allora

(8)
$$\int \frac{x^3 - 2x^2 - x + 3}{x^2 - 3x + 2} dx = \int (x+1) dx + \int \frac{1}{x^2 - 3x + 2} dx.$$

Essendo Q(x)=x^2-3x+2=(x-1)(x-2), determiniamo le costanti A_1 e A_2 tali che

(9)
$$\frac{1}{(x-1)(x-2)} = \frac{A_1}{x-1} + \frac{A_2}{x-2}$$

Essendo per x eR- {1,2}

$$\frac{A_1}{x-1} + \frac{A_2}{x-2} = \frac{(A_1+A_2)x-(2A_1+A_2)}{(x-1)(x-2)}$$

dev'essere, per la (9)

$$1 = (A_1 + A_2)x - (2A_1 + A_2)$$
 $\forall x \in \mathbb{R}$

ed allora, per il principio di identità dei polinomi, risulta

$$\begin{cases} A_1 + A_2 = 0 \\ -(2A_1 + A_2) = 1. \end{cases}$$

Risolvendo questo sistema, si trova $A_1=-1, A_2=1$ quindi la (9) si riscrive come

$$\frac{1}{(x-1)(x-2)} = -\frac{1}{x-1} + \frac{1}{x-2}$$

Pertanto si ha

$$\int \frac{1}{x^2 - 3x + 2} dx = -\int \frac{1}{x - 1} dx + \int \frac{1}{x - 2} dx =$$

$$= -\log|x - 1| + \log|x - 2| + c = \log\left|\frac{x - 2}{x - 1}\right| + c$$

Dalla (8) si ricava perciò

$$\int \frac{x^3 - 2x^2 - x + 3}{x^2 - 3x + 2} \ dx = \frac{x^2}{2} + x + \log \left| \frac{x - 2}{x - 1} \right| + c \ .$$

4.97 Calcolare l'integrale $\int \frac{x^2}{x^2 - 3x - 4} dx$

[Vale la scomposizione

$$\frac{x^2}{x^2 - 3x - 4} = 1 + \frac{3x + 4}{x^2 - 3x + 4} = 1 - \frac{1}{5} \cdot \frac{1}{x + 1} + \frac{16}{5} \cdot \frac{1}{x - 4} ,$$
per cui si ottiene il risultato $x - \frac{1}{5} \log |x + 1| + \frac{16}{5} \log |x - 4| + c$

4.98 Calcolare l'integrale

$$\int \frac{x+2}{x^2+2} dx$$

[Vale 1a scomposizione: $\frac{x+2}{x^2+2} = \frac{1}{2} \cdot \frac{2x}{x^2+2} + \frac{2}{x^2+2}$,

per cui

$$\int \frac{x+2}{x^2+2} dx = \frac{1}{2} \int \frac{2x}{x^2+2} dx + \sqrt{2} \int \frac{D\left(\frac{x}{\sqrt{2}}\right)}{\left(\frac{x}{\sqrt{2}}\right)^2+1} dx =$$

$$=\frac{1}{2}\log(x^2+2)+\sqrt{2} \text{ arctg } \frac{x}{\sqrt{2}}+c$$

4.99 Calcolare l'integrale $\int \frac{3x+2}{x(x^2+1)} dx$

[Poichè il denominatore ha le radici semplici x=0 e x= $\pm i$, si ha la

scomposizione

$$\frac{3x+2}{x(x^2+1)} = \frac{A}{x} + \frac{hx + k}{x^2+1}$$

da cui si ricava k=3, h=-2, A=2 e perciò

$$\int \frac{3x+2}{x(x^2+1)} dx = \int \frac{2}{x} dx - \int \frac{2x-3}{x^2+1} dx =$$

$$= \int \frac{2}{x} dx - \int \frac{2x}{x^2+1} dx + 3 \int \frac{1}{x^2+1} dx =$$

$$= 2 \log |x| - \log(x^2+1) + 3 \arctan x + c$$

4.100 Calcolare l'integrale
$$\int \frac{x^2-7x+12}{(x-2)^3} dx$$

[Poichè il denominatore ha l'unica radice reale x=2, con molteplicità uguale a 3, allora esistono tre costanti A_1 , A_2 , A_3 tali che

$$\frac{x^2 - 7x + 12}{(x-2)^3} = \frac{A_1}{x-2} + \frac{A_2}{(x-2)^2} + \frac{A_3}{(x-2)}$$

da cui si ricava facilmente A $_1$ = 1, A $_2$ =-3, A $_3$ =-8. Perciò

$$\int \frac{x^2 - 7x + 12}{(x - 2)^3} dx = \int \frac{1}{x - 2} dx - 3 \int \frac{1}{(x - 2)^2} dx - 8 \int \frac{1}{(x - 2)^3} dx =$$

$$= \log \left[x - 2 \right] + \frac{3}{x - 2} + \frac{4}{(x - 2)^2} + c$$

4.101 Calcolare l'integrale $\int \frac{1}{x^4 - 3^4} dx$

Si ha:

$$\int \frac{1}{x^4 - 3^4} dx = \int \left(\frac{1}{4 \cdot 27} - \frac{1}{x - 3} - \frac{1}{4 \cdot 27} - \frac{1}{x + 3} - \frac{1}{18} - \frac{1}{x^2 + 3^2} \right) dx =$$

$$= \frac{1}{4 \cdot 27} \log \left[\frac{x - 3}{x + 3} - \frac{1}{2 \cdot 27} \operatorname{arctg} \frac{x}{3} + c \right]$$

4.102 Calcolare l'integrale $\int \frac{1}{(x-1)^3 x^2} dx$

[Poichè il denominatore ha le radici reali x=0 (con molteplicità due) e x=1 (con molteplicità tre), si devono determinare le costanti $A_{1\,1}$, $A_{2\,1}$, $A_{2\,2}$, $A_{2\,3}$ in modo che

$$= \frac{1}{(x-1)^3 x^2} = \frac{A_{11}}{x} + \frac{A_{12}}{x^2} + \frac{A_{21}}{x^{-1}} + \frac{A_{22}}{(x-1)^2} + \frac{A_{23}}{(x-1)^3}$$

Si ottiene il sistema

$$\begin{cases} A_{11} + A_{21} = 0 \\ -3A_{11} + A_{12} - 2A_{21} + A_{22} = 0 \end{cases}$$

$$\begin{cases} 3A_{11} - 3A_{12} + A_{21} - A_{22} + A_{23} = 0 \\ -A_{11} + 3A_{12} = 0 \\ -A_{12} = 1 \end{cases}$$

da cui si ricava : A $_{1\,1}$ =-3, A $_{2\,2}$ =-1; A $_{2\,1}$ =3, A $_{2\,2}$ =-2, A $_{2\,3}$ =1.

$$\int \frac{1}{(1-x)^3 x^2} dx = -3 \int \frac{1}{x} dx - \int \frac{1}{x^2} dx + 3 \int \frac{1}{x-1} dx$$

$$-2 \int \frac{1}{(x-1)^2} dx + \int \frac{1}{(x-1)^3} dx =$$

$$= -3 \log |x| \sqrt{\frac{1}{x}} \int_{-x}^{x} 3 \log |x-1| + \frac{2}{x-1} - \frac{1}{2(x-1)^2} + c$$

Integrazione per sostituzione

Sia f una funzione continua e sia g una funzione derivabile con derivata continua nell'intervallo I di R; allora si ha:

$$(1) \quad \left[\int f(x) dx \right]_{x=g(t)} = \int f(g(t))g'(t)dt.$$

La (1) prende il nome di formula di integrazione per sostituzione e va intesa nel senso che, se F(x) è una primitiva di f(x), cioè se risulta $\int f(x)dx = F(x)+c$, allora è

(2)
$$\left[\int f(x) dx\right]_{x=\dot{g}(t)} = F(g(t)) + c = \int f(g(t))g'(t) dt.$$

La dimostrazione della (2) discende dalla regola di derivazione delle funzioni composte, in quanto si ha

$$\frac{d}{dt} F(g(t)) = F'(g(t))g'(t) = f(g(t))g'(t)$$

e perciò:

F(x) primitiva di $f(x) \Longrightarrow F(g(t))$ primitiva di f(g(t))g'(t). Nella pratica, quando per calcolare l'integrale

$$(3) \qquad \int f(x) dx$$

si effettua la sostituzione x=g(t), cioè si vuol scrivere la (1), conviene calcolare il differenziale dx=-g'(t)dt e poi sostituire nell'integrale (3) alla x ed al dx le relative espressioni.

4.103 Calcoliamo l'integrale

$$\int \sqrt{a^2 - x^2} dx . \qquad (a>0).$$

[La sostituzione x=g(t) = a sent, ci dà dx = D(a sent)dt = a cost dt e perciò

221

$$\int \sqrt{a^2 - x^2} dx = \int \sqrt{a^2 - a^2 \sin^2 t} \cdot (a \cos t) dt =$$

$$= a^2 \int \cos^2 t dt = \frac{a^2}{2} (t + \text{sent cost}) + c$$

con x = a sent. Volendo riscrivere l'ultimo membro in funzione di x, ricaviamo t dalla relazione x = a sent, cioè t = arcsen (x/a) e so stituiamolo, ottenendo infine

$$\int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + c \,]$$

4.104 Calcolare l'integrale $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$.

[Eseguendo la sostituzione $x = t^2$, si ha $t = \sqrt{x}$, dx = 2t dt e per-

$$\int \frac{\text{sen } \sqrt{x}}{\sqrt{x}} dx = \begin{cases} x = t^2 \\ = \end{cases} \int \frac{\text{sen } t}{t} 2t dt = 2 \int \text{sent } dt = -2 \text{ cost } + c$$

$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx = -2 \cos \sqrt{x} + c$$

4.105 Calcolare l'integrale

$$\int x^5 e^{x^2} dx$$

[Eseguendo la sostituzione $x^2 = t$, cioè $x = \sqrt{t}$, si ha $dx = \frac{1}{2\sqrt{t}} dt$ e

$$\int \! x^5 \ e^{ x^2 \ dx} \stackrel{\left[x = \sqrt{t} \ \right]}{=} \ \int \! t^2 \cdot \sqrt{t} \ e^{ t} \cdot \frac{1}{2 \sqrt{t}} \ dt = \frac{1}{2} \int t^2 \ e^{ t} \ dt$$

Integrando per parti, si ha subito

$$\int t^2 e^t dt = e^t(t^2 - 2t + 2) + c$$

$$da cui, ponendo t = x^2:$$

$$\int x^5 e^{x^2} dx = \frac{1}{2} e^{x^2} (x^4 - 2x^2 + 2) + c$$

4.106 Calcolare l'integrale

$$\int \sqrt{3-x^2} dx$$

Con la sostituzione $x = \sqrt{3}$ sent si trova

$$\int \sqrt{3-x^2} \, dx = \frac{3}{2} \, \left(\text{arcsen } \frac{x}{\sqrt{3}} + \frac{x}{3} - \sqrt{3-x^2} \right) + c \quad]$$

4.107 Calcolare l'integrale

$$\int \frac{\sqrt{x}}{2+\sqrt{x}} dx .$$

[Eseguendo la sostituzione x = t 2 , si ha t = \sqrt{x} , dx=2t dt e perciò

$$\int \frac{\sqrt{x}}{2 + \sqrt{x}} dx = \int \frac{t}{2 + t} 2t dt = 2 \int \frac{t^2}{2 + t} dt =$$

$$= 2 \int \frac{t^2 - t}{2 + t} dt + 8 \int \frac{1}{2 + t} dt =$$

$$= 2 \int (t - 2) dt + 8 \int \frac{1}{2 + t} dt =$$

$$= t^2 - 4t + 8 \log \left[2 + t \right] + c$$

da cui, ponendo t = \sqrt{x} nell'ultimo membro, si ha

$$\int \frac{\sqrt{x}}{2+\sqrt{x}} dx = x-4 \sqrt{x} + 8 \log (2+\sqrt{x}) + c$$

$$\int \sqrt{a^2 - x^2} dx = \int \sqrt{a^2 - a^2 \sin^2 t} \cdot (a \cos t) dt =$$

$$= a^2 \int \cos^2 t dt = \frac{a^2}{2} (t + \text{sent cost}) + c$$

con x = a sent. Volendo riscrivere l'ultimo membro in funzione di x,

$$\int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} - \sqrt{a^2 - x^2} + c$$

$$\int \frac{\text{sen } \sqrt{x}}{\sqrt{x}} dx = \begin{bmatrix} x = t^2 \end{bmatrix} \int \frac{\text{sen } t}{t} 2t dt = 2 \int \text{sent } dt = -2 \text{ cost } + c$$

da cui, ponendo t =
$$\sqrt{x}$$
 nell'ultimo membro, si ha
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx = -2 \cos \sqrt{x} + c$$

4.105 Calcolare l'integrale

$$\int x^5 e^{x^2} dx$$

[Eseguendo 1a sostituzione x^2 = t, cioè $x=\sqrt{t}$, si ha dx = $\frac{1}{2\sqrt{t}}dt$ e

$$\int x^{5} e^{x^{2}} dx = \int t^{2} \sqrt{t} dt = \int t^{2} \sqrt{t} e^{t} \cdot \frac{1}{2\sqrt{t}} dt = \frac{1}{2} \int t^{2} e^{t} dt$$

Integrando per parti, si ha subito

$$\int t^2 e^{t} dt = e^{t}(t^2 - 2t + 2) + c$$
da cui, ponendo $t = x^2$:

da cui, ponendo t =
$$x^2$$
:

$$\int x^5 e^{x^2} dx = \frac{1}{2} e^{x^2} (x^4 - 2x^2 + 2) + c]$$

4.106 Calcolare l'integrale

$$-\int \sqrt{3-x^2} dx .$$

[Con la sostituzione $x = \sqrt{3}$ sent si trova

$$\int \sqrt{3-x^2} dx = \frac{3}{2} \left(\text{arcsen } \frac{x}{\sqrt{3}} + \frac{x}{3} - \sqrt{3-x^2} \right) + c \quad]$$

4.107 Calcolare l'integrale

$$\int \frac{\sqrt{x}}{2+\sqrt{x}} dx$$

[Eseguendo la sostituzione x = t², si ha t = \sqrt{x} , dx=2t dt e perciò

$$\int \frac{\sqrt{x}}{2 + \sqrt{x}} dx = \int \frac{t}{2 + t} 2t dt = 2 \int \frac{t^2}{2 + t} dt =$$

$$= 2 \int \frac{t^2 - 4t}{2 + t} dt + \frac{8}{9} \int \frac{1}{2 + t} dt =$$

$$= 2 \int (t - 2t) dt + 8 \int \frac{1}{2 + t} dt =$$

$$= t^2 - 4t + 8 \log |2 + t| + c$$

da cui, ponendo t = \sqrt{x} nell'ultimo membro, si ha

$$\int \frac{\sqrt{x}}{2+\sqrt{x}} dx = x-4 \sqrt{x} + 8 \log (2+\sqrt{x}) + c$$

4.108 Calcolare l'integrale

$$\int arctg \sqrt{x} dx$$

[Con la sostituzione $x = t^2$ ed il metodo di integrazione per parti,

$$\int \operatorname{arctg} \sqrt{x} \, dx = \int 2t \operatorname{arctg} t \, dt = t^2 \operatorname{arctg} t - \int \frac{t^2}{1+t^2} \, dt =$$

$$= t^2 \operatorname{arctgt} - t + \operatorname{arctgt} + c = x \operatorname{arctg} \sqrt{x} +$$

$$-\sqrt{x} + \operatorname{arctg} \sqrt{x} + c$$

4.109 Calcolare l'integrale

$$\sqrt{2^{x}-1}$$
 dx

[Eseguendo la sostituzione 2^{X} -1=t 2 , cioè x=log $_{2}$ (1+t 2) si ha dx= $= \frac{2t}{(t^{2}+1)\log 2}$ dt e perciò

$$\int \sqrt{2^{X}-1} dx = \int t \cdot \frac{2t}{(1+t^{2})\log 2} dt =$$

$$= \frac{2}{\log 2} \int \frac{1+t^{2}-1}{1+t^{2}} dt =$$

$$= \frac{2}{\log 2} \int dt - \frac{2}{\log 2} \int \frac{1}{1+t^{2}} dt =$$

$$= \frac{2}{\log 2} t - \frac{2}{\log 2} \operatorname{arctgt} + c$$

da cui, ponendo t = $\sqrt{2^{x}-1}$ si ha

$$\int \sqrt{2^{X}-1} \, dx = \frac{2}{\log 2} \left[\sqrt{2^{X}-1} - \arctan \sqrt{2^{X}-1} \right] + c$$

4.110 Calcolare gli integrali

(a)
$$\int \cos(\log x) dx$$
 (b) $\int \sin(\log x) dx$

[(a) Prima con la sostituzione $x=e^{t}$ e poi integrando per parti, si ha

$$\int \cos(\log x) dx = \int e^{t} \cos t dt = \frac{1}{2} e^{t} (\operatorname{sent+cost}) =$$

$$= \frac{1}{2} x \left[\operatorname{sen}(\log x) + \cos(\log x) \right] + c.$$

(b) =
$$\frac{1}{2}$$
 x [sen(log x)-cos(log x)] + c]

4.111 Calcolare gli integrali

(a)
$$\int \frac{1}{1+e^x} dx$$

(b)
$$\int \frac{1}{1 - e^{2x}} dx$$

 $\big[$ (a) Si può effettuare la sostituzione $e^{X_{\rm m}}t,$ oppure, più rapidamente:

(b) =
$$x - \frac{1}{2} \log \left[1 - e^{2x} \right] + c$$
, con lo stesso metodo

4.112 Calcolare gli integrali

(a)
$$\int \frac{dx}{e^{2x} - 3e^x + 2}$$

(b)
$$\int \frac{e^x}{3e^{2x} - e^x + 2} dx$$

[Si esegua la sostituzione e^X=t. Si ha

(a) =
$$\frac{1}{2}$$
 x - log $|e^{x}-1| + \frac{1}{2}$ log $|e^{x}-2| + c$

(b) =
$$\frac{2}{\sqrt{23}}$$
 arctg $\frac{6e^{X}-1}{\sqrt{23}}$ + c]

4.113 Calcolare l'integrale

$$\int \frac{(4x^2+1)^{1}-1}{x} \, dx$$

[Ponendo $4x^2 + 1$ =t, si ha $x = \frac{1}{2}\sqrt{t-1}$, $dx = \frac{1}{4}\frac{dt}{\sqrt{t-1}}$, perciò si è ricondotti a calcolare l'integrale

$$\int \frac{t^{11}-1}{(1/2)\sqrt{t-1}} \cdot \frac{1}{4\sqrt{t-1}} \, dt = \frac{1}{2} \int \frac{t^{11}-1}{t-1} \, dt \ .$$

Eseguendo la divisione di t 11 -1 per t-1, oppure ricordando la formula che esprime la somma di una progressione geometrica, si ha

$$\frac{t^{11}-t}{t-1} = t^{10} + t^9 + t^8 + \ldots + t + 1 = \sum_{k=0}^{10} t^k \ .$$

Pertanto

$$\int \frac{(4x+1)^{11}-1}{x} dx = \frac{1}{2} \sum_{k=0}^{10} \frac{(4x^2+1)^{k+1}}{k+1} + c$$

4.1% Calcolare l'integrale $\int \frac{1}{\text{sen } x} dx$

[Questo integrale è già stato da noi calcolato nell'esercizio 4.21. Risolviamolo ora per sostituzione. Si ha

$$\int \frac{1}{\operatorname{sen} x} \, \mathrm{d} x = \int \frac{\operatorname{sen} x}{\operatorname{sen}^2 x} \, \mathrm{d} x = \int \frac{\operatorname{sen} x}{1 - \cos^2 x} \, \mathrm{d} x \ .$$

Con la sostituzione cos x = y si ha dy = - sen x dx, da cui, rico \underline{r} dando i metodi d'integrazione delle funzioni razionali, si ottie - ne:

$$\int \frac{1}{\sin x} dx = -\int \frac{1}{1-y^2} dy = -\frac{1}{2} \int \left(\frac{1}{1+y} + \frac{1}{1-y}\right) dy =$$

$$= -\frac{1}{2} \left[\log \left| 1+y \right| - \log \left| 1-y \right| \right] + c =$$

$$= \frac{1}{2} \left[\log(1-\cos x) - \log(1+\cos x) \right] + c$$

4.115 Calcolare l'integrale

$$\int \frac{3^x}{\sin(3^x)} dx$$

[Con la sostituzione 3 $^{\rm X}$ = t ci si riconduce all'integrale dell'eseg cizio precedente. Pertanto si ha

$$\int \frac{3^{X}}{\operatorname{sen}(3^{X})} dx = \frac{1}{\log 3} \int \frac{dt}{\operatorname{sen t}} = \frac{1}{\log 3} \log \left| \operatorname{tg} \frac{3^{X}}{2} \right| + c$$

Siano R(x) e Q(x) due polinomi con grado di R(x) <n= = grado di Q(x) e supponiamo che

$$\alpha_1, \alpha_2, \dots \alpha_r$$
, $\beta_1 \pm i\gamma_1, \beta_2 \pm i\gamma_2, \dots, \beta_s \pm i\gamma_s$

siano rispettivamente le radici reali e quelle com plesse di Q(x), con molteplicità rispettive:

$$\mathbf{m_1}$$
, $\mathbf{m_2}$, ..., $\mathbf{m_r}$; $\mathbf{n_1}$, $\mathbf{n_2}$, ..., $\mathbf{n_s}$

in modo che

$$\label{eq:m1+m2+...+mr} m_1 + 2(n_1 + n_2 + ... + n_s) = n.$$

In questo caso si dimostra che per R(x)/Q(x) kale la decomposizione in somma

$$\begin{split} \frac{R(x)}{Q(x)} &= \sum_{i=1}^{r} \left(\frac{A_{i,1}}{x^{-\alpha}_{1}} + \frac{A_{i,2}}{(x^{-\alpha}_{2})^{2}} + \ldots + \frac{A_{i,m_{i}}}{(x^{-\alpha}_{i})^{m_{i}}} \right) + \\ &+ \sum_{j=1}^{s} \left(\frac{h_{j,1}x^{+k}_{j,1}}{x^{2} + p_{j}x + q_{j}} + \frac{h_{j,2}}{(x^{2} + p_{j}x + q_{j})^{2}} + \ldots + \\ &+ \frac{h_{j,m_{j}}x^{+k}_{j,m_{j}}}{(x^{2} + p_{j}x + q_{j})^{m_{j}}} \right) \end{split}$$

con A_{i,k}, h_{j,k}, k_{j,k} costanti opportune, per cui___

l'integrale di R(x)/Q(x) è ricondotto al calcolo di integrali di tipo già considerato e al calcolo di integrali del tipo

$$\int \frac{hx + k}{[x^2 + px + q]^m} dx$$

Ricordando dal paragrafo 4E che nel nostro caso è

$$x^{2}+px+q = (x-\beta)^{2} + \gamma^{2}$$

l'integrale precedente diviene

$$\int \frac{hx+k}{[(x-\beta)^2+\gamma^2]^m} dx = \frac{-h}{(2m-2)[(x-\beta)^2+\gamma^2]^{m-1}} + (h\beta+k) \int \frac{1}{[(x-\beta)^2+\gamma^2]^m} dx$$

e l'ultimo integrale, eseguendo la sostituzione $x=\beta+\gamma t, diviene$

$$\int \frac{1}{\left[\, (x - \beta \,)^{\, 2} + \gamma^{\, 2} \, \right]^m} \ dx \ = \frac{1}{\gamma^{2m-1}} \, \int \, \frac{dt}{(1 + t^{\, 2} \,)^m}$$

per cui basterà applicare le formule di riduzione del l'esercizio 4.80.

4.116 Calcolare l'integrale

$$\int \frac{1}{x^2(x^2+1)^2} dx$$

[Determiniamo le costanti \mathbf{A}_1 , \mathbf{A}_2 , \mathbf{h}_1 , \mathbf{k}_1 , \mathbf{h}_2 , \mathbf{k}_2 tali che

$$\frac{1}{x^{2}(x^{2}+1)^{2}} = \frac{A_{1}}{x} + \frac{A_{2}}{x^{2}} + \frac{h_{1}x+k_{1}}{x^{2}+1} + \frac{h_{2}x+k_{2}}{(x^{2}+1)^{2}}$$

Si ha il sistema

$$\begin{cases} A_1 + h_1 = 0 \\ A_2 + k_1 = 0 \\ 2A_1 + h_1 + h_2 = 0 \\ 2A_2 + k_1 + k_2 = 0 \\ A_1 = 0 \\ A_2 = 1 \end{cases}$$
 da cui:
$$\begin{cases} A_1 = h_1 = h_2 = 0 \\ A_2 = 1 \\ k_1 = k_2 = -1 \end{cases}$$

pertanto

$$\int \frac{1}{x^2 (x^2+1)^2} dx = \int \frac{1}{x^2} dx - \int \frac{1}{x^2+1} dx - \int \frac{1}{(x^2+1)^2} dx.$$

Allora si ha (si vedano gli esercizi 4.80, 4.81)

$$\int \frac{1}{x^2 (x^2+1)^2} dx = -\frac{1}{x} - \arctan x - \frac{x}{2(1+x^2)} - \frac{1}{2} \arctan x + c =$$

$$= -\frac{1}{x} - \frac{x}{2(1+x^2)} - \frac{3}{2} \arctan x + c]$$

4G. Integrazione di alcune funzioni irra-'zionali

In questo paragrafo vogliamo far vedere che l'integrazione di alcune funzioni non razionali può essere ricondotta, mediante opportune sostituzioni, al cal colo di integrali di funzioni razionali.

Per dare un'idea del tipo di funzioni che vogliamo trattare, consideriamo gli integrali

(1)
$$\int \frac{1}{x\sqrt{x+4}} dx$$
; (2) $\int x \sqrt{\frac{1-x}{1+x}} dx$

(3)
$$\int \frac{dx}{x + \sqrt{1 + x^2}} dx.$$

Le funzioni integrande sono rispettivamente del tipo

$$f(x, \sqrt{ax+b})$$
; $f(x, \sqrt{\frac{ax+b}{cx+d}})$

$$f(x, \sqrt{ax^2+bx+c})$$

con f = f(x,y) funzione razionale delle variabili x, y, cioè rapporto di due polinomi nelle variabili x, y. Precisamente:

nel caso (1) è $f(x,y) = \frac{1}{xy}$; a=1, b=4.

nel caso (2) è f(x,y)=xy; a=-1,b=c=d=1

nel caso (3) è
$$f(x,y) = \frac{1}{x+y}$$
; $a = b=1$, $c=0$.

Per risolvere l'integrale (1), eseguiamo la sostituzione t = $\sqrt{x+4}$ da cui $x=t^2-4$, dx=2t dt. Pertanto si ha

$$\int \frac{1}{x\sqrt{x+4}} dx = \int \frac{1}{(t^2-4)t} 2t dt = \frac{1}{2} \int \frac{4}{t^2-4} dt =$$

$$= \frac{1}{2} \int \left(\frac{1}{t-2} - \frac{1}{t+2}\right) dt =$$

$$= \frac{1}{2} \log |t-2| - \frac{1}{2} \log |t+2| + c =$$

$$= \frac{1}{2} \log |\sqrt{x+4} - 2| - \frac{1}{2} \log(\sqrt{x+4} + 2) + c$$

Vedremo in seguito che, per risolvere l'integrale (2), conviene eseguire la sostituzione

$$t = \sqrt{\frac{1-x}{1+x}}$$

e, per risolvere l'integrale (3), basta porre

$$x + \sqrt{x^2 + 1} = t .$$

Passiamo ora a considerare i seguenti casi

1°)
$$\int f(x, \sqrt[n]{ax+b}) dx$$
. $(f(x,y) razionale)$
Si pone

$$(4) \sqrt[n]{ax+b} = t$$

cioè:
$$ax+b=t^n$$
, $x=\frac{t^n-b}{a}$, $dx=\frac{n}{a}t^{n-1}dt$

e l'integrale diviene

$$\int f\left(\frac{t^{n}-b}{a}, t\right) \frac{n}{a} t^{n-1} dt$$

con integrando razionale.

2°)
$$\int f(x, \sqrt[n_1]{ax+b}, \sqrt[n_2]{ax+b}, \dots, \sqrt[n_k]{ax+b}) dx$$

 $(f(x,y_1,\ldots,y_k) \text{ razionale}).Si pone$

con n uguale al m.c.m. di n_1, n_2, \ldots, n_k ;

inoltre, posto $m_i = \frac{n}{n_i}$ si ha

$$ax+b=t^n$$
, $x = \frac{t^{n-b}}{a}$, $dx = \frac{n}{a} t^{n-1} dt$, $\sqrt[nt]{ax+b} = t^{m_1}$

Pertanto l'integrale diviene

$$\int\!\!f\left(\frac{t^n-b}{a}\text{ , }t^{m_1},\ldots,t^{m_k}\right)\,\frac{n}{a}\,\,t^{n-1}\,\,\mathrm{d}t$$

con integrando razionale.

$$3^{\circ}$$
) $\int f\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx$ (ad-bc \neq 0),

(f(x,y) razionale). Si pone

(6)
$$\sqrt[n]{\frac{ax+b}{cx+d}} = t$$

da cui:
$$\frac{ax+b}{cx+d} = t^n$$
; $x = \frac{dt^n-b}{a-ct^n}$, $dx = \frac{n(ad-bc)}{(a-ct^n)^2}t^{n-1}dt$

e l'integrale diviene

$$\int f\left(\frac{dt^n-b}{a-ct^n}, t\right) \frac{n(ad-bc)}{(a-ct^n)^2} t^{n-1} dt$$

con integrando razionale.

$$4^{\circ}) \quad \int f(x, \sqrt{ax^2 + bx + c}) dx \qquad (a > 0)$$

(f(x,y) razionale). Si pone

(7)
$$\sqrt{ax^2+bx+c} = \sqrt{a} (t-x)$$

da cui

$$x = \frac{at^2-c}{b+2at}$$
, $dx = \frac{2a(at^2+bt+c)}{(b+2at)^2} dt$,

$$\sqrt{ax^2+bx+c} = \sqrt{a} \frac{at^2+bt+c}{b+2at}$$

e l'integrale diviene

$$\int f\left(\frac{at^2-c}{b+2at} \text{ , } \sqrt{a} \quad \frac{at^2+bt+c}{b+2at}\right) \quad \frac{2a(at^2+bt+c)}{(b+2at)^2} \ dt$$

con integrando razionale.

5°)
$$\int f(x, \sqrt{-ax^2+bx+c}) dx$$
 (a>0,b2+4ac>0)

(f(x,y) razionale). Si pone

(8)
$$\sqrt{a} \frac{\rho_2 - x}{x - \rho_1} = t$$

ove $\rho_1 < \rho_2$ sono le radici reali e distinte dell'equazione -ax²+bx+c = 0.

Quando si calcolano gli integrali 1°),...,5°)mediante le rispettive sostituzioni indicate, si dice che essi sono stati razionalizzati, e le sostituzioni si dicono razionalizzanti.

4.117 Calcolare l'integrale

$$\int x \sqrt{\frac{1-x}{1+x}} dx$$

[Eseguiamo la sostituzione razionalizzante

$$t = \sqrt{\frac{1-x}{1+x}}$$

cioè x = $(1-t^2)/(1+t^2)$, per cui dx =- $\frac{4tdt}{(1+t^2)^2}$

Pertanto si ha:

$$\int \ x \, \sqrt{\frac{1-x}{1+x}} \ dx = \int \, \frac{1-t^2}{1+t^2} \ t \, \frac{-4t}{\left(1+t^2\right)^2} \ dt = 4 \, \int \, \frac{t^4 \, -t^2}{\left(1+t^2\right)^3} \ dt \ .$$

Essendo

$$t^4 - t^2 = (t^4 + 2t^2 + 1) - 3t^2 - 1 = (t^2 + 1)^2 - 3(t^2 + 1) + 2$$

si ha

(9)
$$\int x \sqrt{\frac{1-x}{1+x}} dx = 4 \int \frac{1}{1+t^2} dt - 12 \int \frac{1}{(1+t^2)^2} dt + 8 \int \frac{1}{(1+t^2)^3} dt$$

Integrando per parti, si ha

$$\int \frac{1}{(1+t^2)^3} dt = \frac{t}{4(t^2+1)^2} + \frac{3}{4} \int \frac{1}{(t^2+1)^2} dt$$

$$\int \frac{1}{(1+t^2)^2} dt = \frac{t}{2(t^2+1)} + \frac{1}{2} \int \frac{1}{1+t^2} dt$$

per cui la (9) diviene, per t = $\sqrt{1-x}$, $/\sqrt{1+x}$:

$$\int x \sqrt{\frac{1-x}{1+x}} dx = \int \frac{1}{1+t^2} dt - \frac{3t}{t^2+1} + \frac{2t}{(t^2+1)^2} =$$

$$= arctg \ t - \frac{3t}{t^2+1} + \frac{2t}{(t^2+1)^2} + c \]$$

4.118 Calcolare l'integrale

$$\int \frac{dx}{x+\sqrt{1+x^2}}$$

[Eseguiamo la sostituzione

$$x + \sqrt{x^2 + 1} = t$$

cioè x =(t²-1)/2t, per cui dx = $\frac{2t^2+1}{4t^2}$ dt. Pertanto

$$\int \frac{dx}{x^{+} \sqrt{1 + x^{2}}} = \int \frac{2t^{2} + 1}{4t^{3}} dt = \frac{1}{2} \int \frac{1}{t} dt + \frac{1}{4} \int \frac{1}{t^{3}} dt =$$

$$= \frac{1}{2} \log |t| - \frac{1}{8} \frac{1}{t^2} + c = \frac{1}{2} \log |x + \sqrt{x^2 + 1}| - \frac{1}{8(x + \sqrt{x^2 + 1})} + c]$$

4.119 Calcolare l'integrale

$$I = \int \frac{1}{\sqrt{x^2 + px + q}} dx$$

[Eseguendo la sostituzione razionalizzante

(10)
$$\sqrt{x^2 + px + q} = t - x$$

ossia $x=(t^2-q)/(p+2t)$, da cui

$$\mbox{d} x = \frac{.2 (\mbox{t}^2 + \mbox{p} \mbox{t} + \mbox{q})}{(\mbox{p} + \mbox{2} \mbox{t})^2} \ \mbox{d} \mbox{t} \ ; \quad \sqrt{\mbox{x}^2 + \mbox{p} \mbox{x} + \mbox{q}} \ = \frac{\mbox{t}^2 + \mbox{p} \mbox{t} + \mbox{q}}{\mbox{p} + \mbox{2} \mbox{t}} \ ,$$

si ha:

$$\mbox{I =} \int \; \frac{p + 2t}{t^2 + pt + q} \; \; \cdot \; \frac{2(t^2 + pt + q)}{\left(p + 2t\right)^2} \; \; dt = 2 \int \frac{1}{p + 2t} \; dt = \log \; \left| \; p + 2t \; \right| \; + c \; .$$

Sostituendo, nell'ultimo membro, l'espressione di t data dalla (10), si ottiene

$$\int \frac{1}{\sqrt{x^2 + px + q}} dx = \log |p + 2x + 2|\sqrt{x^2 + px + q}| + c|$$

4.120 Calcolare l'integrale

$$\int \frac{1}{\sqrt{-x^2-2x+3}} dx$$

[Si ha $-x^2$ -2x+3=(x+3)(1-x), per cui

$$(11) \quad \frac{1}{\sqrt{-x^2 - 2x + 3}} = \frac{1}{\sqrt{(x+3)(1-x)}} = \frac{1}{(x+3)\sqrt{\frac{1-x}{x+3}}}$$

La sostituzione razionalizzante è

$$(12) \qquad \sqrt{\frac{1-x}{y+3}} = t$$

per cui $x=(1-3t^2)/(1+t^2)$ e inoltre

$$dx = \frac{-8t}{(1+t^2)^2}$$
; $x + 3 = \frac{4}{1+t^2}$.

Allora, per le precedenti uguaglianze, si ha

$$\int \frac{1}{\sqrt{-x^2 + 2x + 3}} = \int \frac{1}{(x+3)\sqrt{\frac{1-x}{x+3}}} dx =$$

$$= \int \frac{1}{\frac{4}{1+t^2} \cdot t} \cdot \frac{-8t}{(1+t^2)^2} dt =$$

$$= -2 \int \frac{1}{1+t^2} dt = -2 \arctan t + c$$

ovvero, ponendo in luogo di t l'espressione data dalla (12):

$$\int \frac{1}{\sqrt{-x^2 + 2x + 3}} dx = -2 \arctan \sqrt{\frac{1-x}{x+3}} + c]$$

4H. Integrazione di alcune funzioni trascendenti

In questo paragrafo vogliamo far vedere che an che gli integrali di certe funzioni trigonometriche, esponenziali o logaritmiche possono essere ricondotti, mediante opportune sostituzioni, ad integrali di funzioni razionali.

Per dare un'idea del tipo di funzioni che vogli<u>a</u> trattare, consideriamo gli integrali

(1)
$$\int \frac{1}{1+e^x} dx$$
; (2) $\int \frac{1}{1+tgx} dx$

(3)
$$\int \frac{1}{1+\sin x} dx$$

i cui integrandi sono funzioni razionali di e x,

tg x e di sen x rispettivamente. Per risolvere l'integrale (1), eseguiamo la sostituzione e^x = t, da cui x=log t e dx=dt/t. Perciò [e^x =

$$\int \frac{1}{1+e^{x}} dx = \int \frac{1}{1+t} \cdot \frac{1}{t} dt = \int \frac{1}{t} dt - \int \frac{1}{t+1} dt =$$

$$= \log |t| - \log |t+1| + c = x - \log (e^{x} + 1) + c.$$

Per risolvere l'integrale (2), poniamo tg x=t,da cui x = arctg t, $dx = dt/(1+t^2)$. Perciò: [tg x=t]

$$\int \frac{1}{1+tg \ x} \ dx = \int \frac{1}{1+t} \cdot \frac{1}{1+t^2} \ dt =$$

$$= \int \left(\frac{1}{2} \cdot \frac{1}{1+t} + \frac{1}{2} \cdot \frac{1-t}{1+t^2}\right) \ dt =$$

$$= \frac{1}{2} \int \frac{1}{1+t} \ dt + \frac{1}{2} \int \frac{1}{1+t^2} \ dt - \frac{1}{4} \int \frac{2t}{1+t^2} \ dt$$

$$= \frac{1}{2} \log|1+t| + \frac{1}{2} \operatorname{arctgt} - \frac{1}{4} \log(1+t^2) + c$$

$$= \frac{1}{2} \log|1+tgx| + \frac{1}{2} x - \frac{1}{4} \log(1+tg^2x) + c.$$

Per risolvere l'integrale (3) poniamo tg(x/2) = t, cioè x = 2arctgt, da cui dx=2dt/(1+t2).Ricordando inoltre che, con la posizione fatta, è sen x=2t/ (1 + +t2), (vedi la (17) del cap. 2 , parte prima), si ha:

$$\int \frac{1}{1+\sin x} dx = \int \frac{1}{1+\frac{2t}{1+t^2}} \cdot \frac{2}{1+t^2} dt =$$

$$= \int \frac{2}{(t+1)^2} dt = -\frac{2}{1+t} + c =$$

$$= -\frac{2}{1+tg(x/2)} + c$$

Ricordiamo che l'integrale (3) può esser risolto per altra via, come indicato negli esercizi 4.24 e 4.25. Passiamo ora a considerare i seguenti casi

$$1^{\circ}$$
) $\int f(a^{x})dx$

(f(x) razionale). Si pone

$$a^{x} = t$$

cioè: $x = \log_a t$, $dx = \frac{dt}{t \log_a}$

e l'integrale diviene

$$\frac{1}{\log a} \int \frac{f(t)}{t} dt$$

con integrando razionale.

$$2^{\circ}$$
) $\int f(tg x) dx$

(f(x) razionale). Si pone

$$tg x = t$$

cioè: x = arctg t , dx = dt/(1+t²) e l'integrale diviene

$$\int \frac{f(t)}{1+t^2} dt$$

con integrando razionale.

$$3^{\circ}$$
) $\int f(\log_a x) \frac{1}{x} dx$

(f(x) razionale). Si pone

$$log_a x = t$$

cioè: $x = a^t$, $dx = a^t \log a dt$

e l'integrale diviene

$$\log a \int f(t)dt$$

con integrando razionale.

$$4^{\circ}) \int f(x^{\alpha}) x^{\alpha-1} dx \qquad (\alpha \in R-Z)$$

(f(x) razionale). Si pone

$$x^{\alpha} = t$$

cioè: $x = t^{1/\alpha}$, $dx=(1/\alpha)t^{1/\alpha-1}dt$, $x^{\alpha-1}=t^{1-1/\alpha}$

e l'integrale diviene

$$\frac{1}{\alpha} \int f(t) dt$$

con integrando razionale .

$$5^{\circ}$$
) $\int f(\operatorname{sen} x, \cos x) dx$

(f(x,y) razionale). Si pone

$$tg \frac{X}{2} = t$$

cioè: x = 2arctg t, $dx = 2dt/(1+t^2)$

e si ricorda che

sen
$$x = \frac{2t}{1+t^2}$$
 , $\cos x = \frac{1-t^2}{1+t^2}$,

per cui l'integrale diviene

$$2 \int f\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{1}{1+t^2} dt$$

con integrando razionale.

6°)
$$\int f(sen^2x cos^2x, tg x) dx$$

($f(x,y,z)$ razionale). Si pone

cioè: x = arctg t $dx = dt/(1+t^2)$

$$dx = dt/(1+t^2)$$

e si ricorda che

$$sen^2x = \frac{t^2}{1+t^2}$$
, $cos^2x = \frac{1}{1+t^2}$

4.121 Calcolare gli integrali

(a)
$$\int \frac{1}{x+x \log^2 x} dx$$

(a)
$$\int \frac{1}{x+x \log^2 x} dx$$
 (b) $\int \frac{\log 3x}{x \log 9x} dx$

- [(a) Eseguendo la sostituzione log x = t si trova arctg log x+c. All lo stesso risultato si previene utilizzando la (10') del paragrafo
- (b) Eseguendo la sostituzione log x = t si trova log x log 9 · ·log $\left[\log x + \log 9\right] + c$
- 4.122 Calcolare gli integrali

(a)
$$\int \frac{\text{sen } x}{1 + \cos^2 x} \, dx$$
 (b)
$$\int \frac{1}{\cos x - 1} \, dx$$

 $\left[\begin{array}{l} (a) \text{ Eseguendo la sostituzione tg } \frac{x}{2} \text{ = t si \`e ricondotti al calcolo} \\ \text{dell'integrale } \int \frac{2t}{t^4+1} \text{ dt. Volendo procedere più speditamente.,} \end{array}\right.$ basta rifarsi alla (10') del paragrafo 4A. Si trova subito il ri sultato - arctg cos x + c.

suitate - arcg cos x + 0.
(b)
$$\int \frac{dx}{\cos x - 1} = \int \frac{\cos x + 1}{\cos^2 x - 1} dx = -\int \frac{\cos x + 1}{\sin^2 x} dx =$$

$$= -\int \frac{\cos x}{\sin^2 x} dx - \int \frac{1}{\sin^2 x} dx =$$

$$= \frac{1}{\sin x} + \cot x + c = \frac{1 + \cos x}{\sin x} + c.$$

Come indicato nell'esercizio 4.23, si potrebbe anche eseguire la sostituzione 1 - cos x = 2 sen 2 (x/2), da cui

$$\int \frac{dx}{\cos x - 1} = -\frac{1}{2} \int \frac{dx}{\sin^2(x/2)} = \cot (x/2) + c$$

4.123 Calcolare l'integrale

$$\int \frac{x\sqrt{x}}{1+x\sqrt[5]{x^3}} \cdot \frac{1}{\sqrt[5]{x^3}} dx$$

[Eseguendo la sostituzione $\sqrt[5]{x^2}$ = t si è ricondotti a calcolare lo integrale $\int \frac{t^3}{1+t^4} \ dt \ . \ Il \ risultato \ è \ \frac{5}{8} \ log \left|1+x\sqrt[5]{x^3} \ \right| + c \]$

4.124 Calcolare gli integrali

(a)
$$\int \frac{\mathrm{tgx}}{1 + \mathrm{sen}^2 x} \, \mathrm{d}x$$

(b)
$$\int \frac{1}{1 + \sin x - \cos x} \, dx$$

[(a) Eseguendo la sostituzione tg x = t, da cui x = arctgt, dx = $= \frac{\text{dt}/(1+\text{t}^2)}{4}, \ \text{sen}^2 x = \frac{\text{t}^2/(1+\text{t}^2)}{2} \text{ si trova il risultato } \frac{1}{4} \log (1 + 2\text{tg}^2 x) + c$. (b) Eseguendo la sostituzione tg $\frac{x}{2}$ = t, si trova il risultato log [tg $\frac{x}{2}$ /(1+tg $\frac{x}{2}$)] + c] —

4.125 Calcolare l'integrale, detto binomio:

$$\int x^{m} (ax^{p} + b)^{q} dx$$

m,p,q∈Q

in una delle seguenti ipotesi

- (a) q è intero; (b) $\frac{m+1}{p}$ è intero; (c) $\frac{m+1}{p}$ + q è intero.
- [(a) L'integrale rientra in quelli considerati al punto 2°) del para grafo 4G.
- (b) Effettuando la sostituzione $x^p = t$, l'integrale diviene

$$\frac{1}{p} \quad \int \ t^{\frac{m+1}{p} \ + \ q-1} \quad \left(\frac{at+b}{t}\right)^q \quad \text{d}t$$

e questo integrale rientra in quelli considerati al punto $2^{\circ})$ del paragrafo 4G .

(c) L'integrale ottenuto in (b) rientra in quelli considerati al pun to 3°) del paragrafo 4G]

4I. Esercizi di riepilogo 74.136 $\int x^2 \cos(x^3) dx = \frac{1}{3} \sin(x^3) + c$ 74.137 $\int \frac{1}{(x+3)\log(x+3)} dx = \log|\log(x+3)| + c$ 74.108 $\int \frac{2x+5}{x^2+5x+7} dx = \log(x^2+5x+7) + c$

• 4.130
$$\int \frac{1}{x\sqrt{\log x}} dx = 2 \sqrt{\log x} + c$$

 $4.120 \int \frac{\sin 2x}{7 + \sin^2 x} dx = \log(7 + \sin^2 x) + c$

$$4.13 \int \frac{1}{x} \operatorname{sen} (\log x) \, dx = -\cos(\log x) + c$$

$$4\sqrt{12} \int e^x \cos(e^x) dx = \sin(e^x) + c$$

4.133
$$\int x(x^2+10)^6 dx = \frac{1}{14} (x^2 + 10)^7 + c$$

44.134
$$\left(\frac{\text{tg}^3 x}{\cos x} \right)^2 dx = \frac{1}{7} \text{tg}^7 x + c$$

4.175
$$\int x \sin(3x^2+5) dx = -\frac{1}{6} \cos(3x^2+5) + c$$

4.
$$\int e^{e^{x}+x} dx = e^{e^{x}} + c$$

$$4 = \int \frac{1 + tg^2 x}{tg x} dx = \int \frac{1}{\cos^2 x tg x} dx = \log|tg x| + c$$

[Si ricordi che 1+tg 2 x = 1/cos 2 x (ved.esercizio 2.15 della parte

$$4\sqrt{38} \int \frac{1+\cot g^2 x}{3+\cot g^2 x} dx = -\log|3+\cot g^2| + c$$
[si ricordi che 1 + $\cot g^2 x = 1/\operatorname{sen}^2 x$]
$$4\sqrt{9} \int \frac{1+x-x^4}{x^2+1} dx = x - \frac{x^3}{3} + \frac{1}{2}\log(x^2+1) + c$$

$$4.140 \int \frac{3x+5}{x^2-2x+1} dx = 3\log|x-1| - \frac{8}{x-1} + c$$

$$4.141 \int \frac{16x^4+3}{4x^2-1} dx = \frac{4}{3}x^3 + x + \log|x-\frac{1}{2}| - \log|x+\frac{1}{2}| + c$$

$$- \log|x+\frac{1}{2}| + c$$

$$4.142 \int \frac{x^2+x+1}{x^3+x} dx = \log|x| + \arctan x + c$$

$$4.143 \int \frac{x^4+x^3-1}{x^3+x} dx = \frac{x^2}{2} + x - \log|x| - \arctan x + c$$

$$4.144 \int \frac{x^2+3}{x^2+1} dx = x + 2 \arctan x + c$$

$$4.145 \int \frac{2x+1}{4+9x^2} dx = \frac{1}{9}\log(4+9x^2) + \frac{1}{6}\arctan(\frac{3}{2}x) + c$$

$$4.146 \int \frac{1}{x^2+2x+3} dx = \frac{1}{\sqrt{2}}\arctan(\frac{x+1}{\sqrt{2}} + c)$$

$$4.147 \int \frac{x}{x^4-x^2-2} dx = \frac{1}{6}\log\frac{|x^2-2|}{x^2+1} + c$$

$$4.148 \int \frac{x+2}{(x-1)^3(x-2)} dx = 4\log\frac{|x-2|}{|x-1|} + \frac{4}{x-1} + c$$

$$+ \frac{3}{2} \frac{1}{(x-1)^2} + c$$
4.149 \[\lambda \left[\log (x^2+4) \, \dx = x \log (x^2+4) \cdot -2x + 4 \, \arctg \frac{x}{2} + c \\ \end{arctg} \]
[Si integri per parti]

4.150 \[\log x^4 \log x \, \dx = \frac{x^5}{5} \left(\log x - \frac{1}{5} \right) + c \]

4.151 \[\log tg^2 \, \dx x \, \dx = \frac{1}{5} \, \text{tg } 5x - x + c \]
[Si integri per parti]

4.152 \[\log \frac{\log x}{\sqrt{x}} \, \dx = 2 \sqrt{x} \log x - 4 \sqrt{x} + c \]
[Si integri per parti]

[Si integri per parti]
$$4.153 \int \frac{x^2}{\sqrt{1-x^2}} dx = -\frac{1}{2} \times \sqrt{1-x^2} + \frac{1}{2} \arcsin x + c$$

4.154
$$\int \frac{x \operatorname{arcsen} x}{\sqrt{1-x^2}} dx = x - (\operatorname{arcsen} x) \sqrt{1-x^2} + c$$

4.155
$$\int \frac{x}{\sqrt{1-x}} dx = -2(1-x)^{1/2} + (2/3)(1-x)^{3/2} + c$$
[Si esegua la sostituzione $1-x=t^2$]

4.156
$$\int \frac{1+tg x}{1-tg x} dx = -\log |\cos x - \sin x| + c$$
[Si esegua la sostituzione tg x = t, oppure scrivendo tgx=(sen x)/

$$4.157 \int \frac{1}{1+\sin^2 x} dx = \frac{1}{\sqrt{2}} \arctan (\sqrt{2} \text{ tg x}) + c \text{ [tg x=t]}$$

$$4.158 \int \frac{1}{1+\sin x + \cos x} dx = \log \left| 1 + \text{tg } \frac{x}{2} \right| + c \text{ [tg } \frac{x}{2} = t \text{]}$$

$$4.159 \int \frac{2\cos^3 x - \cos x}{\cos 2x} dx = \sin x + c$$

$$4.160 \int \frac{1}{x(4-\log^2 x)} dx = \frac{1}{4} \log \left| (2+\log x)/(2-\log x) \right| + c$$

4.161
$$\int (\operatorname{arcsen} x)^3 dx = x(\operatorname{arcsen} x)^3 +$$

$$+ 3 \sqrt{1-x^2} (\operatorname{arcsen} x)^2 -$$

$$-6 x \operatorname{arcsen} x - 6 \sqrt{1-x^2} + c$$

$$[x = \operatorname{sent} e \operatorname{poi} \operatorname{integrando} \operatorname{per} \operatorname{parti}]$$

$$4.162 \int \frac{2x^6 + x^3 - 1}{x^3 + 1} dx = \frac{1}{2} x^4 - x + c$$

4.163
$$\int \frac{x^6 + 2x^2 - 1}{x^4 - 1} 2x dx = \frac{x^2}{2} + \log |x^2 - 1| + 2 \log(x^2 + 1) + c$$

[Con la sostituzione x 2 = t, 1'integrale dato diviene

$$\int \frac{t^3 + 2t - 1}{t^2 - 1} dt = \int \left(t + \frac{3t - 1}{t^2 - 1} \right) dt =$$

$$= \frac{t^2}{2} + \log |t - 1| + 2 \log |t + 1| + c$$

4.164
$$\int \frac{1}{1+\sqrt{x}} dx = 2 \left[\sqrt{x} - \log (1+\sqrt{x}) \right] + c$$

[Per sostituzione]

$$4.165 \int \frac{1}{x\sqrt{x-4}} dx = arctg \frac{\sqrt{x-4}}{2} + c$$
[Per sostituzione]

4.166
$$\int \frac{x^2}{\sqrt{x} (x+1)} dx = \frac{2}{3} x^{3/2} - 2\sqrt{x} + 2 \arctan \sqrt{x} + c$$
[Per sostituzione]

$$4.167 \int \frac{x^2+1}{\sqrt{x}(x-1)} dx = \frac{2}{3} x^{3/2} + 2\sqrt{x} + 2\log(\sqrt{x}+1) - 2 \log|\sqrt{x} - 1| + c$$

[Per sostituzione]

$$4.168 \int \frac{3x^2 - 2 + x}{(x^2 + 1)(x - 1)^3} dx = \frac{4 - 5x}{2(x - 1)^2} - \operatorname{arctg} x + \frac{3}{4} \log \frac{x^2 + 1}{(x - 1)^2} + c$$

$$4.169 \int \frac{x^3 + 5x\sqrt{x} - 7}{x^3(x\sqrt{x}) + x\sqrt{x} + x^3 + 1} \sqrt{x} dx = \frac{13}{6} \log(x^3 + 1) - \frac{11}{3} \log(x\sqrt{x} + 1) - \arctan(x\sqrt{x}) + c$$

$$[x\sqrt{x} = t]$$

$$4.170 \int \frac{3\cos x \, \sec^2 x + 5\cos x}{\sin^3 x + \cos^2 x - \sec x} \, dx = 2 \, \log(1 + \sec x) +$$

$$+ \, \log \, (1 - \sec x) + 4/(1 - \sec x) + c$$

[Con la sostituzione t = sen x si è ricondotti all'integrale

Tenendo conto che t = sen x è compreso fra -1 e 1 e perciò, ad esempio, $\begin{bmatrix} t-1 \end{bmatrix}$ = 1-t, si ottiene il risultato

$$4.171 \int \frac{dx}{[2+5 \log^2(tg x)] \operatorname{senx} \cos x} =$$

$$= \frac{1}{\sqrt{10}} \arctan \left[\sqrt{\frac{5}{2}} \log (tgx) \right] + c$$

[Si noti che D log(tgx)=1/(senx cosx)]

4.172
$$\int \frac{dx}{\sin^3 x} = \frac{-1}{8 + 2 + \frac{x}{2}} + \frac{1}{2} \log \left| -\frac{x}{2} \right| + \frac{1}{8} + 2 + \frac{x}{2} + c$$

[Si esegua la sostituzione tg $\frac{x}{2}$ = t, come indicato al punto 5°)del paragrafo 4H (pag. 237)] .

4.173
$$\int \frac{dx}{\cos^6 x} = tgx + \frac{2}{3} tg^3 x + \frac{1}{5} tg^5 x + c$$

[Si esegua la sostituzione tgx = t, come indicato al punto 6°) del paragrafo 4H (pag. 238)]

Capitolo 5

INTEGRALI DEFINITI

5A. Integrazione definita elementare

Siano f(x) e g(x) funzioni limitate ed integrab<u>i</u> li (secondo Riemann) nell'intervallo chiuso e limit<u>a</u> to I di R.

Richiamiamo alcune proprietà dell'integrale def \underline{i} nito:

a) additività dell'integrale:

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \qquad \forall a,b,c \in I$$

b) integrale del valore assoluto:

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx, \quad \forall a, b \in I, (a < b)$$

c) monotonia dell'integrale : se a,b \in I, con a < b, se f(x) \leq g(x) per ogni x \in [a,b], allora

$$\int_a^b f(x) dx \le \int_a^b g(x) dx.$$

In particolare, se è $g(x) \ge 0$, allora

$$\int_{-b}^{b} g(x) dx \ge 0.$$

d) linearità dell'integrale: per λ , $\mu \in \mathbb{R}$, si ha:

$$\int_a^b [\lambda f(x) + \mu g(x)] dx = \lambda \int_a^b f(x) dx + \mu \int_a^b g(x) dx.$$

Ricordiamo inoltre che le funzioni continue e le <u>funzioni monotòne e limitate in un intervallo chiu</u> so [a,b] sono ivi integrabili.

 e) proprietà della media: se m e M sono rispettivamente l'estremo inferiore e l'estremo superiore di f in [a,b], si ha

$$---m \le \frac{1}{b-a} \int_a^b f(x) dx \le M.$$

In particolare, se f(x) è continua in [a,b], allo ra esiste ce[a,b] tale che

$$\frac{1}{b-a} \int_a^b f(x) dx = f(c).$$

. Il numero reale $\frac{1}{b-a}\int_a^b f(x)\ dx$ prende il nome di valor medio di f su [a,b].

Nel caso degli integrali definiti, la formula di integrazione per parti diviene:

$$\int_{a}^{b} f(x)g'(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

e la formula di integrazione per sostituzione diviene

$$\int_{\phi(a)}^{\phi(b)} f(x) dx = \int_{a}^{b} f(\phi(t)) \phi'(t) dt$$

ove f è continua in [c,d], $\varphi\colon [a,b] \!\to\! [c,d]$ è derivabile con derivata continua.

Il teorema fondamentale del calcolo integrale $\ afferma$ che:se f(x)è continua in [a,b], allora la funzione

$$F: x \in [a,b] \rightarrow \int_{a}^{x} f(t)dt$$

è una primitiva di f.

Grazie a tale teorema, per calcolare l'integrale definito di una funzione continua nell'intervallo [a,b], basta trovare una primitiva di f ed applicare la seguente regola:

FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE: $Sia\ f(x)con$ tinua in [a,b] e $sia\ G(x)$ una primitiva di f(x); allora

$$\int_{a}^{b} f(x) dx = [G(x)]_{a}^{b} = G(b) - G(a)$$

Ricordiamo inoltre il significato geometrico dell'in tegrale definito di una funzione non negativa: se f è integrabile e limitata sull'intervallo [a,b] e se è $f(x) \geq 0$, posto

$$T = \{(x,y) \in [a,b] xR : 0 \le y \le f(x)\}$$

si ha, (ved. il successivo paragrafo 5C):

area di T =
$$\int_a^b f(x) dx$$
.

5.1 Sia f(x) la funzione definita nell 'intervallo [0,1] da

$$f(x) = \begin{cases} 0 & \text{se} & x \in (0,1] \\ 5 & \text{se} & x = 0. \end{cases}$$

251

Verificare che f(x) è integrabile nell'intervallo [0,1] e che l'integrale è nullo.

[Siano 0=x $_{\rm o}$ < x $_{\rm 1}$ < x $_{\rm 2}$ < ... < x $_{\rm n}$ = 1 i punti di una partizione P del

<code>i'intervallo</code> [0,1] . Consideriamo le relative somme integrali inferiori s(P) e superiori s(P):

$$\mathbf{s}(\mathbf{P}) = \sum_{k=1}^{n} \ \mathbf{m}_{k}(\mathbf{x}_{k} - \mathbf{x}_{k-1}); \ \mathbf{S}(\mathbf{P}) = \sum_{k=1}^{n} \ \mathbf{M}_{k} \ (\mathbf{x}_{k} - \mathbf{x}_{k-1}),$$

ove $\mathbf{m_k}$ e $\mathbf{M_k}$ sono rispettivamente l'estremo inferiore e l'estremo superiore di $\mathbf{f}(\mathbf{x})$ nell'intervallo $\begin{bmatrix} \mathbf{x_{k-1}, x_k} \end{bmatrix}$. Risulta $\mathbf{m_k} = 0$ per ogni $\mathbf{k} = 1, 2, \ldots, \mathbf{n}$, mentre è $\mathbf{M_k} = 0$ se $\mathbf{k} = 2, 3, \ldots, \mathbf{n}$ e $\mathbf{M_l} = \mathbf{sup}$ { $\mathbf{f}(\mathbf{x}) : \mathbf{x} \in \{0, \mathbf{x_l}\}\} = 5$. Perciò abbiamo

$$s(P) = 0$$
; $S(P) = 5x_1$

Le somme integrali inferiori sono nulle per ogni partizione P. E' anche evidente che l'estremo inferiore delle somme integrali superiori al variare della partizione P, è uguale a zero. Perciò l'integrale con siderato vale zero]

5.2 Dare un esempio di funzione continua, non ident \underline{i} camente nulla, il cui integrale definito, esteso ad un intervallo [a,b] con a < b, valga zero.

[Basta scegliere f(x) = sen x, per $x \in [0,2\pi]$]

5.3 Esistono funzioni integrabili, non identicamente nulle, nell'intervallo [0,1], tali che $f(x) \geq 0$, per ogni $x \in [0,1]$ ed il cui integrale definito sia nullo?

[Si, ad esempio la funzione dell'esercizio 5.1]

5.4 Esistono funzioni continue e non identicamente nulle nell'intervallo [0,1], tali che f(x) \geq 0 , $\forall x \in [0,1]$ ed il cui integrale definito sia nullo?

[No, non esistono. Supponiamo infatti che f(x) sia una funzione conti-

nua in [0,1], con $f(x)\geq 0$ per ogni $x\in [0,1]$ e tale che $\int_0^1 f(x)dx$

=0. Dimostriamo che f(x) è identicamente nulla. Supponiamo per assurdo che esista $x_o \in [\ 0,1\]$ tale che $f(x_o)>0$. Per il teorema della perma nenza del segno, esiste in $[\ 0,1\]$ un intorno I di x_o , per cui

$$f(x) \ge f(x_a)/2$$
 , $\forall x \in I$

Per semplicità, supponiamo che x_o sia interno all'intervallo [0,1] e che I sia della forma I = $\{x \in [0,1] : x_o - \delta < x < x_o + \delta \}$, con $\delta > 0$.

$$\int_{0}^{1} f(x) dx = \int_{0}^{x_{o} - \delta} f(x) dx + \int_{x_{o} - \delta}^{x_{o} + \delta} f(x) dx + \int_{x_{o} + \delta}^{1} f(x) dx \ge$$

$$\geq \int_{x_{o} - \delta}^{x_{o} + \delta} f(x) dx \ge \frac{f(x_{o})}{2} (2 \delta) > 0$$

si perviene ad un assurdo]

5.5 Siano f_1 , f_2 due funzioni continue in [0,1], tali che $f_1(x) \leq f_2(x)$, per ogni $x \in [0,1]$ ed inoltre $t\underline{a}$ li che $f_1(x_o) < f_2(x_o)$ per almeno un $x_o \in [a,b]$. Dimostrare che

$$\int_{0}^{1} f_{1}(x) dx < \int_{0}^{1} f_{2}(x) dx.$$

[Basta osservare che la funzione $f(x)=f_2(x)-f_1(x)$, per l'esercizio prece dente, ha integrale, esteso all'intervallo [0,1], strettamente positivo]

5.6 Calcolare, in base alla definizione di integrale definito, l'integrale

$$\int_0^1 x \ dx .$$

[Dividiamo l'intervallo [0,1] in n parti uguali mediante i punti $\frac{1}{n}$,

 $\frac{2}{n}$,..., $\frac{n-1}{n}$. Le somme integrali inferiori e superiori sono, rispet tivamente

$$s_n = \frac{1}{n} \left(\frac{1}{n} + \frac{2}{n} + \ldots + \frac{n-2}{n} + \frac{n-1}{n} \right) .$$

$$s_n = \frac{1}{n} \left(\frac{1}{n} + \frac{2}{n} + \ldots + \frac{n-1}{n} + \frac{n}{n} \right)$$

per cui è : S_n - s_n = $\frac{1}{n}$ e perciò lim $(s_n$ - $s_n)$ = 0. D'altra parte, ricordando che 1+2+...+n=n(n+1)/2, si ha

$$\frac{1}{n} \quad S_n = \lim_{n \to \infty} \frac{1}{n^2} (1+2+\ldots+n) = \lim_{n \to \infty} \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{1}{2}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{n^2 + n}{n^2} = \frac{1}{2}$$

e perciò l'integrale dato vale 1/2]

[Dividendo [0,1] in n parti uguali e, procedendo come in 5.6, si ha $\lim_n S_n = \lim_n \frac{1}{n^4} \cdot \frac{n^2 (n+1)^2}{4} = \frac{1}{4} \quad]$

5.8 Calcolare, in base alla definizione di integrale definito, l'integrale

$$\int_{-1}^{a} \frac{1}{x} dx. \qquad (a > 1).$$

[Dividiamo l'intervallo [1,a] mediante i punti in progressione geome

$$q^{\circ} = 1, q, q^{2}, \dots, q^{n-1}, q^{n} = a,$$

ove si è scelto $q=\sqrt[n]{a}$. Le somme integrali inferiori e superiori so no, rispettivamente

$$\begin{split} s_n &= \frac{q^{-1}}{q} \ + \ \frac{q^{2} - q}{q^{2}} \ + \ \dots + \frac{q^{n} - q^{n-1}}{q^{n}} \ = \ \frac{n \binom{n \sqrt{a} - 1}{\sqrt{a}}}{n \sqrt{a}} \\ \\ s_n &= \underline{q} - 1 + \frac{q^{2} - q}{q} + \dots + \frac{q^{n} - q^{n-1}}{q^{n-1}} \ = \ n \binom{n \sqrt{a} - 1}{\sqrt{a} - 1} \end{split}$$

come si verifica facilmente. Ricordando il limite notevole $\lim_{x \to 0} \frac{a^{N-1}}{x} = \log a \text{ (és. 8.21 della parte prima) si ha lim } S_n = \log a. \text{ Per calcolare il lim } s_n, \text{ applicando } n$ la regola di L'Höspital si vede che lim s $_n = \log a$].

5.9 Sia f(x) una funzione limitata ed integrabile nel l'intervallo [0,5] e tale che

$$\int_{0}^{5} f(x) dx = 10.$$

Dimostrare che

- (a) esiste almeno un punto $x_o \in [0,5]$, tale che $f(x_o) < 3$;
- (b) se f(x) è continua in [0,5], allora esiste almeno un punto $x_o \in [0,5]$ tale che f(x_o) = 2;
- (c) se f(x) è strettamente monotòna in [0,5], allora esiste almeno un punto $x_o \in [0,5]$ tale che f(x_o)< 2.
- [(a) Se, per assurdo, fosse $f(x) \ge 3$ per ogni $x \in [0,5]$, risulterebbe

$$\int_{0}^{5} f(x) dx \ge \int_{0}^{5} 3 dx = 15.$$

(b) Per il teorema della media, essendo f continua, esiste x € [0,5]

tale che

10 =
$$\int_{0}^{5} f(x) dx = 5f(x_{o});$$

perciò $f(x_0) = 2$.

(c) Per fissare le idee, sia f(x) strettamente crescente in $\left[\begin{array}{c}0,5\end{array}\right]$. Supponiamo per assurdo che f(x) \geq 2, $\forall x \in \left[\begin{array}{c}0,5\end{array}\right]$. Non potrà essere f(x)=2 per ogni x $\in \left[0,5\right]$, perchè, in tal caso f(x) non sarebbe stretamente monotòna. Scelto arbitrariamente x $_1 \in (0,5)$, dovrà essere

$$f(x) > f(x_1) > f(0) \ge 2$$
,

$$\forall x \in (x_1, 5)$$

Da cui segue:

$$\int_{0}^{5} f(x)dx = \int_{0}^{x_{1}} f(x)dx + \int_{x_{1}}^{5} f(x)dx \ge \int_{0}^{x_{1}} \frac{1}{2dx} + \int_{x_{1}}^{5} f(x_{1})dx =$$

=
$$2x_1 + (5-x_1)f(x_1) > 2x_1 + (5-x_1) \cdot 2 = 10$$

5.10 Dimostrare che la funzione di Dirichlet

$$f(x) = \begin{cases} 1 \text{ se } x \text{ è razionale} \\ 0 \text{ se } x \text{ è irrazionale} \end{cases}$$

non è integrabile in [0,1].

[Siano 0=x $_{\rm o}$ < x $_{\rm 1}$ < ... < x $_{\rm n-1}$ < x $_{\rm n}$ = 1 i punti di una qualsiasi suddivisione di [0,1]. Poichè in ogni intervallo [x $_{\rm k-1}$, x $_{\rm k}$) cadono sia numeri razionali che irrazionali,si ha

$$\inf_{\mathbf{x} \in [\mathbf{x}_{k-1}, \mathbf{x}_k)} \mathbf{f}(\mathbf{x}) = 0 \qquad \sup_{\mathbf{x} \in [\mathbf{x}_{k-1}, \mathbf{x}_k)} \mathbf{f}(\mathbf{x}) = 1$$

Fertanto ogni somma integrale inferiore è zero ed ogni somma integrale superiore vale 1]

5.11 Dimostrare che la funzione

$$f(x) = \begin{cases} \frac{1}{n} & \text{se } x = \frac{m}{n} \text{; m,n primi fra loro} \\ \\ 0 & \text{se } x \text{ è irrazionale} \end{cases}$$

$$\text{è integrabile in [0,1)e risulta } \int_{0}^{1} f(x) dx = 0.$$

[Fissato k \in N, i numeri razionali di [0,1) del tipo m/n, con m,n primi fra loro e tali che n < k, costituiscono un insieme finito:

$$x_1 < x_2 < \ldots < x_{n_k}$$

e si ha $f(x_i) > 1/k$, mentre, in tutti gli altri punti $x \in [0,1)$, si ha $f(x) \le 1/k$. Possiamo costruire una partizione finita P_k di [0,1) costituita di n_k intervalli I_1 ,..., I_{n_k} (di centro rispettivamente x_1 ,..., x_{n_k} ed ampiezza δ_k sufficientemente piccola) e di altri n_k +1 intervalli J_1 ,..., J_{n_k+1} su ognuno dei quali risulta $f(x) \le 1/k$ Detta $S(P_k)$ la somma integrale superiore, si ha (indicando con $\left|J_i\right|$ 1'ampiezza dell'intervallo J_i):

$$\begin{split} \mathbf{S}(\mathbf{P}_k) &= \delta_k \sum_{i=1}^{n_k} \sup_{\mathbf{I}_i} \mathbf{f} + \sum_{i=1}^{n_k+1} \left| \mathbf{J}_i \right| \sup_{\mathbf{J}_i} \mathbf{f} \leq \delta_k \sum_{i=1}^{n_k} \mathbf{f}(\mathbf{x}_i) + \\ &+ \frac{1}{k} \sum_{i=1}^{n_k+1} \left| \mathbf{J}_i \right| \leq \delta_k \sum_{i=1}^{n_k} \mathbf{f}(\mathbf{x}_i) + \frac{1}{k} < \frac{2}{k} \end{split}$$
 pur di scegliere $\delta_k < 1/$ k $\sum_{i=1}^{n_k} \mathbf{f}(\mathbf{x}_i)$

5B. Calcolo di integrali definiti

5.12 Calcolare l'integrale

$$\int_{0}^{2\pi} \sin^{2}x \ d$$

[Poichè la funzione $G(x) = \frac{x}{2} - \frac{\sin 2x}{4}$ è una primitiva della funzione $f(x) = \sin^2 x$, per la formula fondamentale del calcolo integra

$$\int_{0}^{2\pi} \frac{\sin^{2} x \, dx}{\sin^{2} x \, dx} = \left[\frac{x}{2} - \frac{\sin 2x}{4} \right]_{0}^{2\pi} = \pi \quad \exists \quad \text{if } (0) - \text{if } (0)$$

5.13 Verificare che per h,k∈R, si ha

$$\int_{a}^{b} (hx+k) dx = \frac{h}{2} (b^{2}-a^{2}) + k(b-a)$$

[La funzione G(x) = (h/2)x² + kx è una primitiva di f(x) = hx+k, ed allora, basta applicare la formula fondamentale del calcolo integra-

5.14 Calcolare l'integrale

$$\int_0^3 \frac{x}{\sqrt{x+1}} dx .$$

[Si ha: $x/\sqrt{x+1} = (x+1-1)/\sqrt{x+1} = (x+1)^{1/2} - (x+1)^{-1/2}$ per cui la funzione $G(x) = \frac{2}{3} (x+1)^{3/2} - 2(x+1)^{1/2}$ è una primitiva di $f(x) = x/\sqrt{x+1}$. Dalla formula fondamentale del calcolo integrale, segue:

$$\int_{0}^{3} \frac{x}{\sqrt{x+1}} dx = \left[\frac{2}{3} (x+1)^{3/2} - 2(x+1)^{1/2} \right]_{0}^{3} =$$

$$= \frac{2}{3} 4^{3/2} - 2 4^{1/2} - \frac{2}{3} + 2 = \frac{8}{3}$$

5.15 Calcolare l'integrale

$$\int_0^3 |x-1| dx.$$

[Poichè risulta | x-1 | = x-1 se $x \ge 1$ e | x-1 | =1-x se x < 1,

si ha

$$\int_{0}^{3} |x-1| dx = \int_{0}^{1} (1-x)dx + \int_{1}^{3} (x-1) dx = \left[x - \frac{x^{2}}{2}\right]_{0}^{1} + \left[\frac{x^{2}}{2} - x\right]_{1}^{3} = \frac{1}{2} + 2 = \frac{5}{2}$$

\$5.16 Calcolare l'integrale considerato nell'esercizio precedente, utilizzando l'interpretazione geome trica dell'integrale definito di una funzione non negativa.

[L'area del triangolo S $_1$, in fig. 5.1, vale 1/2, mentre l'area del triangolo S $_2$ vale 2]

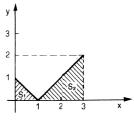


figura 5.

5.17 Posto $f(x) = x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$,

verificare che

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{1}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] - \frac{1}{120} (b-a)^{4}$$

(b)
$$\int_0^1 \frac{x^3 - 13x}{x^2 + 5x + 4} \, dx$$

(c)
$$\int_0^1 \frac{16x^4 - 3}{4x^2 + 1} dx$$
 (d)
$$\int_0^2 \frac{x}{(x^2 + 2)^3} dx$$

(d)
$$\int_0^2 \frac{x}{(x^2+2)^3} dx$$

[(a) 1; (b) - 9/2 + 4 log (5/2); (c) 1/3 - arctg 2; (d) 1/18]

5.19 Verificare che, se m ed n sono due interi negativi, si ha

$$\int_0^{\pi} \operatorname{sen} \operatorname{mx} \operatorname{sen} \operatorname{nx} dx = \begin{cases} 0 & \operatorname{se} \operatorname{m} \neq n \\ \pi/2 & \operatorname{se} \operatorname{m} = n > 0 \end{cases}$$

$$\int_{0}^{\pi} \cos mx \cos nx \, dx = \begin{cases} 0 & \text{se } m \neq n \\ \pi/2 & \text{se } m=n > 0 \end{cases}$$

$$\int_{0}^{2\pi} \sin mx \cos nx \, dx = 0$$

$$\int_{0}^{2\pi} \sin mx \, sen \, nx \, dx = \begin{cases} 0 & \text{se } m \neq n \\ \pi & \text{se } m=n > 0 \end{cases}$$

$$\int_0^{2\pi} \cos mx \cos nx \, dx = \begin{cases} 0 & \text{se } m \neq n \\ \pi & \text{se } m = n > 0 \end{cases}$$

5.20 Verificare che per y > 1 e per $\alpha \neq$ - 1 si ha

$$\int_1^y x^\alpha \log \ x \ dx \ = \ \frac{y^{\alpha+1}}{\alpha+1} \ \log \ y \ - \ \frac{y^{\alpha+1}-1}{(\alpha+1)^2} \quad .$$

[Integrando per parti, si ha
$$\int_{1}^{y} x^{\alpha} \log x \, dx = \left[\frac{x^{\alpha+1}}{\alpha+1} \log x \right]_{1}^{y} - \int_{1}^{y} \frac{1}{x} \cdot \frac{x^{\alpha+1}}{\alpha+1} \, dx =$$

$$= \frac{y^{\alpha+1}}{\alpha+1} \log y - \frac{1}{\alpha+1} \int_{1}^{y} x^{\alpha} dx =$$

$$= \frac{y^{\alpha+1}}{\alpha+1} \log y - \frac{1}{\alpha+1} \left[\frac{x^{\alpha+1}}{\alpha+1} \right]_{1}^{y} ,$$

5.21 Verificare che

(a)
$$\int_{0}^{y} \frac{1}{\sqrt{x^2+1}} dx = \log (y + \sqrt{y^2+1})$$

(b)
$$\int_{0}^{y} \frac{x}{\sqrt{x^2+1}} dx = \sqrt{y^2+1} - 1$$

[(a) G(x) = log (x+ $\sqrt{$ x $^2+1}$) è una primitiva di $1/\sqrt{$ x $^2+1}$

(b)
$$G(x) = \sqrt{x^2+1}$$
 è una primitiva di $x/\sqrt{x^2+1}$

5.22 Integrando per parti, calcolare gli integrali

(a)
$$\int_{1}^{2} \frac{\log x}{x} dx$$

(a)
$$\int_{1}^{2} \frac{\log x}{x} dx$$
 (b) $\int_{2}^{3} \log(x^{2}-x) dx$

$$\left[(a) \right]^{2} \frac{\log x}{x} dx = \left[\log^{2} x \right]_{1}^{2} - \int_{1}^{2} \frac{\log x}{x} dx, \text{ perciò}$$

260

$$\int_{1}^{2} \frac{\log x}{x} dx = \frac{1}{2} \left[\log^{2} x \right]_{1}^{2} = \frac{1}{2} \log^{2} 2.$$

5.23 Calcolare l'integrale

$$\int_{-1}^{1} \frac{\sqrt{1-x}}{\sqrt{1+x}} dx$$

Eseguendo la sostituzione x = cos t, poichè al crescere di x da 0 a

1, t decresce da ∏ /2 a 0, si ha

$$\int_{0}^{1} \frac{\sqrt{1-x}}{\sqrt{1+x}} dx = -\int_{\pi/2}^{0} \frac{\sqrt{1-\cos t}}{\sqrt{1+\cos t}} \qquad \text{sen t dt} =$$

$$= \int_{0}^{\pi/2} (1-\cos t)dt = \left[t-\sin t \right]_{0}^{\pi/2} = \frac{\pi}{2} - 1$$

5.24 Calcolare l'integrale

$$\int_{1}^{8} \frac{\sqrt{1+x}}{x} dx$$

[Eseguendo la sostituzione $\sqrt{1+x}$ = t, cioè x = t 2 -1, dx = 2tdt,allora, per x=1 si ha t = $\sqrt{2}$ e, per x = 8, si ha t = 3. Pertanto

$$\int_{1}^{8} \frac{\sqrt{1+x}}{x} dx = \int_{\sqrt{2}}^{3} \frac{2t^{2}}{t^{2}-1} dt = \left[2t + \log \frac{t-1}{t+1}\right]_{\sqrt{2}}^{3} =$$

$$= 6-2 \sqrt{2} + \log \frac{1}{2} + \log \frac{\sqrt{2}-1}{\sqrt{2}+1}$$

5.25 Calcolare gli integrali

(a)
$$\int_0^1 \sqrt{4-x^2} dx$$
 (b) $\int_0^{3/2} \sqrt{3-x^2} dx$

[(a) si risolve con la sostituzione x=2 sen t, osservando che, al cre scere di x da 0 a 1, t cresce da 0 a T/6, per cui:

$$\int_0^1 \sqrt{4-x^2} \, dx = \int_0^{\pi/6} 2 \sqrt{1-\sin^2 t} \cdot 2 \cos t \, dt =$$

=2 [t+sent cost]
$$_{0}^{\pi/6}$$
 = 2 $\left(\frac{\pi}{6} + \frac{1}{2} + \frac{\sqrt{3}}{2}\right)$ =

$$=\frac{\pi}{3}+\frac{\sqrt{3}}{2}$$

(b) con lo stesso metodo di (a) si trova il risultato $(\pi/2)+(3\sqrt{3}/8)$

5.26 Calcolare gli integrali

(a)
$$\int_{1}^{4} e^{-\sqrt{x}} dx$$
 (b) $\int_{0}^{\pi^{2}/4} \cos \sqrt{x} dx$

(c)
$$\int_{1}^{4} \frac{\log x}{\sqrt{x}} dx$$
 (d)
$$\int_{0}^{4} e^{\sqrt{x}} dx$$

[(a)
$$4e^{-1} - 6e^{-2}$$
; (b) $\pi/2 - 1$; (c) $4 \log 4 - 4$; (d) $2e^{2} + 2$]

5.27 Calcolare l'integrale:

$$\int_{0}^{4} \frac{x - 7\sqrt{x} + 12}{x\sqrt{x} - 6x + 9\sqrt{x}} dx$$

[Con la sostituzione x=t 2 si trova il risultato 2 [t-log | t-3 |] $_0^2$ = 4+2 log 3]

5.28 Calcolare gli integrali

(a)
$$\int_0^4 \frac{\sqrt{x}}{1+\sqrt{x}} dx$$

(a)
$$\int_0^4 \frac{\sqrt{x}}{1+\sqrt{x}} dx$$
 (b)
$$\int_0^{\pi^2} \sin \sqrt{x} dx$$

(c)
$$\int_{1}^{16} \operatorname{arctg} \sqrt{\sqrt{x} - 1} \, dx$$
 (d) $\int_{1}^{2} (e^{x} - 1)^{-1/2} \, dx$

[Si risolvono tutti per sostituzione: (a) 2 log 3; (b) 2π ; (c) $(16/3) \pi - 2 \sqrt{3}$; (d) $2(arctg(e^2-1)^{1/2}-arctg(e-1)^{1/2})$]

5.29 Calcolare gli integrali

(a)
$$\int_{0}^{\pi/2} \sqrt{1+\cos x} \ dx$$

(b)
$$\int_{0}^{\pi/2} \sqrt{1-\cos x} \, dx$$

(c)
$$\int_{0}^{\pi/6} \sqrt{1+\sin x} \, dx$$
 (d) $\int_{0}^{\pi/2} \frac{\cos x}{\sqrt{1+\sin^2 x}} \, dx$

(d)
$$\int_{0}^{\pi/2} \frac{\cos x}{\sqrt{1+\sin^2 x}} \ dx$$

[(a) Ponendo cos x = t, risulta $dx=-dt/\sqrt{1-t^2}$. Perciò:

$$\int_{0}^{\pi/2} \sqrt{1 + \cos x} \, dx = - \int_{1}^{0} \sqrt{\frac{1+t}{\sqrt{1-t^2}}} \, dt = \int_{0}^{1} \frac{dt}{\sqrt{1-t}} =$$

$$= [2 \sqrt{1-t}]_{0}^{1} = 2$$

$$= \left[\begin{array}{cc} 2 & \sqrt{1-t} & \end{array}\right] \frac{1}{0} = 2 \, .$$
 (b) 2($\sqrt{2}$ - 1); (c) 2 - $\sqrt{2}$; (d) log (1+ $\sqrt{2}$)]

5.30 Dimostrare che, per ogni a > 0, risulta

$$\int_{1}^{a} \frac{dx}{1+x^2} = \int_{1/a}^{1} \frac{dx}{1+x^2}$$

[L'integrale a secondo membro si ottiene da quello a primo membro, m \underline{e} diante la sostituzione t=1/x

5.31 Posto $\phi(x) = (1+x)/(1-x)$, dimostrare che,per o gni a < 1, risulta

$$\int_0^a \frac{dx}{1+x^2} = \int_1^{\phi(a)} \frac{dx}{1+x^2}$$

5.32 Dimostrare che

$$\int_{a}^{b} f(-x) dx = \int_{-b}^{-a} f(x) dx$$

5.33 Dimostrare che se f è una funzione integrabile, periodica di periodo T, allora

$$\int_{a+T}^{b+T} f(x) dx = \int_a^b f(t) dt .$$

[Posto x=t+T , si ha dx = dt e per x=a+T è t=a, per x=b+T è t=b. Per

$$\int_{a+T}^{b+T} f(x) dx = \int_{a}^{b} f(t+T) dt = \int_{a}^{b} f(t) dt$$

grazie alla periodicità di f]

5.34 Calcolare l'integrale $\int_{a}^{2\pi} |\sin x| dx$.

[Poichè la funzione f(x) = \mid sen x \mid è periodica di periodo π , si

$$\int_{0}^{2\pi} |\sin x| dx = \int_{0}^{\pi} |\sin x| dx + \int_{\pi}^{2\pi} |\sin x| dx =$$

$$= \int_{0}^{\pi} |\sin x| dx + \int_{0}^{\pi} |\sin x| dx =$$

$$= 2 \int_{0}^{\pi} \sin x \, dx = \left[-2\cos x \right]_{0}^{\pi} = 4,$$

a norma dell'esercizio precedente]

5.35 Calcolare i seguenti integrali

(a)
$$\int_0^{\pi/2} \frac{\sin x \, dx}{\cos^2 x - 6\cos x + 9}$$

(b)
$$\int_{0}^{\pi/2} \frac{\cos x \, dx}{\sin^2 x - 3 \sin x + 2} \, dx$$

(c)
$$\int_0^{\pi/2} \frac{\cos x \, dx}{\sin^2 x + 4} \, dx$$

[(a) Si esegue la sostituzione cos x = t, da cui sen x dx =- dt. Il risultato è 1/6; (b) log (3/4); (c) (1/2) arctg (1/2)]

5.36 Calcolare l'integrale

$$\int_{0}^{\pi/3} \frac{\text{tg x dx}}{1 + \log(\cos x)}$$

[Si osserva che D log (cos x)=- tg x. Il risultato è -log(1-log 2)]

5.37 Dopo aver dimostrato la seguente formula di riduzione (neN, n \geq 2)

$$\int (\operatorname{sen} x)^n dx = -\frac{(\operatorname{sen} x)^{n-1} \cos x}{n} +$$

$$+\left(1-\frac{1}{n}\right)\int \left(\operatorname{sen} x\right)^{n-2}dx$$
,

verificare che

$$\int_{0}^{\pi/2} (\text{sen x})^8 dx = \frac{35}{128} \pi$$

[Con un'integrazione per parti, si ha

$$\int (\sin x)^{n} dx = -(\sin x)^{n-1} \cos x + (n-1) \int (\sin x)^{n-2} \cos^{2} x dx =$$

$$= -(\sin x)^{n-1} \cos x + (n-1) \int (\sin x)^{n-1} dx +$$

$$+ (1-n) \int (\sin x)^{n} dx$$

da cui segue facilmente la formula di riduzione cercata.

Per calcolare l'integrale definito, osserviamo intanto che

$$\int_{0}^{\pi/2} (\sin x)^{n} dx = \left[\frac{-(\sin x)^{n-1} \cos x}{n} \right]_{0}^{\pi/2} + \frac{n-1}{n} \int_{0}^{\pi/2} (\sin x)^{n-2} dx = \frac{1}{n} \int_{0}$$

$$= \frac{n-1}{n} \int_{0}^{\pi/2} (\operatorname{sen} x)^{n-2} dx$$

Pertanto

$$\int_{0}^{\pi/2} (\operatorname{sen} x)^{8} dx = \frac{7}{8} \int_{0}^{\pi/2} (\operatorname{sen} x)^{6} = \frac{7}{8} \cdot \frac{5}{6} \int_{0}^{\pi/2} (\operatorname{sen} x)^{4} dx =$$

$$= \frac{7}{8} \cdot \frac{5}{6} \cdot \frac{3}{4} \int_{0}^{\pi/2} (\operatorname{sen} x)^{2} dx =$$

$$= \frac{7}{8} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \int_{0}^{\pi/2} dx = \frac{35}{128} \pi$$

5.38 Verificare che

$$\int_{-\pi}^{\pi} x \, \text{sen } x \, dx = 2\pi \, ; \quad \int_{-a}^{a} (x+a)\sqrt{a^2-x^2} \, dx = \frac{\pi a^3}{2}$$

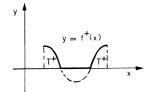
50. Applicazioni al problema delle aree

Sia $f:[a,b]\rightarrow R$ una funzione limitata ed integrab \underline{i} le; allora, se f è non negativa (risp. non positiva), 1'insieme

$$T = \{ (x,y) \in [a,b]xR: 0 \le y \le f(x) \}$$

(risp.
$$T = \{(x,y) \in [a,b]xR: f(x) \leq y \leq 0\}$$
)

si chiama rettangoloide di base [a,b] relativo ad f e si ha


area di T =
$$\int_a^b f(x) dx$$

(risp. area di T = $-\int_a^b f(x) dx$).

Se invece f assume valori di segno arbitrario, $p_{\underline{0}}$ sto

$$f^{+}(x)=\max\{0,f(x)\}; f^{-}(x)=\min\{0,f(x)\}$$

la funzione $f^+(x)$ è la parte non negativa di f(x), la funzione $f^-(x)$ è la parte non positiva di f(x) e si ha: $f(x) = f^+(x) + f^-(x)$ (fig. 5.2). Inoltre f^+ e $f^$ sono integrabili e si ha

area di
$$T^+$$
 - area di $T^- = \int_a^b f(x) dx$

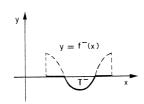


figura 5.2

ove T^+ indica il rettangoloide relativo ad f^+ e T^- il rettangoloide relativo a f⁻.

Infine, risulta $|f(x)| = f^+(x) - f^-(x)$ e

Infine, risulta
$$|f(x)| = f^+(x) - f^-(x)$$

area di
$$T^+$$
 + area di $T^- = \int_a^b |f(x)| dx$.

Le formule precedenti sono perciò utili per il calc \underline{o} lo delle aree di rettangoloidi, mediante il calcolo di integrali definiti. Più in generale, si può calc \underline{o} lare l'area di una regione T come quella rappresent \underline{a} ta in fig. 5.3

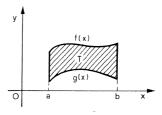


figura 5.3

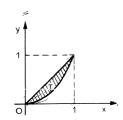
definita, a partire dalle funzioni integrabili f(x), g(x), mediante le limitazioni seguenti

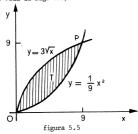
$$T = \{(x,y) \in [a,b] x R : g(x) \le y \le f(x)\}$$

area di T =
$$\int_{a}^{b} [f(x) - g(x)] dx.$$

5.39 Sia $f(x) = x^2$, e sia g(x) = x per $x \in [0,1]$. Calcolare l'area dell'insieme piano definito da $(f\underline{i}$ gura 5.4):

$$T = \{(x,y) \in [0,1] xR : x^2 \le y \le x\}.$$




figura 5.4

[area di I = $\int_{0}^{1} \frac{(x \cdot x^{2}) dx - \left[\frac{1}{2} x^{2} \cdot \frac{1}{3} x^{3}\right]_{0}^{1} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$

5.40 Calcolare l'area della regione piana T compresa fra le due parabole di equazioni $y^2=9x$ e $x^2=9y$. [Evidentemente risulta

$$T = \{ (x,y) \in [0,9] x [0,9] : \frac{1}{9} x^2 \le y \le 3 \sqrt{x} \}$$

in quanto le parabole si incontrano nell'origine e nel punto P(9,9), come si vede risolvendo il sistema costituito dalle equazioni delle due curve (si veda la fig. 5.5). Si ha

area di T = $\int_0^9 (3\sqrt{x} - \frac{1}{9}x^2) dx = \left[2x^{3/2} - \frac{1}{27}x^3\right]_0^9 = 27$

5.41 Calcolare l'area della regione piana T delimit \underline{a} ta dalla retta y=-2x+3 e dalla parabola y=x².

[La retta interseca la parabola nei punti (-3,9) e (1,1) e, nell'in tervallo [-3,1] , risulta -2x+3 \geq x 2 . Perciò, si ha:

$$T = \{(x,y) \in [-3,1] xR: x^2 \le y \le -2x+3\}$$

e risulta:

area di T =
$$\int_{-3}^{1} (3-2x-x^2) dx = \left[3x-x^2 - \frac{x^3}{3} \right]_{-3}^{1} = \frac{32}{3}$$

5.42 Calcolare l'area della regione piana T compresa fra la curva y=1/x, l'asse delle x e le rette di equazioni x=a e x=5a, con a > 0 (fig. 5.6).

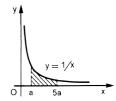


figura 5.6

[area di T =
$$\int_{a}^{5a} \frac{1}{x} dx = [\log x]_{a}^{5a} = \log 5a - \log a = \log 5$$
]

5.43 Calcolare 1'area della regione piana T compresa tra le curve $y=x^4-2x^3+2$, l'asse delle x e le rette x=-1 e x=2 (fig. 5.7).

[area di T, =
$$\int_{-1}^{2} (x^4 - 2x^3 + 2) dx = \left[\frac{x^5}{5} - \frac{x^4}{2} + 2x \right]_{-1}^{2} =$$

$$= \left(\frac{32}{5} - \frac{16}{2} + 4\right) - \left(-\frac{1}{5} - \frac{1}{2} - 2\right) = \frac{51}{10}$$

figura 5.7

5.44 Calcolare l'area della regione piana T compresa tra la curva $y=1/x^{\alpha}$ ($\alpha\neq 1$), l'asse delle x e le rette di equazione x=a, x=b (con 0 < a < b)

[area di T =
$$\int_{a}^{b} \frac{1}{x^{\alpha}} dx = \left[\frac{x^{1-\alpha}}{1-\alpha} \right]_{a}^{b} = (b^{1-\alpha} - a^{1-\alpha})/(1-\alpha)$$
]

5.45 Calcolare l'area della regione piana T compresa fra la curva y = log x, l'asse delle x e la re \underline{t} ta di equazione x = e.

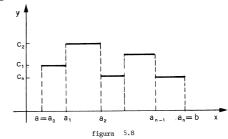
[area di T =
$$\int_{1}^{e} \log x \, dx = \left[x(\log x-1) \right]_{1}^{e} = 1$$

5.46 Calcolare l'area della regione piana T delimit \underline{a} ta dall'ellisse di equazione $(x^2/9)+(y^2/4)=1$.

$$T = \{ (x,y) \in [-3,3] \text{ xR: } -\frac{2}{3} \quad \sqrt{9-x^2} \le y \le \frac{2}{3} \quad \sqrt{9-x^2} \}$$

ed allora: area di
$$T = \int_{-3}^{3} \left[\frac{2}{3} \sqrt{9-x^2} - \left(-\frac{2}{3} \sqrt{9-x^2} \right) \right] dx =$$

$$= 2 \int_{-3}^{3} \frac{2}{3} \sqrt{9-x^{2}} dx \qquad \left[\begin{array}{c} x=3y \\ = \end{array} \right] 12 \int_{-1}^{1} \sqrt{1-y^{2}} dy =$$


$$\left[\begin{array}{c} y=\text{sen t} \end{array} \right] 12 \int_{-\pi/2}^{\pi/2} \cos^{2}t dt = 12 \left[\frac{1}{2} \left(t+\text{sent cost} \right) \right]_{-\pi/2}^{\pi/2}$$

Siano $a=a_o$ < a_1 < a_2 < ... < a_n = b, n+1 numeri reali e sia f(x) la funzione definita in [a,b] da:

$$f(x) = \begin{cases} c_1 & \text{se } x \in [a_0, a_1] \\ c_2 & \text{se } x \in (a_1, a_2] \\ \vdots \\ c_n & \text{se } x \in (a_{n-1}, a_n) \end{cases}$$

ove c_1, c_2, \ldots, c_n sono numeri reali positivi.

La funzione f(x) è una particolare funzione generalmente continua, cioè avente un numero finito di discontinuità, detta funzione a scalino (o funzione semplice, o funzione costante a tratti) (fig. 5.8). Essa è integr \underline{a}

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} c_{i}(a_{i} - a_{i-1}) .$$

5D. Integrali impropri

Il caso più elementare di integrazione definita è quello in cui la funzione integranda f(x) è continua in un intervallo chiuso e limitato [a,b]. Tuttavia, spesso si incontrano funzioni continue in intervalli non chiusi o non limitati ed è utile provvede re, anche per questi casi, ad una teoria dell'integrazione definita.

Ad esempio, la funzione

$$f(x) = 1/\sqrt{x} per x \in (0,1]$$

non può essere prolungata in una funzione continua su [0,1]. Tuttavia, si dimostra che il limite

$$\lim_{t\to 0} \int_{t}^{1} \frac{1}{\sqrt{x}} dx$$

esiste ed è finito. (Il lettore verifichi, per mezzo della formula fondamentale del calcolo integrale, che tale limite vale 2). Tale limite viene considerato come integrale improprio di f(x) su (0,1] e si pone, per definizione

$$\int_0^1 \frac{1}{\sqrt{x}} \ \mathrm{d}x \ = \ \lim_{t \to 0} \ \int_t^1 \, \frac{1}{\sqrt{x}} \ \mathrm{d}x \,.$$

Analogamente, la funzione

$$f(x) = 1/x^2$$
 $per x \in [1, +\infty)$

è continua su un intervallo non limitato e si dimo-

stra che esiste finito il limite

$$\lim_{t\to +\infty} \int_1^t \frac{1}{x^2} dx.$$

(Il lettore verifichi che tale limite vale 1). Anche tale limite viene considerato come integrale improprio di f(x) su $[1,+\infty)$ e si pone

In generale, sia f(x) una funzione continua (e non limitata) nell'intervallo limitato [a,b) (risp. (a,b]) e supponiamo che esista finito il limite:

$$\lim_{t \to b^{-}} \int_{a}^{t} f(x) dx \qquad (risp. \lim_{t \to a^{+}} \int_{t}^{b} f(x) dx)$$

allora si dice che f(x) ha integrale improprio(convergente) su [a,b] e si pone

$$(1) \quad \int_a^b f(x) dx = \lim_{t \to b^-} \quad \int_a^t f(x) dx \quad (\text{risp.} = \lim_{t \to a^+} \int_t^b f(x) dx)$$

L'integrale al primo membro della (1) si chiama $integrale\ improprio\ di\ f\ su[a,b].$

Si dimostra che se f(x) è continua in [a,b] (risp in (a,b]) e se |f(x)| ha integrale improprio su [a,b], allora anche f(x) ha integrale improprio su [a,b] e risulta

$$\left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x)| dx.$$

In tal caso si dice che f ha integrale improprio assolutamente convergente su [a,b].

Il caso di una funzione che presenta un numero finito di discontinuità nell'intervallo [a,b], cioè

di una funzione generalmente continua, si riconduce fa cilmente a quelli precedenti, grazie all'additivita degli integrali.

Ad esempio, se f(x) è continua nell'intervallo $1\underline{i}$ mitato (a,b) ad eccezione del punto c e se entrambi gli integrali

$$\int_{a}^{c} f(x) dx , \int_{c}^{b} f(x) dx$$

sono convergenti, allora l'integrale improprio di f su [a,b] è la somma di tali integrali. Una condizione sufficiente affinchè una funzione discontinua in x_o abbia integrale improprio su un intervallo limit<u>a</u> to I contenente x_\circ al suo interno è che esistano α < 1, A>0 ed un interno J di x_\circ tali che

$$|f(x)| \le \frac{A}{|x-x_o|^{\alpha}} \quad \forall x \in \text{InJ-}\{x_o\}$$

Le definizioni precedenti consentono così di parlare di integrali definiti di funzioni anche non limitate ; un'altra generalizzazione del concetto di integrale riguarda il caso di funzioni definite su intervalli non limitati .

Precisamente, se, ad esempio, f(x) è definita nell'intervallo $[a, +\infty)$ ed è dotata di integrale impro prio su ogni intervallo del tipo [a,t], si dice che f ha integrale improprio su $[a,+\infty)$ se esiste finito il

$$\lim_{t\to +\infty} \int_a^t f(x) \, dx$$
 e, in tal caso, si pone:

$$\int_{-\infty}^{+\infty} f(x) dx = \lim_{t \to +\infty} \int_{0}^{t} f(x) dx.$$

In modo analogo si definisce l'integrale improprio

$$\int_{-\infty}^{b} f(x) dx.$$

Infine, se f(x) è continua in R, si dice che essa ha integrale improprio su $(-\infty, +\infty)$ se esiste c $\in \mathbb{R}$ tale che gli integrali impropri:

$$\int_{-\infty}^{c} f(x) dx , \int_{c}^{+\infty} f(x) dx$$

siano entrambi convergenti e si pone
$$\int_{-\infty}^{+\infty} f(x) \, dx \, = \int_{-\infty}^{c} f(x) \, dx \, + \int_{c}^{+\infty} f(x) \, dx \, .$$

(Si dimostra che tale integrale è indipendente da c). Una condizione sufficiente affinchè la funzione f(x) continua in $[a,+\infty)$ (risp. in $(-\infty,b]$) abbia integrale improprio assolutamente convergente è che esistano α > 1, A > 0, k > 0, tali che

$$|f(x)| \le \frac{A}{|x|^{\alpha}}$$
 per $|x| > k$.

Talvolta, invece di dire che una funzione positiva f(x) ha integrale improprio (convergente) sull'inter vallo di estremi a,b, si dice che l'integrale

$$\int_{a}^{b} f(x) dx$$

è convergente.

 \checkmark .47 Verificare che, se p < 1 e b > 0, allora

$$\int_0^b \frac{1}{x^p} dx = \frac{b^{1-p}}{1-p}$$

[Se t∈ (0,b], allora

$$\int_{t}^{b} \frac{1}{x^{p}} dx = \left[\frac{x^{-p}}{1-p} \right]_{t}^{b} = \frac{1}{1-p} \left[b^{1-p} - t^{1-p} \right]_{t}^{c}.$$

Essendo p < 1, si ha $\lim_{t \to 0^+} t^{1-p} = 0$, da cui l'asserto]

Verificare che, se p > 1 e b > 0, allora l'inte grale

$$\int_{0}^{b} \frac{1}{x^{p}} dx$$

è divergente

[Se t \in (0,b], si ha, come nell'esercizio precedente:

$$\int_{t}^{b} \frac{1}{x^{p}} dx = \frac{1}{1-p} \quad \left[b^{1-p} - t^{1-p} \right] .$$

Essendo p > 1, si ha $\lim_{t\to 0^+} t^{1-p} = +\infty$, da cui l'asserto]

5. Verificare che l'integrale

$$\int_{0}^{b} \frac{1}{x} dx$$

è divergente.

[Per t \in (0,b], si ha

$$\int_{t}^{b} \frac{1}{x} dx = \left[\log x \right]_{t}^{b} = \log b - \log t.$$

Essendo $\lim_{t\to 0^+} \log t = -\infty$, si ha l'asserto]

5. Verificare che l'integrale

$$\int_{0}^{2} \frac{1}{(x-2)^{2}} dx$$

è divergente.

[Per t ∈ [0,2) si ha

$$\int_0^t \frac{1}{(x-2)^2} dx = \left[-\frac{1}{x-2} \right]_0^t = -\frac{1}{t-2} - \frac{1}{2}$$

$$da cui \lim_{t \to 2^{-}} \int_{0}^{t} \frac{1}{(x-2)^{2}} dx = + \infty$$

5.01 Verificare che

$$\int_{1}^{2} \frac{1}{\sqrt{2-x}} \quad dx = 2$$

[Per t ∈ [1,2) si ha

$$\int_{1}^{t} \frac{1}{\sqrt{2-x}} dx = \int_{1}^{t} (2-x)^{-1/2} dx = \left[-2(2-x)^{1/2}\right]_{1}^{t}$$

$$= -2 (2-t)^{1/2} + 2$$
 da cui $\lim_{t \to 2^{-}} \int_{1}^{t} \frac{1}{\sqrt{2-x}} dx = 2$

5.X2 Verificare che

$$\int_{0}^{2} \frac{1}{\sqrt{4-x^{2}}} dx = \frac{\pi}{2}$$

[Per t ∈ [0,2) si ha

$$\frac{\int_{0}^{t} \frac{1}{\sqrt{\mu_{-x}^2}} dx = \left[\operatorname{arcsen} \frac{x}{2} \right]_{0}^{t} = \operatorname{arcsen} \frac{t}{2}}{\sqrt{\mu_{-x}^2}}$$

$$\lim_{t\to 2^-} \int_0^t \frac{1}{\sqrt{4-x^2}} dx = \arcsin 1 = \frac{\pi}{2}$$

5 3 I seguenti passaggi

$$\int_{-3}^{1} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{-3}^{1} = -1 - \frac{1}{3} = -\frac{4}{3}$$

contengono un errore. Si noti che l'integrando è positivo ed invece il risultato è negativo. Individuare l'errore e dire se l'integrale dato è convergente.

[La formula fondamentale del calcolo integrale non si può applicare nel caso di funzioni discontinue e non limitate. Si ha:

$$\int_{-3}^{1} \frac{1}{x^2} dx = \int_{-3}^{0} \frac{1}{x^2} dx + \int_{0}^{1} \frac{1}{x^2} dx .$$

Poichè gli integrali a secondo membro sono divergenti, anche l'integrale assegnato è divergente]

5 4 Verificare che

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx = \pi$$

[Per t ∈ (-1,0] si ha

$$\int_{0}^{0} \frac{1}{\sqrt{1-x^2}} dx = \arcsin 0 - \arcsin t = - \arcsin t$$

e perciò

$$\int_{-1}^{0} \frac{1}{\sqrt{1-x^2}} dx = -\lim_{t \to -1} \arcsin(-1) = \frac{\pi}{2}$$

$$\int_{0}^{t} \frac{1}{\sqrt{1-x^2}} dx = \arcsin t - \arcsin 0 = \arcsin t$$

e perciò

$$\int\limits_0^1 \frac{1}{\sqrt{1-x^{\;2}}} \; dx \; = \lim_{t \to 1} \, \arcsin \, t \; = \, \arcsin \, 1 \; = \; \frac{\pi}{2} \ .$$

● 5.55 Verificare che

$$\int_0^9 \frac{1}{\sqrt[3]{(x-1)^2}} dx = 9$$

[Si ha

$$\int_{0}^{9} \frac{1}{\sqrt[3]{(x-1)^{2}}} dx = \int_{0}^{1} \frac{1}{\sqrt[3]{(x-1)^{2}}} dx + \int_{1}^{9} \frac{1}{\sqrt[3]{(x-1)^{2}}} dx$$

Essendo, per t ∈ [0,1)

$$\int_{0}^{t} \frac{1}{\sqrt[3]{(x-1)^2}} dx = \left[3\sqrt[3]{x-1}\right]_{0}^{t} = 3\sqrt[3]{t-1} + 3$$

$$\int_{0}^{1} \frac{1}{\sqrt[3]{(x-1)^{2}}} dx = \lim_{t \to 1} \left[3\sqrt[3]{t-1} + 3 \right] - 3$$

Essendo, per t $\in (1,9]$

$$\int_{t}^{9} \frac{1}{\sqrt[3]{(x-1)^{2}}} dx = \left[3\sqrt[3]{x-1}\right]_{t}^{9} = 3 \cdot 8^{1/3} = 3\sqrt[3]{t-1},$$

$$\frac{\int_{0}^{9} \frac{1}{\sqrt[3]{(x-1)^{2}}} dx = \lim_{t \to 1} \left[6 - 3(t-1)^{1/3} \right] = 6.$$

Pertanto si ha l'asserto]

Verificare che

5.57
$$\int_{2}^{3} \frac{x(x+1)}{\sqrt{9-x^{2}}} dx = 3 + \frac{9}{4} \pi$$

[porre x = 3 sent]

$$5.59 \qquad \int_{3}^{7} \sqrt{\frac{7-x}{x-3}} \ dx = 2\pi$$

$$5.60 \qquad \int_0^{\pi/2} \frac{\text{sen } x}{\cos^3 x \cdot e^{\text{tg } x}} \cdot dx = 1$$

$$\int_0^1 \log x \, dx = -1$$

5.63 Stabilire, mediante i teoremi di confronto,se seguenti integrali sono o non sono convergenti

(a)
$$\int_0^1 \frac{1}{(1+x^2)\sqrt{arctg\ x}} dx$$
; (b) $\int_0^1 \frac{1}{\sqrt[4]{(1-x^3)^3}} dx$

[(a) Essendo $\lim_{x\to 0} \sqrt{x} / \sqrt{\arctan x} = 1$, esiste $k \ge 0$ tale che $1/\sqrt{\arctan x} < k / \sqrt{x}$. Essendo poi $1/2 \le 1/(x^2 + 1) < 1$ per $x \in (0,1]$, la funzione integranda si maggiora con k/\sqrt{x} in (0,1]. All lora l'integrale è convergente, e si vede facilmente che vale $\sqrt{\pi}$; (b) Essendo $1/\sqrt[h]{(1-x^3)^3} = 1/\left[(1-x)^{3/4} \cdot (1+x+x^2)^{3/4}\right] \le 1/(1-x)^{3/4}$, l'integrale è convergente perchè 3/4 < 1]

 \times 5.64 Verificare che, se p > 1 ed a > 0, allora

$$\int_{a}^{+\infty} \frac{1}{x^{p}} dx = \frac{a^{1-p}}{p-1}$$
[Per t \in [a,+\infty] si ha

$$\int_{a}^{t} \frac{1}{x^{p}} dx = \left[\frac{x^{1-p}}{1-p} \right]_{a}^{t} = \frac{t^{1-p} - a^{1-p}}{1-p}.$$

Essendo p \rightarrow 1, si ha $\lim_{t\to +\infty} t^{1-p} = 0$, da cui l'asserto $\frac{1}{2}$

S \times 5 Verificare che, se p < 1 ed a > 0, allora l'integrale

$$\int_{a}^{+\infty} \frac{1}{x^{p}} dx$$

$$\int_{a}^{t} \frac{1}{x^{p}} dx = \frac{t^{1-p} - 1^{-p}}{1 - p} .$$

Essendo p < 1, si ha $\lim_{t \to +\infty} t^{1-p} = +\infty$, da cui l'asserto]

 5×6 Verificare che, se a > 0, 1'integrale

$$\int_{-\infty}^{+\infty} \frac{1}{x} dx$$

è divergente.

[Per t \in [a,+ ∞) si ha

$$\int_{a}^{t} \frac{1}{x} dx = \log t - \log a.$$

Essendo $\lim_{t\to +\infty} \log t = +\infty$, si ha l'asserto]

5. Verificare che, per ogni a R, si ha:

$$\int_{a}^{+\infty} \frac{1}{1+x^{2}} dx = \frac{\pi}{2} - \arctan$$

[Per t ∈ [a,+ ∞), si ha

$$\int_{a}^{t} \frac{1}{1+x^{2}} dx = \left[\operatorname{arctg} x \right]_{a}^{t} = \operatorname{arctg} t - \operatorname{arctg} a.$$

Essendo $\lim_{t \to +\infty} arctg \ t = \frac{\pi}{2}$, si ha l'asserto]

5 8 Verificare che:

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = \pi$$

[Analogo all'esercizio precedente]

5 Verificare che per
$$\alpha > 0$$

$$\int_0^{+\infty} e^{-\alpha x} \ dx = \frac{1}{\alpha} \quad .$$

[Per t \in (0,+ ∞), si ha

$$\int_0^t e^{-\alpha x} dx = -\frac{1}{\alpha} \left[e^{-\alpha x} \right]_0^t = -\frac{1}{\alpha} \left[e^{-\alpha t}_{-1} \right].$$

Poichè $\lim_{t \to +\infty} e^{-\Omega t} = 0$, ne segue l'asserto]

Solverificate the per
$$\alpha > 0$$
 ,
$$\int_{-\infty}^{-1} x \ e^{-\alpha x^2} \ dx = -\frac{1}{2\alpha e^{\alpha}} \ .$$

$$\int_{t}^{-1} x e^{-\alpha x^{2}} dx = -\frac{1}{2\alpha} \int_{t}^{-1} -2 \alpha x e^{-\alpha x^{2}} dx =$$

$$= -\frac{1}{2\alpha} \left[e^{-\alpha x^{2}} \right]_{t}^{-1} = -\frac{1}{2\alpha} \left[e^{-\alpha} - e^{-\alpha t^{2}} \right].$$

Essendo $\lim_{t \to -\infty} e^{-\alpha t^2} = 0$, si ha l'asserto]

5.71 Calcolare i seguenti integrali:

(a)
$$\int_{2}^{+\infty} \frac{x+5}{x^3-x^2+5x-5} dx$$
 (b) $\int_{3}^{+\infty} \frac{x+3}{x^3-x^2+3x-3} dx$

[(â) log 3; (b) (1/2) log 3]

5.72 Calcolare i seguenti integrali

(a)
$$\int_{3}^{+\infty} \frac{Zx+1}{x^3-x} dx$$
 (b) $\int_{1}^{+\infty} \frac{x-1}{e^{2x}+e^{-x}} dx$

[(a) $\log (3/\sqrt{2})$; (b) $(1/3) \log [(e+1)^2/(e^2-e+1)]$

Verificare che

$$5.73 \quad \int_{2}^{+\infty} \frac{1}{x \log x} \, dx \qquad \qquad \text{è divergente}$$

$$5.74 \int_{2}^{+\infty} \frac{1}{x(\log x)^{2}} dx = \frac{1}{\log 2}$$

5.75
$$\int_{2}^{+\infty} \frac{1}{x(\log x)^3} dx = \frac{1}{2(\log 2)^2}$$

5.76
$$\int_{0}^{+\infty} x e^{-\sqrt{1+x^2}} dx = \frac{2}{e}$$

5.77 Utilizzando i criteri di confronto,stabilire il carattere dei seguenti integrali impropri

(a)
$$\int_{1}^{+\infty} \frac{1}{x^{4}(1+x^{4})} dx$$
; (b) $\int_{1}^{+\infty} \frac{1}{x(1+x)} dx$

(c)
$$\int_{1}^{+\infty} \frac{\sqrt{x^{\frac{h}{4}+1}}}{x^{3}} dx$$
 ; (d) $\int_{3}^{+\infty} \frac{x}{\sqrt{x^{2}+9}} dx$

[(a) Essendo, per x \in [1,+ ∞), 1/x 4 (1+x 4) \leq 1/x 4 , 1'integrale converge; (b) diverge; (c) essendo $\sqrt{x^4+1}$ /x 3 \geq $\sqrt{x^4}$ /x 3 = 1/x, 1'integrale diverge; (d) diverge]

5.78 Verificare che l'integrale

$$\int_{1}^{\infty} e^{-x^{2}} dx$$

è convergente .

[Essendo, per
$$x \in [1, +\infty)$$
, $0 < e^{-x^2} \le e^{-x}$, si ha
$$0 < \int_1^{+\infty} e^{-x^2} dx \le \int_1^{+\infty} e^{-x} dx = 1$$
]

5.79 Stabilire il carattere dei seguenti integrali impropri

(c)
$$\int_{1}^{+\infty} \frac{1}{\log(1+x^{2})} dx$$
 (d) $\int_{1}^{+\infty} \log(1+\frac{1}{x^{2}}) dx$
(e) $\int_{1}^{+\infty} x^{-x} dx$ (f) $\int_{1}^{+\infty} e^{-1/x} dx$

[(a) è convergente; (b) è convergente; (c) è divergente; (d) è convergente; (e) è convergente; (f) è divergente]

Verificare che:

5.80
$$\int_{0}^{+\infty} x^{n} e^{-\alpha x} dx = \frac{n!}{\alpha^{n+1}} \qquad (\alpha > 0 \ n \in \mathbb{N})$$

[Integrando per parti si ha
$$\int_0^{+\infty} x^n \ e^{--\alpha x} \ dx \ = \frac{n}{\alpha} \quad \int_0^{+\infty} x^{n-1} e^{-\alpha x} dx \, ,$$

da cui, per l'esercizio 5.69 si ha facilmente l'asserto]

5.81
$$\int_{\frac{2}{\pi}}^{+\infty} \frac{1}{x^2} \operatorname{sen} \frac{1}{x} dx = 1$$

[Eseguire la sostituzione 1/x = t]

5.82
$$\int_{0}^{+\infty} e^{-ax} \cos b x dx = \frac{a}{a^2 + b^2}$$

5.83
$$\int_{0}^{+\infty} e^{-ax} \quad \text{sen b } x \, dx = \frac{b}{a^2 + b^2}$$

5.84
$$\int_{0}^{+\infty} (1+x) e^{-x} dx = 2$$

5E. Funzioni integrali

Sia f(x) una funzione continua in un intervallo [a,b]. Il teorema fondamentale del calcolo integrale stabilisce che la seguente funzione integrale

$$F(x) = \int_{x_0}^{x} f(t)dt \qquad (con x_0 \in [a,b]$$

è derivabile in [a,b] (in particolare F(x) è una funzione continua) e la derivata vale F'(x) = f(x) per ogni $x \in [a,b]$. Nel seguito applichiamo questo risultato.

5.85 Stabilire per quali numeri reali x risulta der \underline{i} vabile la seguente funzione

$$F(x) = \int_0^x \sqrt{t} dt.$$

[Si può procedere con il calcolo esplicito dell'integrale, oppure,più velocemente, si può affermare, in base al teorema fondamentale del calcolo integrale, che F'(x) = \sqrt{x} per ogni $x \geq 0$]

5.86 Calcolare la derivata della seguente funzione $\underline{\mathbf{m}}$ tegrale

$$F(x) = \int_0^{\sqrt{x}} e^{t^2} dt.$$

[Consideriamo la funzione F composta tramite le due funzioni:

$$y = \sqrt{x}$$
, $G(y) = \int_{0}^{y} e^{t^{2}} dt \implies F(x) = G(\sqrt{x})$.

La derivata della funzione G(y), in base al teorema fondamentale del calcolo integrale, vale $G'(y) = e^{y^2}$. Per la regola di derivazione delle funzioni composte otteniamo

$$F'(x) = G'(\sqrt{x}) \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}} e^{x}$$

5.87 Calcolare la derivata rispetto ad x delle se - guenti funzioni integrali

(a)
$$\int_{1}^{e^{x}} \log t \, dt$$

(b)
$$\int_0^{\operatorname{sen} x} \frac{1}{1-t^2} \, \mathrm{d}t$$

[(a)
$$x e^{x}$$
; (b) $1/\cos x$]

5.88 Calcolare la derivata rispetto ad x della funzione integrale

$$F(x) = \int_{x}^{1} \sin^{2}t \, dt$$

[Rappresentando $F(x) = -\int_1^x \sin^2 t \, dt$, per il teorema fondamentale del calcolo integrale la derivata vale $F^t(x) = -\sin^2 x$]

5.89 Calcolare la derivata della funzione integrale

$$F(x) = \int_{2x}^{3x} \cos^2 t \, dt.$$

[Fissato un numero reale \mathbf{x}_{o} , la funzione integrale $\mathbf{F}(\mathbf{x})$ si può rap presentare nella forma

$$F(x) = \int_{2x}^{x_0} \cos^2 t \, dt + \int_{x_0}^{3x} \cos^2 t \, dt =$$

$$= \int_{x}^{3x} \cos^2 t \, dt - \int_{x_0}^{2x} \cos^2 t \, dt.$$

In base al teorema fondamentale del calcolo integrale, la derivata va le F'(x) = 3 \cos^2 (3x)-2 \cos^2 (2x)]

5.90 Sia f(x) una funzione continua in [a,b] e siano $g_1(x)$, $g_2(x)$ funzioni derivabili in [a,b]. Generalizzando l'esercizio precedente, verificare che in [a,b] vale la formula di derivazione $\frac{d}{dx} \int_{g_1(x)}^{g_2(x)} f(t)dt = f'(g_2(x))g_2'(x) - f'(g_1(x))g_1'(x).$

5.91 Calcolare il limite
$$\lim_{x\to 0} \int_0^x \cos t^2 dt$$
.

[Dato che $0 \le \cos t^2 \le 1$ per ogni t reale, risulta anche, per $x \ge 0$,

$$0 \le \int_0^x \cos t^2 dt \le \int_0^x 1 dt = x.$$

Perciò, la funzione integrale data converge a zero per $x \to 0^+.Si$ procede in modo analogo per $x \to 0^-$]

5.92 Calcolare il limite
$$\lim_{x \to 0} \frac{1}{x} \int_{0}^{x} \cos t^{2} dt$$
.

[Come mostrato nell'esercizio precedente, l'integrale converge a zero per x →0. L'integrale, diviso per x, costituisce quindi una forma in determinata del tipo 0/0. Per la regola di L'Hôpital e per il teorema fondamentale del calcolo integrale, otteniamo

$$\lim_{x \to 0} \frac{\int_0^x \cos t^2 dt}{x} = \lim_{x \to 0} \frac{\cos x^2}{1} = 1$$

5.93 Calcolare i limiti

(a)
$$\lim_{x \to 0} \frac{1}{x^2} \int_0^x \sin^2 t \, dt$$
 (b) $\lim_{x \to 0} \frac{1}{x^3} \int_0^x \sin^2 t \, dt$

5.94 Calcolare il limite
$$\lim_{x\to 0} \frac{x \int_0^x \cos t^2 dt}{1-\cos x}$$

[Si tratta di una forma indeterminata 0/0; il limite si può calcolare con il teorema di L'Hôpital:

con if teorems of L'Hopital:
$$\frac{x \int_{0}^{x} \cos t^{2} dt}{1 - \cos x} = \lim_{x \to 0} \frac{\int_{0}^{x} \cos t^{2} dt + x \cos x^{2}}{\sin x}$$

$$= 1 + \lim_{x \to 0} \frac{\int_0^x \cos t^2 dt}{\sin x} = 1 + \lim_{x \to 0} \frac{\cos x^2}{\cos x} = 2$$

5.95 Calcolare, se esiste, il massimo nell'intervallo $[0,+\infty)$ della funzione integrale

$$F(x) = \int_0^x \frac{\cos t - 2}{t^3 + 2} dt$$
.

[La derivata vale $F'(x) = (\cos x - 2)/(x^3 + 2)$. Essendo $\cos x - 2 \le 1 - 2 = -1$, la derivata è negativa nell'intervallo [$0, +\infty$). Perciò F(x)è una funzione strettamente decrescente per $x \ge 0$ ed assume massimo in [$0, +\infty$) per x = 0. Il massimo vale F(0) = 0]

 $\sqrt{5.96}$ Considerare, per x > 0, la funzione integrale

$$F(x) = \int_2^x \left(1 - \frac{\sin^2 t}{t^2}\right) dt .$$

- (a) Studiare la monotonia di F(x) per x > 0.
- (b) Dimostrare che F(x) ha un asintoto obliquo per $x \rightarrow +\infty$.
- (c) Stabilire se F(x) ha punti di flesso nello intervallo $(0\,,\pi)\,.$
- (d) Stabilire il numero dei punti di flesso di F(x) nell'intervallo $(0,k\pi)$, per ogni numero naturale k.

[(a) La derivata vale $F^{\dagger}(x) = 1 - \frac{\sin^2 x}{x^2}$, per $x \ge 0$. Essendo $|\sec x| \le |x| \text{ per ogni } x \ne 0, \text{ risulta } F^{\dagger}(x) > 0 \text{ per ogni } x > 0.$ Perciò F(x) è strettamente crescente nell'intervallo $(0, +\infty)$;

(b)
$$m = \lim_{x \to +\infty} \frac{F(x)}{x} = \lim_{x \to +\infty} F'(x) = \lim_{x \to +\infty} \left(1 - \frac{\sin^2 x}{x^2}\right) = 1;$$

abbiamo applicato il teorema di L'Hôpital al rapporto F(x)/x: Poi, calcolando esplicitamente l'integrale della funzione

nell'intervallo [2,x] , abbiamo:

$$q = \lim_{x \to +\infty} \left(F(x) - x \right) = \lim_{x \to +\infty} \left(x - 2 - \int_2^x \frac{\sin^2 t}{t^2} dt - x \right) =$$

$$=-2 - \lim_{x \to +\infty} G(x) \quad \text{, dove} \quad G(x) \ = \ \int_2^x \frac{\text{sen}^2 \, t}{t^2} \ \text{dt.}$$

Proviamo che la funzione integrale G(x) è monotòna crescente ed è limitata per $x\to +\infty$. In tal caso esiste finito il limite per $x\to +\infty$ di G(x) e perciò F(x) ammette asintoto obliquo di equazione y=mx+q.

 $G(x) \text{ è monotòna crescente perchè } G^1(x) = \text{sen}^2 \ x/x \ ^2 \ge 0 \quad \text{per} \quad \text{ogni} \\ x \in (0, +^\infty). \ G(x) \text{ è limitata per } x \to +^\infty \quad \text{perchè, se } x \ \ge 2, \text{ risulta}$

$$0 \leq G(x) \leq \lim_{x \to +\infty} G(x) \leq \lim_{x \to +\infty} \int_{2}^{x} \frac{1}{t^{2}} dt = \frac{1}{2} .$$

(c) La derivata prima vale $F'(x)=1-sen\ ^2x/x\ ^2$; la derivata seconda vale

$$F^{11}(X) = \frac{-1}{x^4} (2 \text{ sen } x \text{ cos } x \cdot x^2 - 2x \text{ sen}^2 x) = \frac{-2 \text{sen } x}{x^3} (x \text{ cos } x - \text{sen } x).$$

La derivata seconda esiste per x \neq 0 e si annulla se sen x = 0, oppure se tg x = x. L'equazione tg x = x si può studiare con l'ausi - lio del grafico in figura 5.9 .

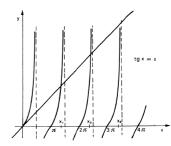


figura 5.9

Per $0 < x < \pi$ /2 risulta tg x > x; mentre per π /2 < x < π risulta tg x < 0 < x. Perciò l'equazione tg x = x non ha soluzioni nell'intervallo $(0,\pi)$. Dato che anche l'equazione sen x = 0 non ha soluzioni nell'intervallo aperto $(0,\pi)$, la funzione integrale F(x)non ha punti di flesso in $(0,\pi)$.

(d) Si vede dal grafico in figura 5.9, che l'equazione tg x=x ha una soluzione x $_1$ nell'intervallo $(0,2\,\pi)$, una seconda soluzione x $_2$ nell'intervallo $(2\pi$, $3\pi)$, e così via. Per ogni k \in N, l'equazione tgx=x ha k-1 soluzioni nell'intervallo $(0,k\,\pi)$, come pure l'equazione sen x = 0. In definitiva, la funzione integrale F(x) ha 2k-2 flessi nell'intervallo $(0,k\,\pi)$

5F. Disuguaglianze integrali

5.97 Siano f(x) e g(x) funzioni continue nell'intervallo [a,b] e siano p,q>1 tali che 1/p+1/q=1. Dimostrare la seguente disuguaglianza di Hölder:

$$\int_{a}^{b} |f(x)g(x)| dx \le \left(\int_{a}^{b} |f(x)|^{p} dx \right)^{1/p} \cdot \left(\int_{a}^{b} |g(x)|^{q} dx \right)^{1/q} .$$

$$F(x)=f(x)/\left(\int_a^b \left| f(x) \right|^p \mathrm{d}x \right)^{1/p}; \quad G(x)=g(x)/\left(\int_a^b \left| g(x) \right|^q \mathrm{d}x \right)^{1/q},$$

evidentemente, si ha

Utilizzando la disuguaglianza dell'esercizio 1.5/, si ha

$$\left|\,F(x)\;\;G(x)\,\,\right|\;\;\leq\;\;\; \frac{\,\left|\,F(x)\;\,\right|^{\,p}}{p}\;\;+\;\; \frac{\,\left|\,G(x)\;\right|^{\,q}}{q}\qquad \,\forall\,x\,\varepsilon\,[\,a,b\,]$$

Integrando su [a,b], ne segue, per la (*)

$$\int_{a}^{b} \left| F(x)G(x) \right| dx \leq \frac{1}{p} + \frac{1}{q} = 1$$

ossia

$$\frac{\int_{a}^{b} \left| f(x)g(x) \right| dx}{\left(\int_{a}^{b} \left| f(x) \right|^{\frac{p}{2}} dx \right)^{\frac{1}{p}} \left(\int_{a}^{b} \left| g(x) \right|^{\frac{q}{2}} dx \right)^{\frac{1}{q}} \le 1}$$

da cui l'asserto]

5.98 Sia f(x) una funzione continua nell' intervallo [a,b] e poniamo, per p \geq 1

$$\phi(p) = \left(\frac{1}{b-a} \int_a^b |f(x)|^p dx\right)^{1/p}$$

Verificare che $\phi(p)$ è crescente per $p \in [1, +\infty)$.

[Siano p,q \in [1,+ ∞) tali che p < q. Allora

$$\int_{a}^{b} \left| f(x) \right|^{p} dx = \int_{a}^{b} \left(\left| f(x) \right|^{q} \right)^{p/q} . 1 dx.$$

Posto r=q/p, s=q/(q-p), si ha 1/r+1/s=1; allora, 'applicando la disuguaglianza di Hölder, di esponenti r e s, alle funzioni $F(x)=-\left(\left| \ f(x) \right| \ ^{q} \right)^{p/q} = G(x)=1$, si ha dalla precedente uguaglianza

$$\int_{a}^{b} |f(x)|^{p} dx = \int_{a}^{b} F(x)G(x) dx \le$$

$$\leq \left(\int_{a}^{b} \left[F(x)\right]^{r} dx\right)^{1/r} \left(\int_{a}^{b} \left[G(x)\right]^{s} dx\right)^{1/s}$$

ovvero, per le posizioni fatte

$$\begin{split} \int_{a}^{b} \left| f(x) \right|^{p} dx & \leq \left(\int_{a}^{b} \left| f(x) \right|^{q} dx \right)^{\frac{p}{q}} \cdot \left(\int_{a}^{b} dx \right)^{1 - \frac{p}{q}} \\ & = \left(\int_{a}^{b} \left| f(x) \right|^{q} dx \right)^{\frac{p}{q}} \cdot (b^{-a})^{1 - \frac{p}{q}} \end{split}$$

da cui segue facilmente l'asserto]

5.99 Sia f(x) una funzione continua nell' intervallo [a,b]; allora

$$\lim_{p\to+\infty} \left(\int_a^b \left| f(x) \right|^p dx \right)^{-1/p} = \max_{a \le x \le b} \left| f(x) \right|$$

$$|f(x)| > M - \frac{1}{h}$$
 $\forall x \in [a_k, b_k];$

per cui, per x ∈ [a,b] , si ha

$$(*) \qquad \left(\,\texttt{M}\,-\frac{1}{k}\,\right) \ \chi_{\left[\,\texttt{a}_{k},\, b_{k}\,\,\right]} \ (\texttt{x}) \, \leq \ \left|\,\texttt{f}(\texttt{x})\,\right| \, \leq \, \texttt{M}$$

ove $\chi_{\left[a_{k},b_{k}\right]}(x)$ è la funzione caratteristica di $\left[a_{k},b_{k}\right]$, cioè vale 1 per $x\in\left[a_{k},b_{k}\right]$ e vale 0 in $\left[a,b\right]$ - $\left[a_{k},b_{k}\right]$. Dalla (*)

$$\left(\int_{a}^{b} \left(\text{M-}\frac{1}{k} \right)^{p} \chi_{\left[a_{k},b_{k}\right]}(x) \mathrm{d}x \right)^{1/p} \leq \left(\int_{a}^{b} \left| f(x) \right|^{p} \mathrm{d}x \right)^{1/p} \leq$$

 $\leq M(b-a)^{1/p}$.

Il primo membro di tali disuguaglianze è uguale a $\left(M-\frac{1}{k}\right)(b_k-a_k)^{1/p}$ e tende a M - $\frac{1}{k}$ per p $^{\to}$ + $^{\infty}$. Pertanto risulta

$$M - \frac{1}{k} \le \lim_{p \to +\infty} \left(\int_{a}^{b} |f(x)|^{p} dx \right)^{1/p} \le M$$

e l'asserto segue con un passaggio al limite per $k \rightarrow + \infty \, \big]$

5.100 Sia f: $[0,+\infty) \rightarrow [0,+\infty)$ una funzione continua e decrescente. Dimostrare che si ha

$$f(x) \le \frac{1}{x} \int_0^x f(t) dt \qquad \forall x > 0$$

[Basta osservare che, essendo f(x) decrescente, risulta f(x)= inf f(t) ost x0 per cui, dal teorema della media, segue l'asserto]

5.101 Sia f come nell'esercizio precedente. Posto per
 x > 0:

$$g(x) = \frac{1}{x} \int_{0}^{x} f(t) dt$$

dimostrare che g(x) è decrescente.

[Si ha, come indicato nel paragrafo precedente:

$$g'(x) = \left(x f(x) - \int_0^x f(t)dt\right) / x^2$$

ed allora l'asserto segue dal precedente esercizio]

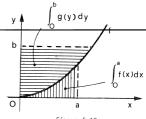
5.102 Sia ϕ : $[0,\infty) \rightarrow [0,\infty)$ una funzione convessa e de rivabile e sia f : $[a,b] \rightarrow [0,\infty)$ una funzione continua. Dimostrare che vale la seguente disugua glianza di Jensen

$$- \begin{cases} \phi\left(\int_a^b f(t)dt\right) \leq \int_a^b \phi(f(t))dt \\ \text{ove } \int_a^b g \ dt \ \text{sta per} \ \frac{1}{b-a} \int_a^b g \ dt. \end{cases}$$

[Dalla (2) del paragrafo 1D segue:

$$\begin{split} \dot{P}oniamo & \ x = f(t) \ e \ x_o = \int_a^b f(s) ds \,. \ Allora \ si \ ha \\ & \ \varphi \left(f(t) \right) \geq \ \varphi \left(\int_a^b f(s) ds \right) + \ \varphi \, ' \left(\int_a^b f(s) ds \right) \left(f(t) - \int_a^b f(s) ds \right) \\ & \ Integrando \ su \ \left[a,b \right] \ ambo \ i \ membri \ si \ ha \\ & \ \int_a^b \varphi \left(f(t) \right) dt \geq (b-a) \ \varphi \left(\int_a^b f(s) ds \right) + \\ & \ + \ \varphi \, ' \left(\int_a^b f(s) ds \right) \cdot \ \int_a^b (f(t) - \int_a^b f(s) ds) \ dt \\ & = (b-a) \ \varphi \left(\int_a^b f(s) ds \right) + \end{split}$$

Poichè il termine in parentesi quadra all'ultimo membro è zero,ne s $\underline{\mathbf{e}}$ gue l'asserto]


 $+ \varphi \ ' \ \left(\left. \int_a^b f(s) ds \right) \ \left[- \int_a^b f(t) dt - (b \text{-} a) \cdot \ \int_a^b f(s) ds \right]$

5.103 Sia f : $[0,+\infty) \rightarrow [0,+\infty)$ una funzione continua, stret tamente crescente, tale che f(0). = 0 e $\lim_{x\to +\infty} f(x) = +\infty$.

Posto g = f⁻¹, dimostrare per via geometrica che vale la disuguaglianza

$$ab \leq \int_0^a f(x)dx + \int_0^b g(y)dy \qquad \forall a,b > 0.$$

[Basta osservare la fig. 5.10 e ricordare il significato geometrico di integrale]

5.104 Utilizzando l'esercizio precedente, dare un'altra dimostrazione della disuguaglianza 1.57.

[Basta scegliere come funzione f(x) la funzione $f(x) = x^{p-1}$]

9

* apitolo 6 *

SERIE NUMERICHE

6A. Generalità sulle serie numeriche

Se $a_{\,n}$ è una successione di numeri reali, con il simbolo

(1)
$$a_1 + a_2 + a_3 + \dots + a_n + \dots$$

si indica la serie di termine generale a_n . Posto

$$s_k = a_1 + a_2 + \dots + a_k = \sum_{n=1}^k a_n$$
,

la somma s $_{\bf k}$ si chiama ridotta (o somma parziale) k-sima della serie (1).

Se la successione s_k è convergente, allora si dice che la serie $(\bar{1})$ è convergente, si pone

(2)
$$\sum_{n=1}^{\infty} a_n = \lim_{k \to +\infty} s_k = \lim_{k \to +\infty} \sum_{n=1}^{k} a_n$$

ed il primo membro della (2) si chiama somma della $s\underline{e}$ rie (1).

Se il limite di s_k è infinito, si dice che la serie è divergente. Se non esiste il limite di s_k , si di ce che la serie è indeterminata, in quest ultimo caso, la somma al primo membro della (2) non è definita.

Se la serie di termine generale a_n è convergente

allora la successione a_n è infinitesima (infatti, è $a_n = s_n - s_{n-1}$ e perciò $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} s_n - \lim_{n \to +\infty} s_{n-1} = = 0$). Quindi, se $\lim_{n \to +\infty} a_n \neq 0$, oppure se il limite di

 $\mathbf{a}_{\mathbf{n}}$ non esiste, allora la serie non è convergente.

Di solito, con il simbolo

$$\sum_{n=1}^{\infty} a_n$$

si indica, con abuso di notazione, sia la serie di termine generale \mathbf{a}_n che la sua somma (ammesso che quest'ultima esista).

Si vede subito che, data una serie convergente , si può modificare un numero finito di suoi termini senza che essa cessi di essere convergente.

In particolare, se la serie di termine $\mbox{\ generale}$ a_n converge, anche la serie

(3)
$$r_k = a_{k+1} + a_{k+2} + \dots$$

ottenuta da essa sopprimendone i primi \boldsymbol{k} termini, $\ \grave{\text{e}}$ convergente.

La serie (3) si chiama $\it resto parziale - k-simo della serie (1) e risulta$

$$r_k = s - s_k$$

ove s_k è la ridotta k-sima della serie (1) ed s la sua somma. Pertanto il resto parziale k-simo coincide con l'errore che si commette sostituendo alla somma s la ridotta k-sima.

Ricordiamo, infine, che una serie si dice regola re se essa è convergente o divergente.

Di facile verifica sono le seguenti proprietà:

(a) Se $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ sono due serie convergenti e c \in R, allora anche le serie $\sum_{n=1}^{\infty} ca_n$ e $\sum_{n=1}^{\infty} (a_n + b_n)$

sono convergenti e si ha:

$$\sum_{n=1}^{\infty} \ ca_n = c \quad \sum_{n=1}^{\infty} \ a_n \; ; \quad \sum_{n=1}^{\infty} \ (a_n + b_n) = \sum_{n=1}^{\infty} \ a_n \; + \; \sum_{n=1}^{\infty} \ b_n \; .$$

- (b) Se la serie $\sum_{n=1}^{\infty} a_n$ è divergente e c \neq 0 allors anche la serie $\sum_{n=1}^{\infty} \frac{ca_n}{n}$ è divergente.
- 6.1 Verificare che la serie geometrica di primo termine $\hat{\mathbf{1}}$ e ragione x

1 +
$$x$$
 + $x^2 + x^3 + ...$

è convergente se e solo se |x| < 1 e che, in tal caso, risulta

$$\sum_{k=1}^{\infty} x^{k-1} = \frac{1}{1-x} .$$

 $\left[\text{ Se } x \neq 1, \text{ la ridotta n-sima è } \sum_{k=1}^{n} x^{k-1} = 1 + x + \ldots + x^{n-1} = (1 - x^n)/(1 - x) \text{ ed} \right. \\ \left. \text{essa converge se e solo se converge la successione } x^n, \text{ cioè, se e solo se } \left[x \right] < 1. \text{ Poi se } x = 1, \text{ la ridotta } n\text{-sima è } \sum_{k=1}^{n} 1 = n \text{ e diverge positivamente per } n \rightarrow + \infty \right]$

6/2 Sia a un numero reale diverso da zero. Verificare che la serie geometrica di primo termine a e ragione χ_{\cdot}

$$a + ax + ax^2 + ax^3 + \dots$$

converge se e solo se |x| < 1. In tal caso risulta

$$\sum_{k=1}^{\infty} ax^{k-1} = \frac{a}{1-x} .$$

[La ridotta n-sima, per x \neq 1, è s_n = a(1-xⁿ)/(1-x)]

6/3 Utilizzando l'esercizio precedente, verificare che

$$0.313131... = \frac{31}{99}$$

Si ha

0.313131...=0.31+0.0031+0.000031+...=
$$\frac{31}{10^2} + \frac{31}{10^4} + \frac{31}{10^6} + \dots$$

perciò dobbiamo calcolare la somma s della serie geometrica di primo termine a=31/10 2 e ragione x = $1/10^2$. Per l'esercizio precedente, si trova

$$s = \frac{31/10^{2}}{1-(1/10^{2})} = \frac{31}{10^{2}-1} = \frac{31}{99}$$

6.4 La fig. 6.1 rappresenta un triangolo equilatero, di altezza h=1, contenente infiniti cerchi col centro sul segmento CD, tangenti

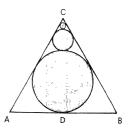


figura 6.1

ai lati del triangolo e tra di loro. Quale fra zione della superficie del triangolo è occupata dai cerchi?

[Con considerazioni geometriche si vede che il cerchio maggiore ha raggio 1/3, il secondo ha raggio 1/9, il terzo ha raggio 1/27 e così via. Perciò l'area totale dei cerchi è

In parentesi quadra figura la serie geometrica di primo termine a =1/9 e di ragione x = 1/9. La somma di tale serie è

$$s = \frac{1/9}{1-1/9} = 1/8$$

e perciò A = π /8. Poichè l'area del triangolo vale 1/ $\sqrt{3}$, la frazio ne del triangolo occupata dai cerchi è $(\pi/8)/(1/\sqrt{3}) = 0.68017...$

6.5 Dare un esempio di serie non convergente, il cui termine generale sia infinitesimo.

[La serie armonica

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

è divergente positivamente. Infatti, posto

$$s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

la successione s_n è crescente e perciò ha limite s. Se fosse s єR, esi sterebbe $\,\,\vee\,\,$ tale che $\,|\,\,s_n^-s\,|\,\,<$ 1/4 per n > $\,\,\vee\,\,$. Allora per n,m > $\,\vee\,\,$, si avrebbe

$$|s_m^-s_n^-| \le |s_m^-s| + |s_n^-| \le 1/2$$

ed, in particolare, per n \geq \vee , sarebbe

$$|s_{2n}-s_{n}| < 1/2$$
.

D'altra parte, risulta:

$$s_{2n} - s_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge n \cdot \frac{1}{2n} = \frac{1}{2}$$
,

il che è assurdo]

6.6 Verificare che la serie

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \dots$$

è divergente.

[Basta invocare la proprietà (b) e tener presente l'esercizio preceden-

te]

6.7 Verificare che la serie 1+2+3+...+n+... è diver-

[Si ha s_n = 1+2+3+...+n = n(n+1)/2, per le note proprietà delle progres sioni aritmetiche. Perciò $\lim_{n \to +\infty} s_n = +\infty$

6.8 Verificare che è indeterminata la serie:

$$\sum_{n=1}^{\infty} (-1)^n = -1+1-1+1-1+\dots$$

[Si ha $\mathbf{s_n}$ = - 1 per n dispari, $\mathbf{s_n}$ = 0 per n pari, perciò la successi $\underline{\mathbf{o}}$ ne s, non è regolare]

9 Calcolare la somma delle seguenti serie geometr<u>i</u>

 $\sum_{n=0}^{\infty} 3^n - + \infty$

[(a) 2; (b) 1; (c) + \infty; (d) 5]

Werificare che, per ogni $x \in (-1,1)$ vale la formu la

$$\sum_{n=k}^{+\infty} x^n = \frac{x^k}{1-x}$$

 $\left[\text{ Basta osservare che } \sum_{n=k}^{+\infty} x^n = x^k + x^{k+1} + \ldots = x^k (1 + x + \ldots) \right]$

$$\frac{\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{k \to +\infty} \sum_{n=1}^{k} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \lim_{m \to +\infty} \left(1 - \frac{1}{n+1} \right) = 1]$$

 $6:\!12$ Sia a_n una successione di numeri reali. Verificare che

$$\sum_{n=1}^{\infty} (a_n - a_{n-1})$$
 converge \iff a_n converge.

Inoltre, se a =
$$\lim_{n \to +\infty}$$
 a_n , allora $\sum_{n=1}^{\infty}$ $(a_n - a_{n+1})$ =

$$= a_1 - a$$
 [Si ha $\sum\limits_{n=1}^{k} (a_n - a_{n+1}) = a_1 - a_{k+1}$, da cui segue subito l'asserto]

Verificare che la serie $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$ è convergente ed ha per somma 1/2.

[Si ha $\frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$ ed allora, posto $a_n = 1$

= 1/ $\left[\ 2(2n-1)\ \right]$, si ha a_{n+1} = 1/ $\left[\ 2(2n+1)\ \right]$ e siamo nelle condizioni dell'esercizio precedente. Perciò

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \sum_{n=1}^{\infty} \left[\frac{1}{2(2n-1)} - \frac{1}{2(2n+1)} \right] = a_1 - \lim_{n} a_{n+1} = 1/2$$

Verificare che la serie $\sum_{n=1}^{\infty} \log \frac{n+1}{n}$ è divergente, dopo aver calcolato la somma s_k dei primi k termini.

[Si utilizzi la relazione log [(n+1)/n] = log(n+1)-log n. Si trova $s_k = log(k+1)$

6.15 Dopo aver dimostrato per induzione la formula

$$\sum_{n=1}^{k} \log \frac{(n+1)^2}{n(n+2)} = \log \frac{2(k+1)}{k+2} ,$$

calcolare la somma della serie:

$$\sum_{n=1}^{\infty} \cdot \log \frac{(n+1)^2}{n(n+2)}$$

6.16 Dopo aver dimostrato per induzione la formula

$$\sum_{n=1}^{k} \frac{2}{n(n+2)} = \frac{3}{2} - \frac{1}{k+1} - \frac{1}{k+2} ,$$

calcolare la somma della serie

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

6.17 Verificare che la serie $\sum\limits_{n=1}^{\infty}$ 2 $^{1/n}$ è divergente. $\left[\begin{array}{cc} \text{Basta osservare che } \lim_{n\to +\infty} 2^{1/n} = 1 \end{array}\right]$

a termini non negativi

Sia $\sum_{n=1}^{\infty}$ a_n una serie a termini non negativi, e sia s_n la sua ridotta n-sima. Essendo $s_{n+1}=s_n$ +

+ $a_{n+1} \ge s_n$, la successione s_n è crescente e perciò regolare. Dalle proprietà delle successioni crescenti segue che:

la serie a termini non negativi $\sum\limits_{n=1}^{\infty}$ a $_n$ è convergente se e solo se la successione s_n delle sue ridotte è limitata su -

Altrimenti essa diverge positivamente.

Per le serie a termini non negativi vale il <u>se</u>seguente criterio di confronto:

siano $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ due serie tali che

$$0 \ \le \ a_n \le \ b_n \qquad \qquad \forall \ n \in \mathbb{N} \, .$$

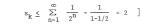
'Allora:

(i) se
$$\sum_{n=1}^{\infty}$$
 b_n = b < + ∞ , si ha $\sum_{n=1}^{\infty}$ $a_n \leq b$.

(ii) se
$$\sum_{n=1}^{\infty}$$
 a_n = + ∞ , si ha $\sum_{n=1}^{\infty}$ b_n = + ∞ .

6 8 Verificare che la serie

$$\sum_{n=1}^{\infty} \frac{1}{n!}$$


è convergente.

 $\big[$ Dimostriamo che la successione \mathbf{s}_{k} delle ridotte è limitata superiormente. Osserviamo che n! = 1·2·3·...·n \geq 1·2·2·...·2 = 2^{n-1} e per ciò $1/n! \le 1/2^{n-1}$. Ne segue

$$s_k = \sum_{n=1}^{k} \frac{1}{n!} \le \sum_{n=1}^{k} \frac{1}{2^{n-1}}$$

Poichè all'ultimo membro figura la ridotta k-sima della serie geom<u>e</u>

trica di primo termine 1 e ragione 1/2, allora s_k è limitata supe-

6. Verificare che la serie $\sum_{n=1}^{\infty} 1/n^2$ è convergente.

Essendo $n^2 + n \le 2n^2$ per ogni $n \in \mathbb{N}$, allora risulta $1/n^2 \le 2/(n^{24}n) \le 2/[n(n+1)]$. Applicando l'esercizio 6.11, si ha l'asserto]

6.20 Stabilire il carattere delle seguenti serie

$$\sum_{n=1}^{\infty} \frac{n}{n+1} \qquad \qquad \sum_{n=1}^{\infty} \sqrt[n]{n}$$

$$\sum_{n=1}^{\infty} \frac{n}{n^{3}+1} \qquad \qquad (\sum_{n=1}^{\infty} \frac{n}{n^{2}+1})$$

[(a) Essendo $\lim_{n\to +\infty}\frac{n}{n+1}$ = 1, la serie non può convergere e dunque, es sendo a termini non negativi, diverge (b) Essendo $\lim_{n \to \infty} \sqrt{n} = 1, \text{la}$ serie diverge. (c) Essendo $n/(n^3+1) < n/n^3 = 1/n^2$ la serie converge a norma del criterio (i) e dell'esercizio precedente. (d) Es sendo $n/(n^2$ +1) \geq $n/(n^2$ +n 2) = 1/2n, la serie diverge a norma $^{\prime}$ del criterio (ii), in quanto essa maggiora una serie divergente $\c]$

6.21 Studiare il carattere della serie

$$1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$
 (p \in R)

detta serie armonica generalizzata (o serie di Rie -

 \leq 1/ n^{p} . Poichè la serie di termine generale 1/n (ciọè la serie armonica) è divergente, tale risulta anche la serie data, grazie alla
$$s_{2^{n}} - s_{2^{n-1}} = \sum_{k=2^{n-1}+1}^{2^{n}} \frac{1}{k^{p}} = (2^{n-1}+1)^{-p} + (2^{n-1}+2)^{-p} + \dots + (2^{n-1}+2$$

$$\begin{array}{c} +(2^{n-1}+2^{n-1})^{-p} < 2^{n-1}(2^{n-1})^{-p} = (2^{1-p})^{n-1} \; . \\ \\ \text{Pertanto, essendo} & \sum\limits_{i=1}^{p} \left(s_{2^i} - s_{2^{i-1}}\right) = s_{2^n} - s_1 \; \text{si ha:} \\ \\ s_{2^n} < \frac{1}{1-2^{1-p}} + s_1 \qquad \qquad \forall \, n \in \mathbb{N} \end{array}$$

Da ciò segue che, in questo caso, la successione delle ridotte è li-

Per una dimostrazione diversa, si veda l'esercizio 6.50 del paragrafo 6E

Dal criterio di confronto enunciato al principio del paragrafo si ricava il seguente *criterio di confro<u>n</u>* to mediante i limiti:

Sia
$$a_n \ge 0$$
, $b_n > 0$ e sia

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell.$$

- (j) No Se 0 < l < + ∞, allora le serie ∑ a n, ∑ b n sono entrambe convergenti o entrambe divergenti.

 (jj) No Se l=0 e la serie ∑ b converge, allora anche la serie ∑ a è convergente.

 (jjj) No se l=+∞ e la serie ∑ b diverge; allora anche la serie ∑ a diverge:

 (jjj) No se l=+∞ e la serie ∑ a diverge:

*Dal criterio di confronto mediante i limiti e dal l'esercizio 6.21, si ricava il seguente notevole cri terio degli infinitesimi :

Sia $a_1 + a_2 + \ldots + a_n + \ldots$ una serie a termini non ne-

gativi, sia $p \in R$ e supponiamo che esista il limite

$$\ell = \lim_{n \to +\infty} n^p a_n .$$

Allora:

$$\ell \in (0, +\infty) \Longrightarrow \begin{cases} \sum\limits_{n=1}^{\infty} a_n \text{ convergente, se p} \ge 1 \\ \\ \sum\limits_{n=1}^{\infty} a_n \text{ divergente se p} \le 1 \end{cases}$$

$$\ell=0$$
 => $\sum_{n=1}^{\infty} a_n$ convergente, se p > 1

$$\text{ $\ell = + \infty$} \implies \sum_{n=1}^{\infty} \ a_n \ \text{divergente, se p} \le 1.$$

6.22 Verificare che la serie $\sum\limits_{n=1}^{\infty}$ (log n)/n² è conver-

[Posto $a_n = (\log n)/n^2$ e $b_n = 1/n^{3/2}$, si ha:

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{\log n}{\sqrt{n}} = 0 \qquad \qquad (\text{instance})$$

ed allora, basta applicare il criterio (jj) e tener presente l'esercizio 6.21, oppure si può applicare il criterio degli infinitesimi con

6 3 Verificare che la serie $\sum_{n=1}^{\infty} 1/(3^n - n)$ è conver

[Posto $a_n = 1/(3^n-n)$, $b_n = 1/3^n$, si ha:

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{\frac{3}{3}}{3^{n-n}} = 1$$

ed allora, poichè la serie geometrica di ragione 1/3 è convergente ,

per il criterio (j), si ha l'asserto]

6 4 Applicando il criterio degli infinitesimi, studiare il carattere delle seguenti serie

$$\sum_{n=1}^{\infty} \frac{3n^2+1}{n^4+n+1}$$

$$\sum_{n=1}^{\infty} \frac{5n-1}{3n^2+2} \int V$$

[(a) Essendo $\lim_{n\to +\infty}$ $n^2 = \frac{3n^2+1}{n^4+n+1}$ = 3, la serie converge. (b) Essendo $\lim_{n \to +\infty} n \frac{5n-1}{3n^2+1} = \frac{5}{3} , \quad \text{la serie diverge}]$

6. Applicando il criterio degli infinitesimi, stab $\underline{\underline{i}}$ lire il carattere della serie $\sum\limits_{n=1}^{\infty} \frac{\log n}{n}$.

[Essendo $\lim_{n \to +\infty} n \frac{\log n}{n} = +\infty$, la serie diverge]

6. Applicando il criterio degli infinitesimi, studiare il carattere della serie $\sum\limits_{n=1}^{\infty}\left(\frac{2}{n}-\text{sen }\frac{1}{n}\right)$. [Essendo $\lim_{n \to +\infty} n \left(\frac{2}{n} - \operatorname{sen} \frac{1}{n}\right) = 1$, la serie diverge]

Applicando il criterio degli infinitesimi, studiare il carattere della serie $\sum\limits_{n=1}^{\infty} \left(\frac{1}{n} \cdot \sqrt{\sin \frac{1}{n}}\right)$. [Ricordando la formula di Taylor per la funzione sen x (paragrafo ILC della parte prima): sen x = x - $\frac{x^3}{6}$ + o(x⁴), posto x=1/n, risulta sen (1/n) = (1/n) - 1/6n³ + o(1/n⁴), da cui:

$$\lim_{n\to +\infty} n^3 \left(\frac{1}{n} - \sin\frac{1}{n}\right) = \lim_{n\to +\infty} n^3 \left(\frac{1}{6n^3} + o\left(\frac{1}{n^4}\right)\right) = \frac{1}{6}.$$

Applicando il criterio degli infinitesimi con p=3, si vede che la serie è convergente]

Applicando il criterio degli infinitesimi, studiare il carattere delle serie

(a)
$$\sum_{n=1}^{\infty} (e^{1/n} + e^{-1/n} - 2)$$
 (b) $\sum_{n=1}^{\infty} (e^{1/n} - e^{-1/n})$

[(a) Utilizzando lo sviluppo in formula di Taylor

$$e^{x} = 1 + x + \frac{x^{2}}{2} + o(x^{2})$$

 $e^{X}=1+x+\frac{x^{2}}{2}+o(x^{2}\)$ e ponendo, successivamente, x=1/n e x=-1/n, si ottiene:

$$e^{\frac{1}{n}} = 1 + \frac{1}{n} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)^{\frac{1}{2}}; \quad e^{\frac{-1}{n}} = 1 - \frac{1}{n} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$

Sommando membro a membro, si ha e $^{1/n}$ + e $^{-1/n}$ =2+1/n 2 + o·(1/n 2).Risul

$$\lim_{n \to +\infty} n^2 (e^{1/n} + e^{-1/n} - 2) = 1.$$

In base al criterio degli infinitesimi per p=2, la serie è convergen te. (b) Utilizzando lo stesso metodo di (a) ed il criterio degli $i\underline{n}$ finitesimi per p=1, la serie risulta divergente]

9 Applicando il criterio degli infinitesimi, studiare il carattere delle serie

$$(a) \sum_{n=1}^{\infty} (\sqrt[3]{n^3+1} - n) \qquad (b) \sum_{n=1}^{\infty} (\sqrt[3]{n^3+n} - n)$$

(a) Come indicato nell'esercizio 11.48 (a) della parte prima, risul-

$$\sqrt{n^3+1} - n = \frac{1}{3n^2} + o\left(\frac{1}{n^2}\right)$$
.

In base al criterio degli infinitesimi per p=2, la serie è converge \underline{n} te. (b) Utilizzando lo stesso metodo di (a) ed il criterio degli infinitesimi per p=1, si vede che la serie diverge]

Applicando il criterio degli infinitesimi,stab<u>i</u> lire il carattere della serie

$$\sum_{n=1}^{\infty} \cdot \left(1 - n^2 \operatorname{sen}^2 \frac{1}{n} \right)$$

 $\left[\begin{array}{l} {\rm Ricordando~che}~({\rm si~veda~la~formula~11.30}~({\rm a)~della~parte~prima})~:\\ {\rm sen}^{\,2}\,x=x^{\,2}-\,x^{\,4}\,/3+o\,(x^{\,5}~)~{\rm e~ponendo~x}=1/n,~{\rm si~ha~1-n^{\,2}~sen^{\,2}}\,\frac{1}{n}=\\ {\rm =}~1-n^{\,2}\left(\frac{1}{n^{\,2}}-\frac{1}{3n^{\,4}}~+o\,\left(\frac{1}{n^{\,5}}\right)\right)=\frac{1}{3n^{\,2}}~+~o\,\left(\frac{1}{n^{\,3}}\right)~. \end{array}$

al criterio degli infinitesimi per p = 2, si veda che la se-

6 31 Dimostrare che, se la serie a termini positivi $\sum_{n=1}^{\infty} a_n \text{ è convergente, allora, qualunque sia } h \in N$ anche la serie $\sum_{n=1}^{\infty} a_n^{h} \text{ è convergente.}$

 $\begin{bmatrix} \text{Se la serie} & \sum\limits_{n=1}^{\infty} a_n \text{ è convergente, allora risulta } \lim\limits_{n \to +\infty} a_n = 0 \text{ e perciò esiste } \lor \text{ tale che } a_n < 1 \text{ per ogni } n \ge \lor \lor \text{. Ne segue che } a_n \le a_n \end{bmatrix}$ per ogni n \geq \vee e quindi, per il criterio di confronto enunciato al principio del paragrafo, la serie $\sum\limits_{n=1}^{\infty} \frac{h}{a_n}$ è convergente]

Per stabilire se una serie a termini positivi sia o meno convergente, assai utili sono i seguenti due criteri.

 $\stackrel{\infty}{\rightleftharpoons}$ CRITERIO DELLA RADICE. Sia $\stackrel{\infty}{\underset{k=1}{\Sigma}}a_k$ una serie a termini non negativi e supponiamo che esista il limite

$$\lim_{n\to+\infty} \sqrt[n]{a_n} = \ell.$$

Allora:

CRITERIO DEL RAPPORTO. Sia $\stackrel{\circ}{\Sigma}$ a_k una serie a termini pos \underline{i} k=1 * tivi e supponiamo che esista il limite

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \ell.$$

Allora:

I due precedenti criteri non sono utilizzabili se

Infatti, ad esempio, essi non possono applicarsi alla serie armonica generalizzata $\sum_{k=1}^{\infty} \frac{1}{kP}$, per la qua le risulta (p > 0):

$$\lim_{n\to+\infty} \sqrt[n]{\frac{1}{n^p}} = \lim_{n\to+\infty} \frac{1/(n+1)^p}{1/n^p} = 1$$

mentre la serie diverge per p \leq 1 e converge per p>1. 6 2 Verificare che le serie

(a)
$$\sum_{n=1}^{\infty} 1/n^n$$
 (b) $\sum_{n=1}^{\infty} n!/n^n$

sono convergenti.

[(a) Si ha $\lim_{n\to +\infty} \sqrt[n]{1/n} = \lim_{n\to +\infty} 1/n = 0$ e quindi, per il crite rio della radice, la serie converge. (b) Si ha \hat{k} =

$$= \lim_{n \to +\infty} \ \frac{\left(n+1\right)!/\left(n+1\right)^{n+1}}{n!/n^n} \ = \lim_{n \to +\infty} \ \frac{\left(n+1\right)!n}{n!\left(n+1\right)^{n+1}} \ = \lim_{n \to +\infty} \left(\frac{n}{n+1}\right)^n$$

in quanto (n+1)!/n! = n+1. Essendo $\lim_{n\to +\infty} \left(\frac{n}{n+1}\right)^n$ =

= $\lim_{n\to +\infty} 1/\left[(n+1)/n \right]^n$ = $\lim_{n\to +\infty} 1/(1+1/n)^n$ = 1/e < 1, allora è ℓ =

= 1/e < 1. Per il criterio del rapporto, la serie converge]

6.3 Verificare che le serie

 $\sum_{n=1}^{\infty} n/2^n$

$$\bigvee_{n=1}^{\infty} \sum_{n=1}^{\infty} 2^{n}/n! eon \sqrt{2^{n}}$$

sono convergenti.

[(a) Si ha $\lim_{n \to +\infty} (n/2^n)^{1/n} = \lim_{n \to +\infty} n^{1/n}/2 = 1/2$ (ved.il paragrafo 7D della parte prima) e quindi, per il criterio della radice, la serie

converge. (b) Si ha
$$\lim_{n \to +\infty} \frac{2^{n+1}/(n+1)!}{2^n/n!} = \lim_{n \to +\infty} 2/(n+1) = 0$$
 (in quanto (n+1)! /

/n!=n+1) e quindi, per il criterio del rapporto, la serie converge]

6. 4 Verificare che le serie

$$\sum_{n=1}^{\infty} n^{n} / (2^{n} \cdot n!) \qquad \qquad (\bigotimes \sum_{n=1}^{\infty} 2^{n} / n^{5})$$

sono divergenti.

[(a) Si ha

$$\ell = \lim_{n \to +\infty} \frac{\left(n+1\right)^{n+1}/2^{n+1}(n+1)!}{n^n/2^n \ n!} = \lim_{n \to +\infty} \frac{\left(n+1\right)^{n+1}}{n^n} \frac{2^{n+1}}{n^n} \frac{n!}{2^{n+1}(n+1)!} = \lim_{n \to +\infty} \frac{\left(n+1\right)^{n+1}}{n^n} \frac{2^{n+1}}{2^{n+1}(n+1)!} = \lim_{n \to +\infty} \frac{\left(n+1\right)^{n+1}}{n^n} \frac{n!}{2^{n+1}(n+1)!} = \lim_{n \to +\infty} \frac{n!}{2^{n+1}(n+1)!} = \lim_{n \to +\infty} \frac{n!}{2^{n+1}(n+1)!} = \lim_{n \to +\infty} \frac{n!}{2^{n+1}(n+1)!} = \lim_{n \to +\infty}$$

$$= \frac{1}{2} \lim_{n \to +\infty} \left(\frac{n+1}{n} \right)^n = e/2. \text{ Essendo} \quad \text{\mathbb{L}= e/2 > 1, per il crite -}$$

rio del rapporto, la serie diverge. (b) Si ha \mathbb{A} = $\lim_{n\to +\infty} \sqrt[n]{2^n/n^5}$ =

= $2 \lim_{n \to +\infty} (1^n \sqrt{n})^5$ = 2 e perciò la serie diverge, a norma del

criterio della radice]

6. Studiare, per x > 0, il carattere delle serie

 $\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}$

 $[(a) \text{ Essendo } \lim_{n \to +\infty} \frac{\prod_{x/n!}^{n-1}}{x^{n-1}/(n-1)!} = \lim_{n \to +\infty} \frac{\prod_{x/n-1}^{n-1}}{x^{n-1}n!} = \lim_{n \to +\infty} \frac{x}{n} = 0, \text{per }$ per il criterio del rapporto, la serie converge qualunque sia x > 0.

(b) Essendo $\lim_{n \to +\infty} \frac{x^{n+1}/(n+1)}{x^n/n} = \lim_{n \to +\infty} \frac{x^{n+1}}{x^n(n+1)} = \lim_{n \to +\infty} \frac{n}{n+1} x = x$,

allora, per il criterio del rapporto, la serie converge per 0< x< l e diverge per x > 1. Infine, per x=1, si ottiene la serie armonica , che è divergente]

6.36 Stabilire il carattere delle serie

 $(\bigotimes_{n=1}^{\infty} \ \sum_{n=1}^{\infty} \ \partial ^{\bullet} N^{\bullet})$

$$() \sum_{n=1}^{\infty} \left(\frac{n+1}{3n-1}\right)^n$$

$$\left[\begin{array}{ccc} (a) \text{ Posto } a_n = \frac{n^2}{n!} \text{ , } & \text{si ha } \lim_{n \rightarrow +\infty} & \frac{a_{n+1}}{a_n} & = \lim_{n \rightarrow +\infty} & \frac{(n+1)^2}{(n+1)!} \cdot \frac{n!}{n^2} \end{array}\right.$$

= $\lim_{n \to +\infty} \frac{n+1}{n^2}$ = 0. Perciò, per il criterio del rapporto, la serie è

convergente. (b) Si ha $\lim_{n\to+\infty} \frac{n+1}{3n-1} = \frac{1}{3}$ e perciò, per il criterio della radice, la serie è convergente]

60. Serie alternate

Una serie del tipo

(1)
$$a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n-1} a_n + \dots$$

con $a_n > 0$ per ogni $n \in \mathbb{N}$, si chiama serie alternata, o serie a termini di segno alterno.

Un esempio è dato dalla serie armonica alternata

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots + (-1)^{n-1} \frac{1}{n} + \ldots$$

Abbiamo già visto che la serie armonica diverge; vedremo che invece la serie armonica alternata è convergente:

Sulle serie alternate vale il seguente notevole criterio:

Se $a_n \geq a_{n+1}$ e $\lim_{n \to +\infty} a_n = 0$, allora la serie (1)è convergente. Inoltre, l'errore che si commette assumendo la ridotta s_n come valore approssimato della somma s è minore o uguale ad a_{n+1} , cioè, s i ha:

(2)
$$|s-s_n| \le a_{n+1}$$
.

6.3 Data la serie alternata
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + (-1)^{n-1} \frac{1}{2n-1} + \dots$$

verificare che essa converge e determinare la sua somma s con un errore minore di 1/10.

[Posto $a_n = 1/(2n-1)$, la successione a_n verifica le ipotesi del criterio precedente, per cui la serie converge. In questo caso la (2) diviene $\left|s-s_n\right| \leq a_{n+1} = 1/(2n+1)$; perciò, per calcolare s con un errore inferiore a 1/10, basterà determinare n in modo che risulti 1/(2n+1) < 1/10 e cioè n > 9/2. Scegliamo dunque n=5, per cui la (2) implica

$$\left| s - \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} \right) \right| < 0.1.$$

Essendo 1 $-\frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} = 0.835...$, un valore approssimato della somma s a meno di 1/10 è 0.8}

Verificare che la serie armonica alternata $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n-1} \frac{1}{n} + \dots$

è convergente. Quanti termini della serie si de vono sommare in modo che il risultato differi sca di 1/100 dalla somma s della serie?

[La serie armonica alternata verifica le ipotesi del criterio precedente, quindi è convergente. Per determinare n tale che $\left\|\mathbf{s}-\mathbf{s}_{n}\right\| \leq 1/100$ basta che sia $a_{n+1} \leq 1/100$. Essendo $a_{n+1} = 1/(n+1)$, imponiamo la condizione $1/(n+1) \leq 1/100$ cioè n ≥ 99]

Verificare che la serie alternata $\sum\limits_{n=1}^{\infty}$ $(-1)^{n-1}\frac{1}{n^p}$ è convergente per ogni p>0.

[Per p > 0 la successione $1/n^p$ è decrescente e $\lim_{n\to +\infty} 1/n^p$ = 0. Perciò la serie è convergente]

6.40 Stabilire il carattere delle seguenti serie alternate:

$$\bigotimes_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n+1} e^{\mathbf{N}^{N}} \bigotimes_{n=1}^{\infty} (-1)^{n-1} e^{\mathbf{N}^{N}} \bigotimes_{n=1}^{\infty} (-1)^{n-1} e^{\mathbf{N}^{N}} \bigotimes_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\log(n+1)} \bigotimes_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{2}+1}$$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2} \qquad \sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{1}{\sqrt{n}}$$

[(a) converge; (b) non regolare; (c) converge; (d) converge; (e)converge; (f) converge]

6. 1 Data la sērie $\sum\limits_{n=1}^{\infty}$ (-1) $^{n}/n!$, maggiorare l'errore

che si commette sostituendo la sua somma con la somma dei suoi primi quattro termini.

[Si ha | s-s $_4$ | \leq 1/120 \cong 0.0083]

6. 2 Data la serie $\sum\limits_{n=1}^{\infty}$ (-1) n-1 $\frac{\log n}{n}$, verificare che essa converge e maggiorare l'errore che si commette sostituendo la sua somma con la somma dei suoi primi nove termini.

[Si ha | s-s $_9$ | \leq (log 10)/10 \cong 0.230]

6D. Serie assolutamente convergenti

. Una serie di termine generale a_n si dice assolutamente convergente se è convergente la serie di termine generale $|a_n|$, cioè la serie

(1)
$$|a_1| + |a_2| + \ldots + |a_n| + \ldots$$

Una serie assolutamente convergente è anche convergente, ma non vale il viceversa, come si vede ad esempio, considerando la serie armonica alternata(ved. gli esercizi 6.5 e 6.38). Si osservi che applicando alla serie (1) i criteri di convergenza per le serie a termini non negativi, si ottengono altrettanti criteri di assoluta convergenza per la serie $a_1 + a_2 + \ldots + a_n + \ldots$

La serie di termine generale a_n si dice commutativamente convergente se, per ogni funzione biunivoca i : $N \to N$ di N su N, la serie di termine generale $a_{i(n)}$ è convergente e risulta

$$\sum_{n=1}^{\infty} a_{i(n)} = \sum_{n=1}^{\infty} a_{n}.$$

In sostanza, la serie $\sum\limits_{n=1}^{\infty} \ a_{\mathbf{i}(n)}$ si ottiene dalla serie

 $\overset{\infty}{\underset{n=1}{\Sigma}}$ a $_{n},$ riordinando i suoi termini e perciò tale se -

rie spesso si chiama riordinamento della serie $\sum\limits_{n=1}^{\infty} a_n$. Una delle principali proprietà delle serie assolutamente convergenti è che la loro somma è indipendente dall'ordine dei termini. Infatti si dimostra che:una serie è assolutamente convergente se e solo se essa è commutativamente convergente.

Verificare che la serie $\sum_{n=1}^{\infty} n^p x^n$ è assolutamente convergente per |x| < 1, qualunque sia $p \in \mathbb{R}$.

[si ha $|n^p x^n|^{1/n} = (n^{1/n})^p |x|$, per cui $\lim_{n \to +\infty} |n^p x^n|^{1/n} = |x|$.

La tesi segue dal criterio della radice]

6 4 Stabilire se le seguenti serie sono convergenti

[(a) Essendo $\ \ | \ (sen \ n)/n^{-2} \ | \le \ 1/n^2 \ \ la$ serie è assolutamente conve<u>r</u>

gente. (b) Per $n^{\rightarrow\,+\infty}$, la successione $\boldsymbol{a}_n^{}$ = sen n $$ non è $$ infinitesima

(si veda l'esercizio 7.75 della parte prima) e quindi la serie non

 $\sum_{n=1}^{\infty} \frac{\text{sen n}}{n^2}$

 $\sum_{n=1}^{\infty} \sup_{n} n$

[Nella parte (b) dell'esercizio precedente, si è verificato che la serie $\overset{\infty}{\Sigma}$ sen n non è convergente. Si chiede ora di provare, più precisamente, che la serie è indeterminata. A tal fine si verifichi pre liminarmente, per induzione, che per la ridotta k-sima vale la formu la

$$\sum_{n=1}^{k} \operatorname{sen} n = \frac{\operatorname{sen} \frac{k}{2} \cdot \operatorname{sen} \frac{k+1}{2}}{\operatorname{sen} \frac{1}{2}}$$

Per k=1 tale formula è vera. Procedendo per induzione, supponiamo la formula vera per k∈N e sommiamo ad ambo i membri sen(k+1). Ottenia

$$\sum_{n=1}^{k+1} \operatorname{sen} n = \frac{\operatorname{sen} \frac{k}{2} \cdot \operatorname{sen} \frac{k+1}{2}}{\operatorname{sen} \frac{1}{2}} + \operatorname{sen} (k+1).$$

Ricordando che sen(k+1)= 2 sen $\left(\frac{k+1}{2}\right)$ cos $\left(\frac{k+1}{2}\right)$, abbiamo:

$$sen p - sen q = 2 sen \frac{p-q}{2} cos \frac{p+q}{2}$$

con p = (k+2)/2 e q=k/2; otteniamo

sen
$$\frac{k+2}{2} = \text{sen } \frac{k}{2} + 2 \text{ sen } \frac{1}{2} \cdot \cos \frac{k+1}{2}$$

$$\begin{array}{ccc} \frac{k+1}{\sum} & \text{sen } n = \frac{\frac{k+1}{2}}{\frac{1}{2}} & \cdot \text{sen } \frac{k+2}{2} \end{array}.$$

La serie data risulta indeterminata, in quanto la successione delle somme parziali non ha limite, come segue da quanto provato nel par $\underline{\mathbf{a}}$ grafo 12.D della parte prima]

6.46 Verificare che la serie $\sum\limits_{n=1}^{\infty} \left(\frac{1}{n} - \log \frac{n+1}{n} \right)$ è con

[Si tratta di una serie a termini positivi, in quanto dalle relazioni $\left(1+1/n\right)^n < e < \left(1+1/n\right)^{n+1}$ segue facilmente che $1/(n+1) < \log \frac{n+1}{n} < e$

 $<\frac{1}{r}$. Queste ultime disuguaglianze implicano anche che

$$\frac{1}{n}$$
 - log $\frac{n+1}{n}$ < $\frac{1}{n}$ - $\frac{1}{n+1}$ = $\frac{1}{n(n+1)}$ < $\frac{1}{n^2}$

e perciò la serie converge, perchè maggiorata da una serie converge $\underline{\mathbf{n}}$ te]

6.47 Considerata la successione

$$\gamma_k = \sum_{n=1}^k \frac{1}{n} - \log(k+1)$$
,

dedurre dall'esercizio precedente che essa converge verso una costante γ (detta costante di

Eulero) che è anche la somma della serie $\sum\limits_{n=1}^{\infty}\left(\frac{1}{n}\right)$.

= log(k+1), allora, si ha:

$$\sum_{n=1}^k \left(\frac{1}{n} - \log \frac{n+1}{n}\right) = \sum_{n=1}^k \frac{1}{n} - \log (k+1)$$

e, per l'esercizio precedente, a primo membro abbiamo una successi<u>o</u> ne convergente. Si dimostra che $~\gamma~\cong~0.5772.$ Si noti che dalle osservazioni precedenti consegue la formula $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\cong \gamma+$

6.48 Verificare che la somma della serie armonica a $\underline{\underline{1}}$ ternata $\sum\limits_{n=1}^{\infty}$ (-1) $^{n-1}$ $\frac{1}{n}$ è uguale a log 2.

[Dall'esercizio precedente segue

$$\sum_{n=1}^{k} \frac{1}{n} = \gamma_k + \log(k+1) = \gamma_k + \log(k+1) + \log k = 1$$

$$= \left[(\gamma_{k}^{-} \gamma) + \log \frac{k+1}{k} \right] + \gamma + \log k = \rho_{k} + \gamma + \log k$$

Osserviamo ora che

perciò, per le relazioni precedenti, si ha

da cui l'asserto, perchè $\lim_{k\to +\infty} \rho_k$ = 0]

6.49 Dare un esempio di una serie e di un suo riord<u>i</u> namento, convergenti verso due somme diverse.

[Per l'esercizio precedente, si ha

1 -
$$\frac{1}{2}$$
 + $\frac{1}{3}$ - $\frac{1}{4}$ + $\frac{1}{5}$ - $\frac{1}{6}$ +... = $\log 2$.

Moltiplicando ogni termine per 1/2, si ha

$$\frac{1}{2} - \frac{1}{h} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \frac{1}{12} + \dots = \frac{1}{2} \log 2$$

relazione che possiamo riscrivere come:

$$0 + \frac{1}{2} + 0 - \frac{1}{4} + 0 + \frac{1}{6} + 0 - \frac{1}{8} + 0 + \frac{1}{10} + \dots = \frac{1}{2} \log 2$$

Sommando termine a termine questa serie con la prima, si ha la serie:

$$1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\ldots=\frac{3}{2}\log 2$$

Quest'ultima serie è un riordinamento della serie data, nella quale ogni coppia di termini positivi è seguita da un termine negativo, ed

essa ha somma diversa dalla serie data

6E. Criterio degli integrali

Sia f(x) una funzione continua, positiva e decrescente nell'intervallo [1,+ ∞) e sia a_n = f(n) per

Assai utile è il seguente

CRITERIO DEGLI INTEGRALI: la serie $\sum\limits_{n=1}^{\infty}$ a $_{n}$ = $\sum\limits_{n=1}^{\infty}$ f(n)è convergente se e solo se l'integrale improprio

(1)
$$\int_{1}^{+\infty} f(x) dx$$

è convergente

Notiamo che il numero 1 può essere sostituito,nel precedente criterio, da un qualsiasi intero positivo. Inoltre, sussistono le disuguaglianze

dalle quali si ricava, ad esempio, che, se l'integr \underline{a} le (1) è convergente, allora si ha:

6.50 Utilizzando il criterio degli integrali, verif \underline{i} care che la serie armonica generalizzata $\sum\limits_{n=1}^{\infty} \frac{1}{n^p}$ è convergente se p > 1, è divergente se 0 \leq 1 (Si veda anche l'esercizio 6.21)

[Se p > 0, la funzione $f(x) = 1/x^{p}$ è continua, positiva e decrescen

te nell'intervallo [1,+ ∞). Allora, per il criterio degli integrali, la serie $\sum_{n=1}^{\infty} \frac{1}{n^p} = \sum_{n=1}^{\infty} f(n)$ converge se e solo se l'integrale improprio $\int_{1}^{+\infty} x^{-p} \ dx = \lim_{t \to +\infty} \int_{1}^{t} x^{-p} \ dx$ esiste ed è finito. Tenendo presente gli esercizi, 5.64, 5.65, 5.66, si ha l'asserto]

6 1 Stabilire il carattere della serie $\sum_{n=2}^{\infty}$ 1/(n logn)

[Posto $f(x) = 1/(x \log x)$ per $x \in [2, \infty)$, le ipotesi del criterio degli integrali sono soddisfatte relativamente a tale intervallo. Es sendo (si veda l'esercizio 5.73):

$$\int_{2}^{+\infty} \frac{1}{x \log x} dx = \lim_{t \to +\infty} \int_{2}^{t} \frac{D \log x}{\log x} dx =$$

$$= \lim_{t \to +\infty} \left[\log \log x \right]_{2}^{t} = +\infty,$$

la serie diverge]

- 6.52 Stabilire il carattere della serie $\sum_{n=2}^{\infty} \frac{1}{n \log^2 n}$ [Essendo $\int_{2}^{+\infty} [1/(x \log^2 x)] dx = 1/\log 2$ (si veda l'esercizio 5.74), la serie converge]
- 6.53 Verificare che la serie $\sum\limits_{n=1}^{\infty}$ e⁻ⁿ è convergente. [Essendo $\int_{1}^{+\infty}$ e^{-x} dx = 1/e, l'asserto segue dal criterio degli integrali. Inoltre in questo caso la (3) implica $\frac{1}{e} \leq \sum\limits_{n=1}^{\infty}$ e⁻ⁿ $\leq \frac{2}{e}$]
- 6.54 Tenendo presente la (2), dimostrare la disugua glianza (k \in N):

$$log(k+1) < 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} < 1 + log k.$$

[Posto
$$f(x) = 1/x$$
, essendo
$$\int_1^n f(x) dx = \int_1^n (1/x) dx = \log n, 1 \text{ 'asser}$$
 to segue subito dalla (2)]

- 6.55 Si consideri la serie $\sum_{n=2}^{\infty} \frac{1}{n^p \log^q n}$
 - (a) Utilizzando il criterio degli integrali, verificare che, se p=1, allora la serie converge per q>1 e diverge per $q\leq1$.
 - (b) Verificare che, se p > 1 allora la serie con verge per ogni q, mentre se p < 1 essa diverge per ogni q.
- 6.56 (a) Utilizzando il criterio degli integrali st<u>a</u> bilire il carattere della serie numerica

$$\sum\limits_{n=1}^{\infty} \ \left(\frac{\pi}{2} \text{ - arctg } n\right)$$
 . Av

(b) Dopo aver dimostrato che per ogni x>0 risu $\underline{1}$ ta

$$0 < \frac{\pi}{2} - \operatorname{arctg} x < \frac{1}{x}$$
,

utilizzare tali disuguaglianze per stabilire, per ogni p>1, il carattere della serie numerica

$$\sum_{n=1}^{\infty} \left(\frac{\pi}{2} - \operatorname{arctg} n^{p} \right)$$

[(a) Con il metodo di integrazione per parti si trova

$$\int_0^t \left(\frac{\pi}{2} - \operatorname{arctg} x\right) dx = t\left(\frac{\pi}{2} - \operatorname{arctg} t\right) + \frac{1}{2} \log (1 + t^2)$$

e tale espressione diverge a + ∞ per t \rightarrow + ∞ . In base al criterio degli integrali la serie data è quindi divergente. (b) La disuguaglianza di sinistra è immediata. Per provare la disuguaglianza di destra consideriamo la funzione $f(x) = \frac{1}{x} + \arctan x - \frac{\pi}{2}$, che è strettamente decrescente per x > 0 (perchè $f'(x) = -1/\left[x^2(1+x^2)\right] < 0$) e converge a zero per $x \rightarrow +\infty$. Quindi f(x) > 0 per ogni x > 0. Utilizzando le disuguaglianze con x=n, in base al criterio del confronto, la serie data è convergente per ogni p > 1

La parte prima del 1° volume $\mbox{ di esercizi contiene i seguenti capitoli: }$

- NUMERI REALI
- RICHIAMI DI TRI.GONOMETRIA
- DISEQUAZIONI
- NUMERI COMPLESSI
- MATRICI E SISTEMI LINEARI
- GEOMETRIA ANALITICA
- LIMITI DI SUCCESSIONI
- LIMITI DI FUNZIONI - FUNZIONI CONTINUE
- DERIVATE
- CALCOLO DI LIMITI CON L'USO DELLE DERIVATE
- SUCCESSIONI DEFINITE PER RICORRENZA